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Abstract. Airborne and spaceborne platforms are the primary data sources for large-scale forest mapping, but
visual interpretation for individual species determination is labor-intensive. Hence, various studies focusing on
forests have investigated the benefits of multiple sensors for automated tree species classification. However,
transferable deep learning approaches for large-scale applications are still lacking. This gap motivated us to
create a novel dataset for tree species classification in central Europe based on multi-sensor data from aerial,
Sentinel-1 and Sentinel-2 imagery. In this paper, we introduce the TreeSatAI Benchmark Archive, which contains
labels of 20 European tree species (i.e., 15 tree genera) derived from forest administration data of the federal
state of Lower Saxony, Germany. We propose models and guidelines for the application of the latest machine
learning techniques for the task of tree species classification with multi-label data. Finally, we provide various
benchmark experiments showcasing the information which can be derived from the different sensors including
artificial neural networks and tree-based machine learning methods. We found that residual neural networks
(ResNet) perform sufficiently well with weighted precision scores up to 79 % only by using the RGB bands of
aerial imagery. This result indicates that the spatial content present within the 0.2 m resolution data is very infor-
mative for tree species classification. With the incorporation of Sentinel-1 and Sentinel-2 imagery, performance
improved marginally. However, the sole use of Sentinel-2 still allows for weighted precision scores of up to 74 %
using either multi-layer perceptron (MLP) or Light Gradient Boosting Machine (LightGBM) models. Since the
dataset is derived from real-world reference data, it contains high class imbalances. We found that this dataset
attribute negatively affects the models’ performances for many of the underrepresented classes (i.e., scarce tree
species). However, the class-wise precision of the best-performing late fusion model still reached values ranging
from 54 % (Acer) to 88 % (Pinus). Based on our results, we conclude that deep learning techniques using aerial
imagery could considerably support forestry administration in the provision of large-scale tree species maps at
a very high resolution to plan for challenges driven by global environmental change. The original dataset used
in this paper is shared via Zenodo (https://doi.org/10.5281/zenodo.6598390, Schulz et al., 2022). For citation of
the dataset, we refer to this article.
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1 Introduction

1.1 Importance of aerial imagery for forest monitoring

Public and private forest owners in Europe are increasingly
confronted with adverse long- and short-term effects on
forests driven by global environmental change (IPCC, 2014;
MacDicken et al., 2016). The monitoring of damages caused
by events such as storms, heat waves, disease outbreaks and
insect infestations has become a highly prominent topic in
Earth observation (Holzwarth et al., 2020), which is reflected
in the recent remote sensing literature (Tanase et al., 2018;
Hollaus and Vreugdenhil, 2019; Senf et al., 2020; Schuldt
et al., 2020; Kowalski et al., 2020; Thonfeld et al., 2022).
Thus, long-term mitigation strategies such as the conversion
from mono-cultures to more diverse tree stands with higher
resilience to environmental pressures have become highly
relevant (Hlásny et al., 2017). To support these strategies,
tree species that are most sensitive to recent and upcoming
changes must be cost-efficiently mapped and monitored on a
large scale.

To date, aerial imagery (i.e., digital orthophotographs)
taken by plane is the primary large-scale remote sensing data
source for forest authorities in Germany. Aerial imagery al-
lows for fieldwork, which is time-consuming and expensive,
to be reduced and planned more efficiently. With a spatial
resolution in the decimeter range, it also constitutes a con-
siderable source of data for visual check-ups and updates of
forest management plans. However, individual species deter-
mination through visual interpretation is labor-intensive and
requires specialized knowledge by the viewer (Hamedianfar
et al., 2022).

1.2 State of research

In the field of forest remote sensing, aerial imagery is less fre-
quently used than satellite imagery, especially when it comes
to forest-type classification tasks (Holzwarth et al., 2020).
This may be driven by the low number of spectral bands
(red, green, blue, and near-infrared – RGB+NIR), which is
considered to be a limitation in remote sensing applications
(Fassnacht et al., 2016; Ganz et al., 2020). On the other hand,
many studies have shown the strengths of multi-spectral
satellite imagery for forest classification tasks (Pasquarella
et al., 2018; Grabska et al., 2019; Immitzer et al., 2019; Ot-
tosen et al., 2020; Hemmerling et al., 2021; Kollert et al.,
2021; Waser et al., 2021; Welle et al., 2022). The extensive
use of the spaceborne data with a much coarser resolution
may be boosted by the open data policies of the Landsat and
Sentinel programs. However, a higher spatial resolution is an
essential factor for improving species prediction (Xu et al.,
2021). For example, on a small spatial extent, studies using
RGB imagery from unmanned aerial vehicles with resolu-
tions in the centimeter range have resulted in very high pre-

diction accuracies for species classification using deep learn-
ing (DL) techniques (Kattenborn et al., 2020, 2021; Schiefer
et al., 2020). On a large spatial extent, studies using aerial
imagery with a resolution in the decimeter range show its
potential for forest cover mapping (Ganz et al., 2020) and
foliage type classification (Krzystek et al., 2020) while inte-
grating additional data from lidar and multi-spectral sensors.
However, few studies have focused on species classification
on aerial imagery (Holzwarth et al., 2020).

