Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-4127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4127-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal variability in pH and carbonate parameters on the Canadian Atlantic continental shelf between 2014 and 2022
Olivia Gibb
Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, NL, Canada
Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, NL, Canada
Kumiko Azetsu-Scott
Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
Joël Chassé
Gulf Fisheries Centre, Fisheries and Oceans Canada, Moncton, NB, Canada
Darlene Childs
Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
Carrie-Ellen Gabriel
Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
Peter S. Galbraith
Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, QC, Canada
Gary Maillet
Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, NL, Canada
Pierre Pepin
Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, NL, Canada
Stephen Punshon
Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS, Canada
Michel Starr
Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, QC, Canada
Related authors
No articles found.
Lisa G. T. Leist, Maxi Castrillejo, Kumiko Azetsu-Scott, Craig Lee, Jed Lenetsky, Marc Ringuette, Christof Vockenhuber, Habacuc Pérez-Tribouilier, and Núria Casacuberta
EGUsphere, https://doi.org/10.5194/egusphere-2025-4178, https://doi.org/10.5194/egusphere-2025-4178, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Arctic and Atlantic Oceans are connected by narrow passages, and the exchange of waters affect global climate. Using artificial radionuclides from nuclear reprocessing discharges, we traced the origin of water masses from the Arctic to the Labrador Sea. Results show that waters from Canadian Arctic origin entering via Lancaster Sound are a key freshwater source to the Labrador Sea. These flows strongly influence the formation of deep waters in the Atlantic, vital for the global circulation.
Arnaud Laurent, Bin Wang, Dariia Atamanchuk, Subhadeep Rakshit, Kumiko Azetsu-Scott, Chris Algar, and Katja Fennel
EGUsphere, https://doi.org/10.5194/egusphere-2025-3361, https://doi.org/10.5194/egusphere-2025-3361, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Surface ocean alkalinity enhancement, through the release of alkaline materials, is a technology that could increase the storage of anthropogenic carbon in the ocean. Halifax Harbour (Canada) is a current test site for operational alkalinity addition. Here, we present a model of Halifax Harbour that simulates alkalinity addition at various locations of the harbour and quantifies the resulting net CO2 uptake. The model can be relocated to study alkalinity addition in other coastal systems.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Nancy Soontiens, Heather J. Andres, Jonathan Coyne, Frédéric Cyr, Peter S. Galbraith, and Jared Penney
State Planet Discuss., https://doi.org/10.5194/sp-2024-5, https://doi.org/10.5194/sp-2024-5, 2024
Revised manuscript accepted for SP
Short summary
Short summary
In this study, we explored a series of surface marine heat waves over the Newfoundland and Labrador Shelf in the summer and fall of 2023. We connected these marine heat waves to environmental conditions finding that low winds, high freshwater density, and high stratification were factors contributing to the unusually high sea surface temperature anomalies. We explored the vertical structure of temperature anomalies finding the heat waves were confined near the surface for most of the summer.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Judith Vogt, David Risk, Evelise Bourlon, Kumiko Azetsu-Scott, Evan N. Edinger, and Owen A. Sherwood
Biogeosciences, 20, 1773–1787, https://doi.org/10.5194/bg-20-1773-2023, https://doi.org/10.5194/bg-20-1773-2023, 2023
Short summary
Short summary
The release of the greenhouse gas methane from Arctic submarine sources could exacerbate climate change in a positive feedback. Continuous monitoring of atmospheric methane levels over a 5100 km voyage in the western margin of the Labrador Sea and Baffin Bay revealed above-global averages likely affected by both onshore and offshore methane sources. Instantaneous sea–air methane fluxes were near zero at all measured stations, including a persistent cold-seep location.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Cynthia Evelyn Bluteau, Peter S. Galbraith, Daniel Bourgault, Vincent Villeneuve, and Jean-Éric Tremblay
Ocean Sci., 17, 1509–1525, https://doi.org/10.5194/os-17-1509-2021, https://doi.org/10.5194/os-17-1509-2021, 2021
Short summary
Short summary
In 2018, the Canadian Coast Guard approved a science team to sample in tandem with its ice-breaking and ship escorting operations. This collaboration provided the first mixing observations during winter that covered the largest spatial extent of the St. Lawrence Estuary and the Gulf of St. Lawrence ever measured in any season. Contrary to previous assumptions, we demonstrate that fluvial nitrate inputs from upstream (i.e., Great Lakes) are the most significant source of nitrate in the estuary.
