Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing
Steve Ahlswede
CORRESPONDING AUTHOR
Remote Sensing Image Analysis Group, Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany
Christian Schulz
CORRESPONDING AUTHOR
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Christiano Gava
Smart Data and Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Patrick Helber
Vision Impulse GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Benjamin Bischke
Vision Impulse GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Michael Förster
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Florencia Arias
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Jörn Hees
Smart Data and Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Fachbereich Informatik, Hochschule Bonn-Rhein-Sieg, Grantham-Allee 20, 53757 Sankt Augustin, Germany
Begüm Demir
Remote Sensing Image Analysis Group, Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany
Birgit Kleinschmit
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Related authors
No articles found.
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev., 18, 819–842, https://doi.org/10.5194/gmd-18-819-2025, https://doi.org/10.5194/gmd-18-819-2025, 2025
Short summary
Short summary
Multiple methods for measuring soil moisture beyond the point scale exist. Their validation is generally hindered by not knowing the truth. We propose a virtual framework in which this truth is fully known and the sensor observations for cosmic ray neutron sensing, remote sensing, and hydrogravimetry are simulated. This allows for the rigorous testing of these virtual sensors to understand their effectiveness and limitations.
Katharina H. Horn, Stenka Vulova, Hanyu Li, and Birgit Kleinschmit
Nat. Hazards Earth Syst. Sci., 25, 383–401, https://doi.org/10.5194/nhess-25-383-2025, https://doi.org/10.5194/nhess-25-383-2025, 2025
Short summary
Short summary
In this study we applied a random forest machine learning algorithm to model current and future forest fire susceptibility (FFS) in north-eastern Germany using anthropogenic, climatic, topographic, soil, and vegetation variables. Model accuracy ranged between 69 % and 71 %, showing moderately high model reliability for predicting FFS. The model results underline the importance of anthropogenic and vegetation parameters. This study will support regional forest fire prevention and management.
Maik Heistermann, Till Francke, Lena Scheiffele, Katya Dimitrova Petrova, Christian Budach, Martin Schrön, Benjamin Trost, Daniel Rasche, Andreas Güntner, Veronika Döpper, Michael Förster, Markus Köhli, Lisa Angermann, Nikolaos Antonoglou, Manuela Zude-Sasse, and Sascha E. Oswald
Earth Syst. Sci. Data, 15, 3243–3262, https://doi.org/10.5194/essd-15-3243-2023, https://doi.org/10.5194/essd-15-3243-2023, 2023
Short summary
Short summary
Cosmic-ray neutron sensing (CRNS) allows for the non-invasive estimation of root-zone soil water content (SWC). The signal observed by a single CRNS sensor is influenced by the SWC in a radius of around 150 m (the footprint). Here, we have put together a cluster of eight CRNS sensors with overlapping footprints at an agricultural research site in north-east Germany. That way, we hope to represent spatial SWC heterogeneity instead of retrieving just one average SWC estimate from a single sensor.
Alby Duarte Rocha, Stenka Vulova, Christiaan van der Tol, Michael Förster, and Birgit Kleinschmit
Hydrol. Earth Syst. Sci., 26, 1111–1129, https://doi.org/10.5194/hess-26-1111-2022, https://doi.org/10.5194/hess-26-1111-2022, 2022
Short summary
Short summary
Evapotranspiration (ET) is a sum of soil evaporation and plant transpiration. ET produces a cooling effect to mitigate heat waves in urban areas. Our method uses a physical model with remote sensing and meteorological data to predict hourly ET. Designed for uniform vegetation, it overestimated urban ET. To correct it, we create a factor using vegetation fraction that proved efficient for reducing bias and improving accuracy. This approach was tested on two Berlin sites and can be used to map ET.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Cited articles
Ahlswede, S., Thekke-Madam, N., Schulz, C., Kleinschmit, B., and Demir, B.:
Weakly Supervised Semantic Segmentation of Remote Sensing Images for Tree
Species Classification Based on Explanation Methods, in: IEEE International
Geoscience and Remote Sensing Symposium, 17–22 July 2022, Kuala Lumpur, Malaysia, https://doi.org/10.48550/arXiv.2201.07495, 2022. a
Ansari, M., Homayouni, S., Safari, A., and Niazmardi, S.: A New Convolutional
Kernel Classifier for Hyperspectral Image Classification, IEEE J.