In summary, the state of research shows the general benefit
of multi-sensor and multi-spectral datasets for forest species
classification on all scales. Very high-resolution RGB im-
agery in the centimeter range has also successfully been used
for species classification. However, the applicability of sim-
ilar methods at a larger spatial extent remains unclear. This
research gap motivated us to create a benchmark dataset for
tree species mapping in central Europe based on the com-
monly available aerial imagery and additional freely accessi-
ble sensor sources.

1.3 Deep learning for large-scale forest applications

Traditional classifiers such as random forest (Breiman, 2001)
or support vector machines (Boser et al., 1992) have been
commonly used for classifying tree species using multi-
spectral images (Sesnie et al., 2010; Karlson et al., 2015).
One drawback of such approaches is their reliance on hand-
crafted features (i.e., expert rules) which require domain
knowledge and often fail to include all pertinent features
(Wurm et al., 2019). DL-based models are able to over-
come this requirement as they automatically learn large sets
of features which are specific to the given classification tar-
gets. Thus, DL models have attracted great attention for tree
species classification (Egli and Höpke, 2020; Schiefer et al.,
2020; Martins et al., 2021; Zhang et al., 2021). However,
DL models require large amounts of labeled data in order
to sufficiently learn the optimal model parameters, leading to
bottlenecks in their application (Hamedianfar et al., 2022).
One possible solution to this problem is to use networks
which have been pre-trained on large datasets such as Im-
ageNet (Deng et al., 2009) and then train the network on the
smaller target training set afterwards. While this approach
does indeed improve performance over training a model from
scratch on small training datasets, recent work has shown that
pre-training the network on imagery which is more closely
related to the target dataset leads to a better performance
(Sumbul et al., 2019).

DL datasets for large-scale land use and land cover ap-
plications often provide forests as a single class (e.g., UC
Merced, Yang and Newsam, 2010; Deepsat, Basu et al.,
2015) and EuroSAT (Helber et al., 2019) or as multiple
classes based on foliage, seasonality and density types (e.g.,
BigEarthNet, Sumbul et al., 2019; SEN12MS, Schmitt et al.,
2019). The NeonTreeCrowns (Weinstein et al., 2021) and
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NEON Tree Evaluation datasets (Weinstein et al., 2019a) rep-
resent the first large-scale DL datasets exclusively related to
trees. They include data from multiple sensors including li-
dar, RGB, aerial, and hyperspectral imagery across different
forest types in the United States. With DeepForest, the au-
thors also proposed a semi-supervised DL neural network
for individual tree crown delineation using airborne RGB
data (Weinstein et al., 2019a, b). However, DL datasets for
tree-species-level classification on a large scale have not yet
been published. Therefore, we believe that the research com-
munity could greatly benefit from a dataset upon which to
pre-train DL models, given that the model will have already
learned features relevant for tree species.

1.4 Study aim

Given the potential improvement in performance from high-
resolution aerial imagery and additional spectral informa-
tion from Sentinel sensors, we introduce the TreeSatAI
Benchmark Archive (Schulz et al., 2022). Based on refer-
ence data from forest administration data in Germany, the
dataset aims to gather multi-sensor and multi-label informa-
tion for the classification of 20 tree species in central Eu-
rope. The TreeSatAI Benchmark Archive consists of 50 381
image patches from aerial, Sentinel-2 (S2), and Sentinel-1
(S1) imagery (Fig. 1), with a range of 212 to 6591 individual
samples per class. All spectral bands and polarizations from
the three sensor sources have been included. The patch sizes
were harmonized to the same extent of 60× 60 m. The S1
and S2 scenes were chosen as closely as possible to the sea-
son and years of the aerial imagery which was taken around
August between the years 2012 and 2020. For a better repro-
ducibility of our experiments, we created a fixed split of train
(90 %) and test (10 %) data. Detailed information about the
datasets’ structure and version history can be found in the de-
scription of Schulz et al. (2022). The data pre-processing and
label derivation are further described in Sect. 2.3 and 2.4.

In this paper, we propose guidelines for the application of
the latest machine learning techniques in forest remote sens-
ing while handling an unweighted (i.e., real-world) dataset.
In order to test the applicability of the multi-sensor im-
agery for species classification, we provide various bench-
mark experiments showcasing the information which can be
extracted via various DL models. Specifically, we investigate
the use of each sensor source individually, and multi-sensor
fusion models examine the applicability of all imagery types
present within the TreeSatAI Benchmark Archive.

The decision on the integration of multi-sensor data fol-
lows the state of research, which has shown that a large
range of spectral information can be important for classifying
species at a finer level based on its wavelengths. This could
provide important discriminating information for classifying
species with similar spatial and spectral features within the
high-resolution RGB+NIR aerial data.

2 Dataset description

2.1 Study area

The TreeSatAI Benchmark Archive contains image data cov-
ering publicly managed forests in the federal state of Lower
Saxony, Germany. The study area, covering approximately
47 710 km2, comprises both flat lands with a maritime cli-
mate (i.e., wet and winter mild) in the northwest as well
as low mountain ranges with a more continental climate
(i.e., dry and winter cold) in the southeast (Beck et al.,
2018). Almost 22 % of the federal state consists of forests, of
which large proportions belong to the continental parts of the
study area (Holzwarth et al., 2020). According to NW-FVA
(2021), the five predominant tree species in our research area
were pine (Pinus sylvestris) with 38 %, beech (Fagus syl-
vatica) with 16 %, spruce (Picea abies) with 13 %, and oak
(Quercus robur, Q. petraea) with 7 % of the forests. These
species are usually grown as pure stands. The remaining tree
stands cover 26 % of the research area. Among many others,
they contain species such as ash (Fraxinus excelsior), Dou-
glas fir (Pseudotsuga menziesii), larches (Larix decidua, L.
kaempferi) and cherry (Prunus avium).