Frédéric Cyr and Peter S. Galbraith
Earth Syst. Sci. Data, 13, 1807–1828, https://doi.org/10.5194/essd-13-1807-2021, https://doi.org/10.5194/essd-13-1807-2021, 2021
Short summary
Short summary
Climate indices are often regarded as simple ways to relate mean environmental conditions to the state of an ecosystem. Such indices are often used to inform fisheries scientists and managers or used in fisheries resource assessments and ecosystem studies. The Newfoundland and Labrador (NL) climate index aims to describe the environmental conditions on the NL shelf and in the Northwest Atlantic as a whole. It consists of annual normalized anomalies of 10 subindices relevant for the NL shelf.
Are Olsen, Nico Lange, Robert M. Key, Toste Tanhua, Henry C. Bittig, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Camilla S. Landa, Siv K. Lauvset, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, and Ryan J. Woosley
Earth Syst. Sci. Data, 12, 3653–3678, https://doi.org/10.5194/essd-12-3653-2020, https://doi.org/10.5194/essd-12-3653-2020, 2020
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by chemical analysis of water bottle samples at scientific cruises. GLODAPv2.2020 is the second update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 946 hydrographic cruises covering the world's oceans from 1972 to 2019.
Cited articles
Azetsu-Scott, K., Clarke, A., Falkner, K., Hamilton, J., Jones, E. P., Lee, C.,
Petrie, B., Prinsenberg, S., Starr, M., and Yeats, P.: Calcium carbonate
saturation states in the waters of the Canadian Arctic Archipelago and the
Labrador Sea, J. Geophys. Res.-Oceans, 115, C11021,
https://doi.org/10.1029/2009JC005917, 2010. a, b, c
Azetsu-Scott, K., Starr, M., Mei, Z.-P., and Granskog, M.: Low calcium
carbonate saturation state in an Arctic inland sea having large and varying
fluvial inputs: The Hudson Bay system, J. Geophys. Res.-Oceans, 119, 6210–6220, https://doi.org/10.1002/2014JC009948, 2014. a
Bates, N. R., Mathis, J. T., and Cooper, L. W.: Ocean acidification and
biologically induced seasonality of carbonate mineral saturation states in
the western Arctic Ocean, J. Geophys. Res.-Oceans, 114,
C11007, https://doi.org/10.1029/2008JC004862, 2009. a
Belkin, I. M., Cornillon, P. C., and Sherman, K.: Fronts in Large Marine
Ecosystems, Prog. Oceanogr., 81, 223–236,
https://doi.org/10.1016/j.pocean.2009.04.015, 2009. a
Brickman, D., Wang, Z., and DeTracey, B.: Variability of Current Streams in
Atlantic Canadian Waters: A Model Study, Atmos. Ocean, 54, 218–229,
https://doi.org/10.1080/07055900.2015.1094026, 2016. a
Cai, W. J. and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide
in the estuarine waters of the Satilla and Altamaha Rivers, Georgia,
Limnol. Oceanogr., 43, 657–668, https://doi.org/10.4319/lo.1998.43.4.0657,
1998. a, b, c
Cai, W. J., Hu, X., Huang, W. J., Jiang, L. Q., Wang, Y., Peng, T. H., and
Zhang, X.: Alkalinity distribution in the western North Atlantic Ocean
margins, J. Geophys. Res.-Oceans, 115, C08014,
https://doi.org/10.1029/2009JC005482, 2010. a
Capotondi, A., Jacox, M., Bowler, C., Kavanaugh, M., Lehodey, P., Barrie, D.,
Brodie, S., Chaffron, S., Cheng, W., Dias, D. F., Eveillard, D., Guidi, L.,
Iudicone, D., Lovenduski, N. S., Nye, J. A., Ortiz, I., Pirhalla, D.,