Sel. Top. Appl., 14,
11240–11256, 2021. a
Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, R., Karki, M., and Nemani,
R.: Deepsat: a learning framework for satellite imagery, in: Proceedings of
the 23rd SIGSPATIAL international conference on advances in geographic
information systems, 3–6 November 2015, Seattle, Washington, USA, 1–10, https://doi.org/10.48550/arXiv.1509.03602, 2015. a
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F.: Present and future Köppen-Geiger climate classification maps
at 1-km resolution, Scientific Data, 5, 1–12, 2018. a
Böckmann, T.: Warum sind Betriebsinventuren für die forstliche Praxis
wichtig (Why is two-phase sampling for stratification so important for
forestry enterprises?), Forstarchiv, 87, 31–37, 2016. a
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A training algorithm for optimal
margin classifiers, in: Proceedings of the fifth annual workshop on
Computational learning theory, 27–29 July 1992, New York, United States, 144–152, https://doi.org/10.1145/130385.130401, 1992. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.:
Encoder-decoder with atrous separable convolution for semantic image
segmentation, in: Proceedings of the European conference on computer vision
(ECCV), 8–14 September 2018, Munich, Germany, 801–818, https://doi.org/10.48550/arXiv.1802.02611, 2018. a
Cherrington, E., Flores-Anderson, A., Thapa, R. B., Herndon, K. E., Wahome, A.,
Oduor, P., Mubea, K., Ouko, E., and Hanh, N.: Perspectives on the Future
Application of SAR in Forest and Environmental Monitoring, in: The SAR
handbook: comprehensive methodologies for forest monitoring and biomass
estimation, edited by: Flores-Anderson, A. I., Herndon, K. E., Thapa, R. B.,
and Cherrington, E., chap. 8, NASA, https://doi.org/10.25966/nr2c-s697, 2019. a
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.: Imagenet: A
large-scale hierarchical image database, in: 2009 IEEE conference on computer
vision and pattern recognition, IEEE, 20–25 June 2009, Miami, Florida, USA, 248–255, https://doi.org/10.1109/CVPR.2009.5206848, 2009. a
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.:
An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale,
in: International Conference on Learning Representations, 26 April–1 May 2020, Addis Ababa, Ethiopia, https://doi.org/10.48550/arXiv.2010.11929, 2020. a
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2:
ESA's optical high-resolution mission for GMES operational services, Remote
Sens. Environ., 120, 25–36, 2012. a
Egli, S. and Höpke, M.: CNN-Based Tree Species Classification Using High
Resolution RGB Image Data from Automated UAV Observations, Remote Sens.,
12, 3892, https://doi.org/10.3390/rs12233892, 2020. a
Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A.: The
pascal visual object classes (voc) challenge, Int. J.
Comput. Vision, 88, 303–338, 2010. a
Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M.,
Waser, L. T., Straub, C., and Ghosh, A.: Review of studies on tree species
classification from remotely sensed data, Remote Sens. Environ., 186,
64–87, 2016. a
Fricker, G. A., Ventura, J. D., Wolf, J. A., North, M. P., Davis, F. W., and
Franklin, J.: A Convolutional Neural Network Classifier Identifies Tree
Species in Mixed-Conifer Forest from Hyperspectral Imagery, Remote Sensing,
11, 2326, https://doi.org/10.3390/rs11192326, 2019. a
Ganz, S., Adler, P., and Kändler, G.: Forest Cover Mapping Based on a
Combination of Aerial Images and Sentinel-2 Satellite Data Compared to
National Forest Inventory Data, Forests, 11, 1322, https://doi.org/10.3390/f11121322, 2020. a, b
Goutte, C. and Gaussier, E.: A probabilistic interpretation of precision,
recall and F-score, with implication for evaluation, in: Advances in
Information Retrieval. Lecture Notes in Computer Science, Vol. 3408, edited by: Losada,
D. E. and Fernández-Luna, J. M., Springer, 345–359, https://doi.org/10.1007/978-3-540-31865-1_25, 2005. a
Grabska, E., Hostert, P., Pflugmacher, D., and Ostapowicz, K.: Forest stand
species mapping using the Sentinel-2 time series, Remote Sens., 11, 1197, https://doi.org/10.3390/rs11101197,
2019. a, b
Hannun, A. Y., Rajpurkar, P., Haghpanahi, M., Tison, G. H., Bourn, C.,
Turakhia, M. P., and Ng, A. Y.: Cardiologist-level arrhythmia detection and
classification in ambulatory electrocardiograms using a deep neural network,
Nat. Med., 25, 65–69, 2019. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 27–30 June 2016, Las Vegas, Nevada, USA, 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016. a
Helber, P., Bischke, B., Dengel, A., and Borth, D.: EuroSAT: A Novel Dataset
and Deep Learning Benchmark for Land Use and Land Cover Classification, IEEE
J. Sel. Top. Appl.,
12, 2217–2226, 2019. a
Hemmerling, J., Pflugmacher, D., and Hostert, P.: Mapping temperate forest tree
species using dense Sentinel-2 time series, Remote Sens. Environ.,
267, 112743, https://doi.org/10.1016/j.rse.2021.112743, 2021. a
Hlásny, T., Barka, I., Roessiger, J., Kulla, L., Trombik, J.,
Sarvašová, Z., Bucha, T., Kovalčík, M., and
Čihák, T.: Conversion of Norway spruce forests in the face of
climate change: a case study in Central Europe, Eur. J. For.