2.2 Reference data collection

For label extraction, we used forest administration data pro-
vided by the Lower Saxony State Forest Management Organ-
isation (NLF, 2021a, b) (Fig. 2). The rolling archive is annu-
ally updated through spatially rotating terrestrial surveys and
flight campaigns (Böckmann, 2016). It contains ground truth
data and aerial imagery from 2011 to 2020, both correspond-
ing to the same years.

Two forest administration datasets were chosen for label
extraction. First of all, from the federal state forest manage-
ment data (Waldeinrichtungsflächen der Niedersächsischen
Landesforsten, WEFL), a subset of 175 142 vector geome-
tries, covering approximately 318 000 ha of forested area,
was made available. The dataset is derived from administra-
tive surveys and interpretation of aerial imagery and collects
information on the stand type and age class for single forest
stands. Second, from the federal state forest inventory (Be-
triebsinventur der Niedersächsischen Landesforsten, BI), a
subset of 18 289 point geometries was made available. The
dataset covers permanent ground truth points with a 100 m
distance grid over the study area (Saborowski et al., 2010).
For a 13 m radius around each point, the BI collects a lot of
information on the tree stand, including the main tree species,
stand type, and stand age.

With the stand type, both datasets share a common at-
tribute for derivation of tree species labels. However, both
datasets have strengths and weaknesses in labeling quality
and potential sample numbers. While having a very precise
annotation from ground truth, the number of point features
is limited in the BI data. In comparison, the high number of
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Figure 1. Examples of 60× 60 m image patches from the TreeSatAI Benchmark Archive for 2 of the 20 species. (a, b) Aerial imagery from
2011 to 2020 with 0.2 m resolution (near-infrared, green, and blue). (c, d) Sentinel-2 imagery 2015–2020 with 10 m resolution (near-infrared,
green, and blue). (e, f) Sentinel-1 imagery 2015–2020 with 10 m resolution (VV, VH, and VV–VH cross ratio). The images contain modified
data from the NLF (2021a, b) and ESA 2021.

Figure 2. Spatial coverage of the federal state forest management data (NLF, 2021b) (a) and federal state forest inventory (NLF, 2021a) (b)
of Lower Saxony used for label derivation. The background imagery contains modified Sentinel-2 data from the ESA provided by the LGLN
(2020).
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geometry features in the WEFL data allows for generation of
large training datasets. Additionally, larger geometries can be
used for the extraction of multiple samples for underrepre-
sented classes. However, missing ground checks can in some
cases lead to outdated or mislabeled information.

2.3 Remote sensing data collections

2.3.1 Aerial image collection

Aerial imagery from multiple flight campaigns from
midsummer was provided with the forest administration
data. The image collection covers four spectral bands
(RGB+NIR) and has a spatial resolution of 0.2 m. With all
the flight campaigns from the years 2011 to 2020, a full cov-
erage of the study area is reached. The aerial imagery and the
forest administration data have the same acquisition year and
thus correspond to each other.

2.3.2 Sentinel-1 image collection

Especially by linking the backscatter information to tree
crown volume and density (Cherrington et al., 2019), syn-
thetic aperture radar (SAR) data could potentially be useful
for tree species classification. Thus, we collected S1 scenes
from mid-August over Lower Saxony for the years 2015 to
2020. The C-Band SAR sensor has a resolution of 10 m and
a revisit time of less than 6 d (Torres et al., 2012). The S1
scenes were pre-processed into three-channel georeferenced
image mosaics. The resulting images consist of VV and VH
polarized channels and their ratio in the third channel.

As input for the processing pipeline, we used level-1
ground range detection (GRD) products in interferometric
wide swath (IW) mode which were provided by the Euro-
pean Space Agency (ESA). With the S1TBX – ESA Sentinel-1
Toolbox from the Sentinel Application Platform (SNAP), we
performed the following processing steps. We started with
the application of orbit files, followed by border noise re-
moval and radiometric calibration. For the orthorectification
of the images, we applied range Doppler terrain correction
with the digital elevation models SRTM30 for scenes be-
low 60◦ and the ASTER GDEM otherwise. We converted
the backscatter values from linear units to the decibel scale.
As the last step, we updated the resolution of the imagery to
10 m using bicubic interpolation to match the spatial resolu-
tion of the S2 image collection.

2.3.3 Sentinel-2 image collection

To correspond to the other image collections temporally, we
collected the S2 scenes over Lower Saxony for the years
2015 to 2020. The multi-spectral imagery of S2 contains sur-
face and atmospheric reflectance values, including 13 bands
in the visible and infrared ranges with a spatial resolution of
10 to 60 m (Drusch et al., 2012).