Pozo Buil, M., Saba, V., Sheridan, S., Siedlecki, S., Subramanian, A.,
de Vargas, C., Di Lorenzo, E., Doney, S. C., Hermann, A. J., Joyce, T.,
Merrifield, M., Miller, A. J., Not, F., and Pesant, S.: Observational Needs
Supporting Marine Ecosystems Modeling and Forecasting: From the Global Ocean
to Regional and Coastal Systems, Frontiers in Marine Science, 6, 623,
https://doi.org/10.3389/fmars.2019.00623, 2019. a
Chen, B., Cai, W.-J., and Chen, L.: The marine carbonate system of the Arctic
Ocean: assessment of internal consistency and sampling considerations, summer
2010, Mar. Chem., 176, 174–188, 2015. a
Claret, M., Galbraith, E. D., Palter, J. B., Bianchi, D., Fennel, K., Gilbert,
D., and Dunne, J. P.: Rapid coastal deoxygenation due to ocean circulation
shift in the northwest Atlantic, Nat. Clim. Change, 8, 868–872,
https://doi.org/10.1038/s41558-018-0263-1, 2018. a
Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH measurements:
total hydrogen ion concentration scale calibration of m-cresol purple and
at-sea results, Deep-Sea Res. Pt. I, 40,
2115–2129, 1993. a
Cooley, S. R. and Doney, S. C.: Anticipating ocean acidification's economic
consequences for commercial fisheries, Environ. Res. Lett., 4, 24007,
https://doi.org/10.1088/1748-9326/4/2/024007, 2009. a
Cyr, F. and Galbraith, P. S.: A climate index for the Newfoundland and Labrador shelf, Earth Syst. Sci. Data, 13, 1807–1828, https://doi.org/10.5194/essd-13-1807-2021, 2021. a
Cyr, F. and Larouche, P.: Thermal fronts atlas of Canadian coastal waters,
Atmos. Ocean, 53, 212–236, https://doi.org/10.1080/07055900.2014.986710, 2015. a
Cyr, F., Gibb, O., Azetsu-Scott, K., Chassé, J., Galbraith, P., Maillet,
G., Pepin, P., Punshon, S., and Starr, M.: Ocean carbonate parameters on the
Canadian Atlantic Continental Shelf, Federated Research Data Repository [data set],
https://doi.org/10.20383/102.0673, 2022a. a, b
Cyr, F., Snook, S., Bishop, C., Galbraith, P. S., Chen, N., and Han, G.:
Physical Oceanographic Conditions on the Newfoundland and Labrador Shelf
during 2021, DFO Can. Sci. Advis. Sec. Res. Doc. 2022/040. iv + 48 p.,
2022b. a
Dever, M., Hebert, D., Greenan, B. J., Sheng, J., and Smith, P. C.:
Hydrography and Coastal Circulation along the Halifax Line and the
Connections with the Gulf of St. Lawrence, Atmos. Ocean, 54, 199–217,
https://doi.org/10.1080/07055900.2016.1189397, 2016. a, b
DFO: Canada's Fisheries Fast Facts 2021, Economic Analysis and Statistics, Fisheries and Oceans Canada Ottawa, Ontario, Canada, ISSN 1928-0319, 2022. a
Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic
seawater from 273.15 to 318.15 K, Deep-Sea Res. Part A. Oceanographic Research Papers, 37, 755–766, 1990. a
Dickson, A. G.: The carbon dioxide system in seawater: Equilibrium chemistry and measurements, in: Guide to best practices for ocean acidification research and data reporting, edited by: Riebesell, U., Fabry, V. J., and Hansson, L., Publications Office of the European Union, Luxembourg, 17–40, 2010. a, b
Dinauer, A. and Mucci, A.: Spatial variability in surface-water pCO2 and gas exchange in the world's largest semi-enclosed estuarine system: St. Lawrence Estuary (Canada), Biogeosciences, 14, 3221–3237, https://doi.org/10.5194/bg-14-3221-2017, 2017. a, b