Res., 136, 1013–1028, 2017. a
Hollaus, M. and Vreugdenhil, M.: Radar satellite imagery for detecting bark
beetle outbreaks in forests, Current Forestry Reports, 5, 240–250, 2019. a
Holzwarth, S., Thonfeld, F., Abdullahi, S., Asam, S., Da Ponte Canova, E.,
Gessner, U., Huth, J., Kraus, T., Leutner, B., and Kuenzer, C.: Earth
observation based monitoring of forests in Germany: A review, Remote Sens.,
12, 3570, https://doi.org/10.3390/rs12213570, 2020. a, b, c, d
Hong, D., Gao, L., Yokoya, N., Yao, J., Chanussot, J., Du, Q., and Zhang, B.:
More diverse means better: Multimodal deep learning meets remote-sensing
imagery classification, IEEE T. Geosci. Remote Sens.,
59, 4340–4354, 2020. a
Immitzer, M., Neuwirth, M., Böck, S., Brenner, H., Vuolo, F., and
Atzberger, C.: Optimal input features for tree species classification in
Central Europe based on multi-temporal Sentinel-2 data, Remote Sens., 11,
2599, https://doi.org/10.3390/rs11222599, 2019. a, b
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I,
II and III to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, IPCC, Geneva, Switzerland, https://www.ipcc.ch/report/ar5/syr/ (last access: 31 January 2023), 2014. a
Karlson, M., Ostwald, M., Reese, H., Sanou, J., Tankoano, B., and Mattsson, E.:
Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian
woodlands using Landsat 8 and random forest, Remote Sens., 7,
10017–10041, 2015. a
Kattenborn, T., Eichel, J., Wiser, S., Burrows, L., Fassnacht, F. E., and
Schmidtlein, S.: Convolutional Neural Networks accurately predict cover
fractions of plant species and communities in Unmanned Aerial Vehicle
imagery, Remote Sensing in Ecology and Conservation, 6, 472–486, 2020. a
Kattenborn, T., Leitloff, J., Schiefer, F., and Hinz, S.: Review on
Convolutional Neural Networks (CNN) in vegetation remote sensing, ISPRS
J. Photogramm., 173, 24–49, 2021. a
Kowalski, K., Senf, C., Hostert, P., and Pflugmacher, D.: Characterizing spring
phenology of temperate broadleaf forests using Landsat and Sentinel-2 time
series, Int. J. Appl. Earth Obs., 92, 102172, https://doi.org/10.1016/j.jag.2020.102172, 2020. a, b
Krzystek, P., Serebryanyk, A., Schnörr, C., Červenka, J., and
Heurich, M.: Large-Scale Mapping of Tree Species and Dead Trees in
Šumava National Park and Bavarian Forest National Park Using Lidar and
Multispectral Imagery, Remote Sensing, 12, 661, https://doi.org/10.3390/rs12040661, 2020. a
LGLN: Geodatenportal Niedersachsen (GDI-NI), Landesamt für Geoinformation und
Landesvermessung Niedersachsen,
https://www.geodaten.niedersachsen.de/, last access: 31 December 2020. a
MacDicken, K., Jonsson, Ö., Piña, L., Maulo, S., Contessa, V., Adikari,
Y., Garzuglia, M., Lindquist, E., Reams, G., and D'Annunzio, R.: Global
forest resources assessment 2015: how are the world's forests changing?, FAO, https://agris.fao.org/agris-search/search.do?recordID=XF2017001127 (last access: 31 January 2023),
2016. a
Martins, G. B., La Rosa, L. E. C., Happ, P. N., Coelho Filho, L. C. T., Santos,
C. J. F., Feitosa, R. Q., and Ferreira, M. P.: Deep learning-based tree
species mapping in a highly diverse tropical urban setting, Urban For. Urban Gree., 64, 127241, https://doi.org/10.1016/j.ufug.2021.127241, 2021. a
Mäyrä, J., Keski-Saari, S., Kivinen, S., Tanhuanpää, T.,
Hurskainen, P., Kullberg, P., Poikolainen, L., Viinikka, A., Tuominen, S.,
Kumpula, T., and Vihervaara, P.: Tree species classification from airborne hyperspectral
and LiDAR data using 3D convolutional neural networks, Remote Sens.