We atmospherically corrected all S2 Level-L1C scenes us-
ing SNAP-supported plugin Sen2Cor_v2.9 and resampled all
bands to 10 m resolution. Both the data and software are pro-
vided by the ESA. The cirrus band was omitted due to a lack
of information for most land surfaces. Although S2 imagery
is collected by two satellites with a repetition rate between
3 and 5 d, multiple scenes from the same month can be af-
fected by clouds. Additionally, for the years 2015 and 2016,
only one of the two S2 satellites was in orbit. In order to
cope with having observations from only one satellite and
high cloud coverage, we computed cloud-free mosaics for
the summer of each year, with median filtering over scenes
from the months July, August, and September.

2.4 Sampling strategy

The goal of the sampling strategy was to generate highly reli-
able labeled image patches from all three image collections.
This means that the timestamp of all the patches must fit the
respective label year. For labels older than 2014 – when there
were no S1 and S2 data available – we generated samples
from the 2015 data to ensure annotations with the shortest
temporal distance. To ensure the maximum number of im-
age patches, we took both datasets WEFL and BI for label
extraction.

Then, multiple sampling steps were done to derive single-
labeled image patches (Fig. 3). (1) Class selection and ag-
gregation. Based on the attribute stand type with 64 classes,
we selected all classes with pure tree stands. If a pure class
was not available for a tree species, we chose the respective
pure and mixed or mixed classes and aggregated them. All
other classes were excluded. After this step, 20 classes re-
mained, which were re-labeled by the scientific name of the
main tree species (Fig. 4). (2) Polygon sample selection (only
WEFL). We excluded all polygons smaller than 2000 m2 to
avoid the generation of image patches from very small tree
stands. (3) Sample point creation (only WEFL). Within the
polygons of each class, we created 5000 random points. They
are supposed to be the center of the image patches. If pos-
sible, a negative buffer of 20 m to the polygon boundary
was set to reduce the proximity of the points to neighboring
tree stands. (4) Exclude points by distance threshold (only
WEFL). To reduce the overlap of image patches, we excluded
sample points with less than 20 m distance from each other.
(5) Bounding box creation. For each of the sample points, a
bounding box was created which depicts the size of the im-
age patches. We chose 60× 60 m bounding boxes leading to
300× 300 pixels patches for the aerial imagery and 6× 6 pix-
els patches for the S1 and S2 imagery. (6) Image patch gen-
eration. From the three image collections, we extracted the
image patches according to the bounding boxes. Each file
was named according to its genus, the species, the age class,
the unique sample ID, the dataset, and the dataset source
(e.g., Fagus_sylvatica_6_154201_BI_NLF.tif). For alterna-
tive labeling, we refer to the additional classes in Fig. 4. For
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Figure 3. Flowchart of the sampling strategy for the patch gen-
eration (aerial, Sentinel-1 and Sentinel-2) from federal state forest
management data (WEFL) (NLF, 2021b) and the federal state forest
inventory (BI) (NLF, 2021a) of Lower Saxony.

multi-labeling files, we refer to the description of the Zen-
odo archive. (7) Sample number harmonization. Because of
data gaps in the image collections, mainly caused by clouds
in the S2 imagery, a large proportion of incomplete image
triplets had to be removed. (8) Manual label check. From the
remaining image patches, a minor number was wrongly la-
beled (e.g., different species) or had other issues (i.e., missing
bands, haziness, blurriness). These images were manually re-
moved through visual check-ups.

3 Benchmark models

In order to provide some initial benchmarking of the pre-
sented dataset and to answer fundamental questions in the
context of forest remote sensing, we evaluate and compare
recent machine learning methods for uni-sensor and multi-
sensor scene classification. We primarily focus on DL mod-
els given the main aim of this large-scale dataset is to enable
the application of those methods for tree species classifica-
tion. However, we also investigate the Light Gradient Boost-
ing Machine (LightGBM) (Ke et al., 2017) in order to pro-
vide a comparison of tree-based machine learning methods
with DL.

3.1 Deep learning models

For the aerial data, we apply ResNet18 (He et al., 2016) in
order to model the spatial and spectral content. This model
has shown high performance across various image process-
ing tasks such as image classification (Scott et al., 2017), se-
mantic segmentation (Chen et al., 2018), and content-based
image retrieval (Sumbul et al., 2021). We assess training the
network from scratch versus fine-tuning a pre-trained net-
work. For the pre-trained network, we use model parame-
ters obtained from training on ImageNet. Given that the Im-
ageNet pre-trained models expect three bands as input, we
also evaluate different configurations: (1) using only three of
the possible four aerial bands and (2) duplicating one of the
input channels in the pre-trained network in order to allow
the use of all four aerial bands as input.

To model S1 and S2 data, we examine three different
model architectures (Fig. 5). Given that the image patches
are only 6× 6 pixels in dimension, a standard 2-D convolu-
tional network makes little sense as the spatial area to con-
volve is small. As such, we investigate three models which
focus more on spectral rather than spatial content. The first
model is a simple fully connected network in which each
pixel in the S1 and S2 data is fully connected to each hid-
den node via a linear layer (Fig. 5a). The second model is a
residual neural network (ResNet) utilizing 1-D convolutions
instead of the standard 2-D. Convolutional neural networks
(CNNs) using 1-D convolutions are often applied in hyper-
spectral classification problems (Ansari et al., 2021) where
modeling spectral content, rather than spatial content, is the
aim. We then test a 1-D ResNet (Hannun et al., 2019) for
modeling the S1/S2 data (Fig. 5b). The final model is a vi-
sion transformer (ViT) (Dosovitskiy et al., 2020). The ViT
performs image classification by breaking an image down
into small patches which are used as input tokens. The in-
formation within each token, as well as the relationships be-
tween the tokens, is learned by the model. Given the small
sizes, our Sentinel images need not be split into patches, and
thus we use each individual band of the image as an input
token. In this way, the model should learn the information
within each band while simultaneously learning the relation-
ships between the bands as well (Fig. 5c).

