Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-681-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing
Steve Ahlswede
CORRESPONDING AUTHOR
Remote Sensing Image Analysis Group, Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany
Christian Schulz
CORRESPONDING AUTHOR
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Christiano Gava
Smart Data and Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Patrick Helber
Vision Impulse GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Benjamin Bischke
Vision Impulse GmbH, Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Michael Förster
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Florencia Arias
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Jörn Hees
Smart Data and Knowledge Services, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), Trippstadter Str. 122, 67663 Kaiserslautern, Germany
Fachbereich Informatik, Hochschule Bonn-Rhein-Sieg, Grantham-Allee 20, 53757 Sankt Augustin, Germany
Begüm Demir
Remote Sensing Image Analysis Group, Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, Germany
Birgit Kleinschmit
Geoinformation in Environmental Planning Lab, Technische Universität Berlin, Straße des 17. Juni 145, 10623 Berlin, Germany
Data sets
TreeSatAI Benchmark Archive for Deep Learning in Forest Applications Christian Schulz, Steve Ahlswede, Christiano Gava, Patrick Helber, Benjamin Bischke, Florencia Arias, Michael Förster, Jörn Hees, Begüm Demir, and Birgit Kleinschmit https://doi.org/10.5281/zenodo.6598390
Short summary
Imagery from air and space is the primary source of large-scale forest mapping. Our study introduces a new dataset with over 50000 image patches prepared for deep learning tasks. We show how the information for 20 European tree species can be extracted from different remote sensing sensors. Our algorithms can detect single species with precision scores up to 88 %. With a pixel size of 20×20 cm, forestry administration can now derive large-scale tree species maps at a very high resolution.
Imagery from air and space is the primary source of large-scale forest mapping. Our study...
Altmetrics
Final-revised paper
Preprint