Dinauer, A. and Mucci, A.: Distinguishing between physical and biological
controls on the spatial variability of pCO2: A novel approach using OMP water
mass analysis (St. Lawrence, Canada), Mar. Chem., 204, 107–120,
https://doi.org/10.1016/j.marchem.2018.03.007, 2018. a, b, c
Ekstrom, J. A., Suatoni, L., Cooley, S. R., Pendleton, L. H., Waldbusser,
G. G., Cinner, J. E., Ritter, J., Langdon, C., Van Hooidonk, R., Gledhill,
D., Wellman, K., Beck, M. W., Brander, L. M., Rittschof, D., Doherty, C.,
Edwards, P. E., and Portela, R.: Vulnerability and adaptation of US
shellfisheries to ocean acidification, Nat. Clim. Change, 5, 207–214,
https://doi.org/10.1038/nclimate2508, 2015. a
Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C.: Impacts of ocean
acidification on marine fauna and ecosystem processes., ICES J.
Mar. Sci., 64, 414–432, https://doi.org/10.2307/j.ctv8jnzw1.25, 2008. a
Fassbender, A. J., Alin, S. R., Feely, R. A., Sutton, A. J., Newton, J. A., and
Byrne, R. H.: Estimating Total Alkalinity in the Washington State Coastal
Zone: Complexities and Surprising Utility for Ocean Acidification Research,
Estuar. Coast., 40, 404–418, https://doi.org/10.1007/s12237-016-0168-z, 2017. a, b
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini,
G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A., Gregoire, M.,
Jones, E., Kim, H. C., Lamouroux, J., Murtugudde, R., and Perruche, C.:
Advancing marine biogeochemical and ecosystem reanalyses and forecasts as
tools for monitoring and managing ecosystem health, Frontiers in Marine
Science, 6, 89, https://doi.org/10.3389/fmars.2019.00089, 2019. a
Florindo-López, C., Bacon, S., Aksenov, Y., Chafik, L., Colbourne, E.,
and Penny Holliday, N.: Arctic ocean and hudson bay freshwater exports: New
estimates from seven decades of hydrographic surveys on the Labrador shelf,
J. Climate, 33, 8849–8868, https://doi.org/10.1175/JCLI-D-19-0083.1, 2020. a
Galbraith, P. S.: Winter water masses in the Gulf of St. Lawrence, J.
Geophys. Res., 111, C06022, https://doi.org/10.1029/2005JC003159, 2006. a
Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., and Tremblay, G.-H.: A
seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence
estuary: The northwest Atlantic connection, Limnol. Oceanogr., 50,
1654–1666, https://doi.org/10.4319/lo.2005.50.5.1654, 2005. a, b, c, d
Golub, M., Desai, A. R., McKinley, G. A., Remucal, C. K., and Stanley, E. H.:
Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes,
J. Geophys. Res.-Biogeo., 122, 2909–2924,
https://doi.org/10.1002/2017JG003794, 2017. a
Greenan, B., James, T., Loder, J., P., P., Azetsu-Scott, K., Ianson, D., Hamme,
R., Gilbert, D., Tremblay, J.-E., Wang, X., and Perrie, W.: Changes in
Oceans Surrounding Canada, in: Canada's Changing Climate Report, edited by:
Bush, E. and Lemmen, D. S., vol. Chapter 7, 343–423, Government of
Canada, Ottawa, ON, ISBN 978-0-660-30222-5, 2019. a
Han, G., Lu, Z., Wang, Z., Helbig, J., Chen, N., and de Young, B.: Seasonal
variability of the Labrador Current and shelf circulation off Newfoundland,
J. Geophys. Res., 113, C10013, https://doi.org/10.1029/2007JC004376,
2008. a
Humphreys, M. P., Gregor, L., Pierrot, D., van Heuven, S. M. A. C., Lewis,