To jointly model S1 and S2 data with the aerial data, some
form of fusion technique is required in order to combine the
multi-sensor data. A naive approach is to simply concatenate
the data along the channel dimension and then train a classi-
fier (e.g., CNN). Such an approach is known as early fusion,
given that the data are fused at the earliest possible stage.
However, given the large discrepancies in spatial resolution
between the aerial and S1/S2 data, concatenation at the im-
age level is not possible without applying large amounts of
interpolation to the Sentinel data. Late fusion is another tech-
nique which has shown greater performance than early fusion
(Hong et al., 2020). Here, each modality is passed through its
own separate network, and the fusion is performed on the fi-
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Figure 4. Original stand-type classes from the forest management data (a) which were used to derive TreeSatAI Benchmark Archive single
labels on the species level (b). The optional labels (c) can be used for re-labeling and include the English name (level 3), forest management
classes (level 2), leaf types (level 1) and land cover classes (level 0).

Figure 5. The architecture of the (a) multi-layer perceptron (MLP), (b) 1-D residual neural network (ResNet), and (c) Vision Transformer
which were applied for Sentinel-1 and Sentinel-2 data.
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nal features. Such an approach allows for differences in the
sizes of images from the various modalities since fusion is
done once a single feature vector for each modality has been
extracted. Thus, we focus our multi-sensor learning experi-
ments on late fusion. In these experiments, the aerial data are
modeled using ResNet, whereas the S1 and S2 branches each
use one of the models mentioned above (Fig. 5).

3.2 Tree-based machine learning models

Another aspect we explore is the benefit of DL methods
over traditional machine learning approaches. To this end,
we use LightGBM (Ke et al., 2017), a framework for ma-
chine learning comprising several decision tree algorithms,
including classification. Training DL models is energy- and
time-consuming. In contrast, LightGBM provides algorithms
for classification that are fast, memory efficient, and able to
be executed in parallel. In other words, the cost of using a
LightGBM classifier is significantly lower than that of train-
ing a deep model. Consequently, it is relevant to measure
the effective accuracy boost of deep models in comparison
to standard machine learning classifiers.

LightGBM classifiers were designed to solve single-label
problems. Thus, since the TreeSatAI Benchmark Archive is a
multi-label dataset, we cannot directly use LightGBM algo-
rithms for tree species classification. To circumvent this, we
employ a heuristic method known as one versus rest (OvR).
In our scenario, OvR is used to cast a multi-label classifi-
cation problem into multiple binary classification problems,
one for each class.

For the classification of aerial images with LightGBM, we
first use a ResNet18 pre-trained on ImageNet to extract fea-
tures and then use these features to train the decision tree
classifier. Here, we ignore the NIR band. Regarding fusion
of aerial with S1 and/or S2, we concatenate the features pre-
dicted by the ResNet18 on the aerial imagery with data from
S1, S2 or both and then train the LightGBM classifier.

4 Experimental results

In our experiments we aim to answer five main questions
with respect to the dataset. The first question examines which
of the three sensors is most suitable for the classification, as
we have aerial data with a high spatial resolution and Sen-
tinel data with a high range of spectral information. The sec-
ond question is how to best train the model for aerial data.
Here, we test three strategies for training our ResNet model:
(1) using a model pre-trained on ImageNet data and retrain-
ing only the final classifier layer; (2) fine-tuning the weights
of the final layer and classifier of a ResNet pre-trained on Im-
ageNet; (3) training the model from scratch. The third ques-
tion is whether the inclusion of the NIR band brings a sig-
nificant benefit to the model performance. This is examined
for two cases: (1) training from scratch; (2) fine-tuning a pre-
trained model. Given that the model pre-trained on ImageNet

typically only allows three bands as input, we duplicate the
third input channel’s weights when including the NIR band.
The fourth question is to examine whether the fusion of aerial
and Sentinel data improves the model performance compared
to using only aerial data. As mentioned above, we use three
different models in a late fusion setting for this. The final
question we investigate is the ability of the various models to
classify underrepresented classes within the dataset.

For all experiments, we trained models for a total of 150
epochs using a batch size of 32. For the learning rate, we use
a cyclic learning rate scheduler (Smith, 2017) which modu-
lates the learning rate value between 0.00005 and 0.001. In
order to quantify model performance, we used recall, pre-
cision, F1 (Goutte and Gaussier, 2005), and mean average
precision (mAP) (Everingham et al., 2010). To achieve a sin-
gle summary statistic across the multiple classes being pre-
dicted, an averaging technique must be applied to the afore-
mentioned metric scores. We chose to apply both micro and
weighted averaging. Micro takes the global average, which
shows the performance of the model without taking class im-
balance into consideration. In order to also evaluate model
performance with respect to class frequencies, the weighted
average was included. Here, a given metric is calculated for
each class, and the weighted average of the class scores (with
the weights being the total number of instances for each la-
bel) is calculated (Takahashi et al., 2022).