Environ., 256, 112322, https://doi.org/10.1016/j.rse.2021.112322, 2021. a
NW-FVA: Waldzustandsbericht 2021 für Niedersachsen, Nordwestdeutsche
Forstliche Versuchsanstalt, Niedersächsisches Ministerium für
Ernährung, Landwirtschaft und Verbraucherschutz, Zenodo,
https://doi.org/10.5281/zenodo.5615008, 2021. a
Ottosen, T.-B., Petch, G., Hanson, M., and Skjøth, C. A.: Tree cover mapping
based on Sentinel-2 images demonstrate high thematic accuracy in Europe,
Int. J. Appl. Earth Obs., 84,
101947, https://doi.org/10.1016/j.jag.2019.101947, 2020. a
Pasquarella, V. J., Holden, C. E., and Woodcock, C. E.: Improved mapping of
forest type using spectral-temporal Landsat features, Remote Sens.
Environ., 210, 193–207, 2018. a
Saborowski, J., Marx, A., Nagel, J., and Böckmann, T.: Double sampling for
stratification in periodic inventories—Infinite population approach, Forest
Ecol. Manag., 260, 1886–1895, 2010. a
Schmitt, M., Hughes, L. H., Qiu, C., and Zhu, X. X.: SEN12MS–A Curated Dataset
of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and
Data Fusion, arXiv [preprint], https://doi.org/10.48550/arXiv.1906.07789, 2019. a
Schuldt, B., Buras, A., Arend, M., Vitasse, Y., Beierkuhnlein, C., Damm, A.,
Gharun, M., Grams, T. E., Hauck, M., Hajek, P., Hartmann, H., Hiltbrunner, E., Hoch, G., Holloway-Phillips, M., Körner, C., Larysch, E., Lübbe, T., Nelson, D., Rammig, A., Rigling, A., Rose, L., Ruehr, N., Schumann, K., Weiser, F., Werner, C., Wohlgemuth, T., Zang, C., and Kahmen, A.: A first assessment of
the impact of the extreme 2018 summer drought on Central European forests,
Basic Appl. Ecol., 45, 86–103, 2020. a
Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A., and Davis, C. H.:
Training deep convolutional neural networks for land–cover classification of
high-resolution imagery, IEEE Geosci. Remote S., 14,
549–553, 2017. a
Senf, C., Buras, A., Zang, C. S., Rammig, A., and Seidl, R.: Excess forest
mortality is consistently linked to drought across Europe, Nat.