4.1 Results of using individual input sources

Here, we examine the three data modalities of aerial, S1
and S2 available in the TreeSatAI Benchmark Archive. Ta-
ble 1 shows that from the ResNet and multi-layer perceptron
(MLP) models the best performance is achieved when us-
ing the aerial data, followed by S2 and then S1. In terms of
weighted F1 and mAP, the models trained using aerial data
outperformed those trained with S2 by 17 % and 13 %, re-
spectively. For the micro F1 and mAP, using aerial data out-
performs S2 by 15 % and 12 %, respectively. This indicates
that the spatial content present within the aerial data is very
informative for the classification of the various tree species.
The lower S2 and S1 scores are likely because of the lower
spatial resolution of 10 m compared to aerial with 0.2 m per
pixel. However, the larger number of spectral bands in S2
still allows for mAP scores of about 65 % and F1 of around
53 %. When examining the scores obtained using S1 data, we
can see that using the 10 m resolution back-scattering infor-
mation alone may not be sufficient for tree species classifica-
tion.

The LightGBM model results show similar scores for S1
and S2. However, for the aerial data the model reaches lower
weighted F1 and mAP scores with losses of 25 % and 17 %,
respectively. This indicates that extracting features with a
ResNet18 and using these features to train a decision tree
classifier is not recommended for aerial images.

Earth Syst. Sci. Data, 15, 681–695, 2023 https://doi.org/10.5194/essd-15-681-2023



S. Ahlswede et al.: TreeSatAI Benchmark Archive 689

Table 1. Classification performances using single modalities of either aerial, Sentinel-2, or Sentinel-1 data. The highest performance values
are highlighted in bold.

Model Data source Weighted Micro

Precision Recall F1 mAP Precision Recall F1 mAP

ResNet Aerial 79.18 62.18 69.47 77.43 79.54 62.18 69.80 78.25
MLP Sentinel-2 74.59 42.23 51.97 64.19 77.18 42.23 54.59 65.83
MLP Sentinel-1 33.29 7.13 10.09 29.42 63.01 7.13 12.82 33.09

LightGBM
Aerial 76.12 33.98 43.99 60.04 78.63 33.98 47.46 57.98
Sentinel-2 74.27 40.04 48.17 61.99 76.27 40.04 52.52 61.66
Sentinel-1 37.96 8.06 11.86 32.79 55.49 8.06 14.07 35.11

4.2 Analysis of different training strategies for aerial data

In this section, we discuss whether using a pre-trained net-
work performs better than training the network from scratch.
We thus test the same three training scenarios as in the pre-
vious subsection, but here we focus only on comparing the
best model from each scenario. In Table 2, we see that the
Fine-tuning All network leads to slightly improved metric
performance when compared to Scratch, while the Retrain
Head scenario performed the worst. Comparing Fine-tuning
All with Scratch, we see roughly 1 % performance increases
for both weighted F1 and weighted mAP, while the micro
average of F1 was equal. Comparing these two models fur-
ther, we see that the micro mAP was higher by 1 % for
Scratch as well as the weighted and micro precisions, which
were higher than the Fine-tuning All by 1 % and 3 %, respec-
tively. This suggests that training from scratch can achieve a
nearly identical performance to using a pre-trained network.
The Retrain Head variant showed a very low performance,
achieving roughly half the performance as the Fine-tuning
All variant for both F1 and mAP scores. This indicates that
the features learned from training on ImageNet need fine-
tuning when applied to remote sensing image classification
tasks. Given that the pre-trained network does slightly out-
perform the network trained from scratch, we apply the three-
band fine-tuned network for the aerial data in all multi-sensor
learning approaches.

4.3 Effect of the near-infrared band

In this section, we examine the influence of including the
NIR band when training the network on the aerial data. We
tested this across three training scenarios: (1) training the
model from scratch (Scratch); (2) fine-tuning all layers of a
pre-trained network (Fine-tuning All); (3) fixing all the con-
volutional layer weights from a pre-trained network and only
training the classification head of the model (Retrain Head).
Pre-trained models used weights obtained by training on Im-
ageNet.

As seen in Table 2, the NIR band does help when we train
from scratch, as both the micro and weighted F1 and mAP

scores all increased by 2 % compared to using only RGB in-
puts. This is to be expected as the NIR band is an important
indicator of vegetation monitoring (Tucker, 1979).

When we look at both variations of the pre-trained mod-
els, the result is the opposite, as the F1 and mAP scores are
higher when using only the RGB channels. This is likely
due to both pre-trained models having been pre-trained on
RGB inputs. As such, the duplicated channel used for NIR
in the pre-trained scenarios came from a channel which was
not originally optimized for NIR input. Given that the value
ranges of the NIR channel are higher than those of any of
the RGB channels, the additional duplicated channel nega-
tively influenced the pre-trained model performances. The
three-band Fine-tuning All variant obtained 1 % metric im-
provements over the four-band variant in F1 and mAP. Like-
wise, the three-band Retrain Head outperformed the four-
band variant by 6 %–11 % in the F1 and mAP metrics. For
the four-band Retrain Head, the duplicated channel was not
retrained for the NIR input, and thus the model was unable
to adapt the network weights for the NIR input, leading to
larger discrepancies between the three- and four-band perfor-
mances. The Fine-tune All model was better able to adapt the
duplicated channel to the NIR input as its pre-trained weights
were further trained.

4.4 Results of multi-sensor fusion

Although the earlier results from Table 1 indicate that the in-
formation from S1 and S2 is weaker than that of the aerial
data, the combination of the various modalities may provide
a greater benefit than their individual use. Thus, we exam-
ine the performance of various multi-sensor learning tech-
niques. Table 3 shows the results for different models applied
to the multi-sensor fusion of aerial and Sentinel data. We see
that, in terms of F1 and mAP scores, simple MLP performs
best, outperforming the 1-D CNN and Transformer variants
by about 1 % across both micro and weighted F1 and mAP.
This slight increase in metric performance may be due to the
full connections within the MLP network being better suited
to modeling all of the information present within the small
Sentinel patches.
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Table 2. Model classification performances using aerial data when training from scratch (Scratch), using a frozen pre-trained (ImageNet)
ResNet backbone and training a classification head on top (Retrain head) and fine-tuning all the layers of a pre-trained (ImageNet) ResNet
(Fine-tuning all). Performances for each scenario are given without (RGB) and with the near-infrared band (RGB+NIR). The highest
performance values are highlighted in bold.

Scenario NIR Weighted Micro

Precision Recall F1 mAP Precision Recall F1 mAP

Scratch × 78.88 59.27 67.37 75.87 79.05 59.27 67.75 76.49
Scratch X 79.18 62.18 69.47 77.43 79.54 62.18 69.80 78.25

Fine-tuning All × 78.09 64.35 70.05 78.37 76.31 64.35 69.82 76.98
Fine-tuning All X 75.82 64.84 69.43 77.31 74.75 64.84 69.44 75.72

Retrain Head × 70.11 22.57 31.66 49.13 73.17 22.56 34.50 48.46
Retrain Head X 46.47 19.55 22.38 39.20 53.16 19.56 28.60 37.25

All DL-based methods outperformed the LightGBM base-
line approach in terms of F1 and mAP scores. However,
LightGBM did manage to obtain the highest weighted pre-
cision score using the combination of aerial and S2 and the
highest micro precision using the combination of aerial, S1
and S2. On the other hand, the mAP scores for LightGBM
were about 10 % lower than the other fusion models, indicat-
ing that LightGBM performed well at the 50 % threshold for
a positive prediction but had lower performance across the
various thresholds calculated in the mAP.

When compared to the uni-sensor approach which only
utilizes aerial data, the incorporation of S1 and S2 data pro-
vides an increase of 1 % for the weighted F1 and mAP and
a 2 % increase in the micro F1 and mAP. Thus, the high-
resolution aerial imagery provides the most important fea-
tures for differentiating the various species, while the spatial
resolution of the S1 and S2 data is likely too low to provide
a larger benefit.

4.5 Learning underrepresented classes

Here, we examine the class-based performances using the
best-performing model (multi-sensor late fusion using MLP,
Table 4). The model performance is highest for classes Pi-
nus (82 % F1, 73 % mAP), Picea (79 % F1, 69 % mAP),
Abies (77 % F1, 61 % mAP) and Quercus (71 % F1, 60 %
mAP). The model performed worst when predicting Tilia
(47 % F1, 23 % mAP), Prunus (52 % F1, 31 % mAP), Acer
(53 % F1, 31 % mAP), Betula (54 % F1, 35 % mAP) and
Fraxinus (58 % F1, 36 % mAP). The majority of the classes
for which the model was most successful corresponded to
the most frequently occurring classes, whereas the classes
for which the model performed poorly were those with few
image samples. This class imbalance mirrors the real-world
situation at our study site. The one exception was the class
Abies, which made up only 2 % of the image samples but
which had the third-highest classification scores. This result
suggests that the tree stands with silver fir (Abies alba) con-

tain some easily identifiable features that set it apart from
other classes.

5 Code and data availability

The TreeSatAI Benchmark Archive was made available
through Zenodo (https://doi.org/10.5281/zenodo.6598390,
Schulz et al., 2022) under Creative Commons Attribu-
tion 4.0 International. Full code examples are published
on the GitHub repositories of the Remote Sensing Im-
age Analysis (RSiM) group (https://git.tu-berlin.de/rsim/
treesat_benchmark, last access: 2 February 2023; Schulz
et al., 2022) and the Deutsches Forschungszentrum für
Künstliche Intelligenz (DFKI) (https://github.com/DFKI/
treesatai_benchmark, last access: 2 February 2023; Schulz
et al., 2022). Code examples for the sampling strategy can
be made available by the corresponding author via email re-
quest.

6 Conclusions

In this paper, we introduced a novel dataset for multi-label
and single-label tree species classification from aerial, S1 and
S2 imagery. It includes more than 50 000 temporally (i.e.,
same season and same year) and spatially harmonized im-
age patch triplets from the years 2011 to 2020 with a size
of 60× 60 m from all three sensors. The labels for 20 tree
species (i.e., 15 tree genera) were derived from forest ad-
ministration data from northern Germany.