Commun., 11, 1–8, 2020. a
Sesnie, S. E., Finegan, B., Gessler, P. E., Thessler, S., Ramos Bendana, Z.,
and Smith, A. M.: The multispectral separability of Costa Rican rainforest
types with support vector machines and Random Forest decision trees,
Int. J. Remote Sens., 31, 2885–2909, 2010. a
Smith, L. N.: Cyclical learning rates for training neural networks, in: 2017
IEEE winter conference on applications of computer vision (WACV), IEEE, 24–31 March 2017, Santa Rosa, CA, USA,
464–472, https://doi.org/10.1109/WACV.2017.58, 2017. a
Sumbul, G., Charfuelan, M., Demir, B., and Markl, V.: Bigearthnet: A
Large-Scale Benchmark Archive for Remote Sensing Image Understanding, in:
IEEE International Geoscience and Remote Sensing Symposium, 28 July–2 August 2019, Yokohama, Japan, 5901–5904, https://doi.org/10.1109/IGARSS.2019.8900532,
2019. a, b
Sumbul, G., De Wall, A., Kreuziger, T., Marcelino, F., Costa, H., Benevides,
P., Caetano, M., Demir, B., and Markl, V.: BigEarthNet-MM: A Large-Scale,
Multimodal, Multilabel Benchmark Archive for Remote Sensing Image
Classification and Retrieval, IEEE Geoscience and Remote Sensing Magazine, 9,
174–180, 2021. a
Takahashi, K., Yamamoto, K., Kuchiba, A., and Koyama, T.: Confidence interval
for micro-averaged F1 and macro-averaged F1 scores, Appl. Intell., 52,
4961–4972, 2022. a
Tanase, M. A., Aponte, C., Mermoz, S., Bouvet, A., Le Toan, T., and Heurich,
M.: Detection of windthrows and insect outbreaks by L-band SAR: A case study
in the Bavarian Forest National Park, Remote Sens. Environ., 209,
700–711, 2018. a
Thonfeld, F., Gessner, U., Holzwarth, S., Kriese, J., da Ponte, E., Huth, J.,
and Kuenzer, C.: A First Assessment of Canopy Cover Loss in Germany's
Forests after the 2018–2020 Drought Years, Remote Sens., 14, 562, https://doi.org/10.3390/rs14030562, 2022. a
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1
mission, Remote Sens. Environ., 120, 9–24, 2012. a
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring
vegetation, Remote Sens. Environ., 8, 127–150, 1979. a
Waser, L. T., Rüetschi, M., Psomas, A., Small, D., and Rehush, N.: Mapping
dominant leaf type based on combined Sentinel-1/-2 data–Challenges for
mountainous countries, ISPRS J. Photogramm.,
180, 209–226, 2021. a
Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A., and White, E.: Individual
tree-crown detection in RGB imagery using semi-supervised deep learning
neural networks, Remote Sensing, 11, 1309, https://doi.org/10.3390/rs11111309, 2019a. a, b
Weinstein, B. G., Marconi, S., Bohlman, S. A., Zare, A., and White, E. P.:
Geographic generalization in airborne RGB deep learning tree detection,
bioRxiv [preprint], https://doi.org/10.1101/790071, 2019b. a
Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A., Singh, A., Graves, S. J.,
and White, E.: A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network,
eLife, 10, e62922, https://doi.org/10.7554/eLife.62922, 2021. a, b
Welle, T., Aschenbrenner, L., Kuonath, K., Kirmaier, S., and Franke, J.:
Mapping Dominant Tree Species of German Forests, Remote Sens., 14, 3330, https://doi.org/10.3390/rs14143330,
2022. a
Wurm, M., Stark, T., Zhu, X. X., Weigand, M., and Taubenböck, H.: Semantic
segmentation of slums in satellite images using transfer learning on fully
convolutional neural networks, ISPRS J. Photogramm., 150, 59–69, 2019. a
Xu, K., Zhang, Z., Yu, W., Zhao, P., Yue, J., Deng, Y., and Geng, J.: How
Spatial Resolution Affects Forest Phenology and Tree-Species Classification
Based on Satellite and Up-Scaled Time-Series Images, Remote Sens., 13,
2716, https://doi.org/10.3390/rs13142716, 2021. a
Yang, Y. and Newsam, S.: Bag-Of-Visual-Words and Spatial Extensions for
Land-Use Classification, ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 2–5 November 2005, San Jose, California, USA, https://doi.org/10.1145/1869790.1869829, 2010.
a
Zhang, C., Xia, K., Feng, H., Yang, Y., and Du, X.: Tree species classification
using deep learning and RGB optical images obtained by an unmanned aerial
vehicle, J. Forestry Res., 32, 1879–1888, 2021. a
Short summary
Imagery from air and space is the primary source of large-scale forest mapping. Our study introduces a new dataset with over 50000 image patches prepared for deep learning tasks. We show how the information for 20 European tree species can be extracted from different remote sensing sensors. Our algorithms can detect single species with precision scores up to 88 %. With a pixel size of 20×20 cm, forestry administration can now derive large-scale tree species maps at a very high resolution.
Imagery from air and space is the primary source of large-scale forest mapping. Our study...
Altmetrics
Final-revised paper
Preprint