Several DL and tree-based machine learning models using
the dataset have been evaluated. With regards to the bench-
marking results, we find that a pre-trained DL network us-
ing only the RGB bands of the 0.2 m resolution aerial data
performs best for modeling. The incorporation of additional
spectral information from the S1 and S2 sensors led to a
small increase in performance. We found that the utiliza-
tion of airborne data performs sufficiently well for the study
task, suggesting that high-resolution RGB imagery provides
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Table 3. Classification performances of various models used for multi-sensor fusion of aerial (A), Sentinel-2 (S2), and Sentinel-1 (S1) data.
The highest performance values are highlighted in bold.

Models Weighted Micro

Precision Recall F1 mAP Precision Recall F1 mAP

ResNetPT+LightGBM
A+S1 75.52 34.47 44.52 58.22 76.97 34.47 47.62 57.11
A+S2 80.89 44.86 54.40 69.08 81.46 44.86 57.86 69.41
A+S1+S2 80.09 44.42 54.26 68.85 81.72 44.42 57.55 69.62

ResNetPT+MLP
A+S1 79.52 65.24 71.45 79.09 78.96 65.24 71.45 78.71
A+S2 80.27 63.50 70.55 79.25 79.62 63.50 70.66 79.20
A+S1+S2 79.61 65.36 71.54 79.50 79.29 65.36 71.66 79.20

ResNetPT+ 1-D CNN
A+S1 76.15 65.60 70.29 77.19 75.49 65.60 70.20 76.35
A+S2 77.64 66.12 71.17 78.24 76.88 66.12 71.10 79.00
A+S1+S2 76.53 66.21 70.88 78.28 76.03 66.21 70.78 77.40

ResNetPT+Transformer
A+S1 80.32 62.97 70.06 78.58 79.02 62.97 70.09 78.07
A+S2 79.85 64.03 70.74 79.07 79.24 64.03 70.83 78.85
A+S1+S2 79.50 63.62 70.20 79.07 78.59 63.62 70.32 78.67

Table 4. Class-wise performances using the optimally performing
late-fusion multi-sensor model. For this model, aerial data were
passed through a ResNet, and Sentinel-1 and Sentinel-2 were passed
through a multi-layer perceptron. The highest performance values
are highlighted in bold.

Species Precision Recall F1 mAP Support

Abies 82.73 73.39 77.78 61.37 1002
Acer 53.99 53.66 53.82 32.00 2517
Alnus 66.30 55.62 60.50 39.78 2598
Betula 71.43 43.41 54.01 35.02 2675
Cleared 78.54 68.43 73.14 57.29 4362
Fagus 84.10 60.68 70.50 59.94 8482
Fraxinus 60.45 56.84 58.59 36.80 2301
Larix 71.37 69.04 70.19 52.28 3706
Picea 85.91 74.75 79.94 69.73 8475
Pinus 87.79 77.50 82.33 73.22 8822
Populus 83.05 55.05 66.22 46.52 391
Prunus 78.95 39.47 52.63 31.62 301
Pseudotsuga 79.61 63.33 70.54 53.69 3406
Quercus 83.21 62.90 71.64 60.81 9344
Tilia 57.89 40.74 47.83 23.90 188

enough information for DL models to differentiate forest
stands at the tree species level.

DL models only using aerial imagery reached high preci-
sions (> 80 %) for 6 of the 15 classes. This result demon-
strates the potential to map predominant tree species at the
0.2 m resolution (cf. Ahlswede et al., 2022). However, our
class-wise model performances using mono-temporal (i.e.,
mono-seasonal summer scenes from different years) data
could not reach the accuracies of previous studies exploiting
S2 multi-temporal (i.e., multi-seasonal) data (e.g., Immitzer
et al., 2019; Grabska et al., 2019). Nonetheless, we expect

that our model approaches using multi-sensor fusion are ro-
bust to new data from different spatial areas.

Similarly to many forest remote sensing studies, our
dataset contains a strong class imbalance which negatively
affected the performance of underrepresented classes. Future
works based on the existing dataset could thus examine new
methods for dealing with data imbalance. The simple weight-
ing of the loss function based on class frequencies, which we
applied, was not sufficient to overcome this issue. In addition,
further studies can focus on improving the exploitation of the
S2 multi-spectral data, as the models tested in this work were
only capable of minor improvements over the RGB+NIR
aerial imagery data.

For further improvements of the TreeSatAI Benchmark
Archive, additional remote sensing products or label samples
could be integrated. First, the integration of multi-seasonal
data might disentangle further species-related information
regarding phenology phases (e.g., spring flush, second flush,
or autumnal leaf fall) or different branch structure types dur-
ing the dormant phase (Kowalski et al., 2020; Kollert et al.,
2021). This information could be derived from S2 and S1 im-
age time series and additional aerial imagery from the win-
ter season. Second, active data with a higher spatial resolu-
tion (e.g., lidar) may improve the characterization of species-
related tree crown features. Third, higher spectral resolution
(i.e., hyperspectral) data, e.g., from the Environmental Map-
ping and Analysis Programme (EnMAP), may also reveal
biophysical components differentiating tree species. Even
though most of the aforementioned remote sensing products
are not available for the same time frame, a combination
could still be beneficial for tree species classification (Fricker
et al., 2019; Weinstein et al., 2021; Mäyrä et al., 2021).

We highly encourage potential users of the TreeSatAI
Benchmark Archive to create additional layers, generate fur-
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ther samples from other spatial domains or develop new
model architectures. This benchmark archive and its future
applications can support the provision of large-scale tree
species maps, helping forest authorities to face challenges
driven by global environmental changes.
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