E. R., and Wallace, D. W. R.: PyCO2SYS: marine carbonate system calculations
in Python, Zenodo [code], https://doi.org/10.5281/zenodo.3886559, 2020. a
Hunt, C. W., Salisbury, J. E., Vandemark, D., Aßmann, S., Fietzek, P.,
Melrose, C., Wanninkhof, R., and Azetsu-Scott, K.: Variability of USA East
Coast surface total alkalinity distributions revealed by automated instrument
measurements, Mar. Chem., 232, 103960, https://doi.org/10.1016/j.marchem.2021.103960,
2021. a
Johnson, K. M., Wills, K. D., Butler, D. B., Johnson, W. K., and Wong, C. S.:
Coulometric total carbon dioxide analysis for marine studies: maximizing the
performance of an automated gas extraction system and coulometric detector,
Mar. Chem., 44, 167–187, 1993. a
Jutras, M., Dufour, C. O., Mucci, A., Cyr, F., and Gilbert, D.: Temporal
Changes in the Causes of the Observed Oxygen Decline in the St. Lawrence
Estuary, J. Geophys. Res.-Oceans, 125, e2020JC016577,
https://doi.org/10.1029/2020JC016577, 2020. a, b
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh,
G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean acidification on
marine organisms: Quantifying sensitivities and interaction with warming,
Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013. a
Lavoie, D., Lambert, N., Rousseau, S., Dumas, J., Chassé, J., Long, Z.,
Perrie, W., Starr, M., Brickman, D., and Azetsu-Scott, K.: Projections of
future physical and biogeochemical conditions in the Gulf of St. Lawrence,
on the Scotian Shelf and in the Gulf of Maine, Can. Tech. Rep. Hydrogr.
Ocean Sci., 334, xiii + 102 p., ISBN 9780660361598, 2020. a
Lavoie, D., Lambert, N., Starr, M., Chassé, J., Riche, O., Le Clainche,
Y., Azetsu-Scott, K., Béjaoui, B., Christian, J. R., and Gilbert, D.:
The Gulf of St. Lawrence Biogeochemical Model: A Modelling Tool for
Fisheries and Ocean Management, Frontiers in Marine Science, 8, 732269,
https://doi.org/10.3389/fmars.2021.732269, 2021. a
Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P., and Rivière,
P.: Bringing physics to life at the submesoscale, Geophys. Res.
Lett., 39, L14602, https://doi.org/10.1029/2012GL052756, 2012. a
Lewis, E. and Wallace, D. W. R.: Program Developed for CO2 System Calculations, ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, USA, https://doi.org/10.2172/639712, 1998. a
Loder, J. W., Petrie, B., and Gawarkiewicz, G.: The Coastal Ocean off
Northeastern North America : A Large-Scale View, in: The Sea: Vol. 11, The
Global Coastal Ocean: Regional Studies and Synthesis, edited by: Robinson, A.
and Brink, K. H., chap. 5, Harvard University Press, 105–133, ISBN 9780674017412, 1998. a
Mathis, J. T., Cooley, S. R., Lucey, N., Colt, S., Ekstrom, J., Hurst, T.,
Hauri, C., Evans, W., Cross, J. N., and Feely, R. A.: Ocean acidification
risk assessment for Alaska's fishery sector, Prog. Oceanogr.,
136, 71–91, 2015. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs
Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, 28 pp., ISBN 978-0-646-55621-5., 2011. a
Millero, F. J.: The pH of estuarine waters, Limnol. Oceanogr., 31,
839–847, 1986. a
Millero, F. J.: Thermodynamics of the carbon dioxide system in the oceans,
Geochim. Cosmochim. Ac., 59, 661–677, 1995. a
Millero, F. J.: The marine inorganic carbon cycle, Chem. Rev., 107,
308–341, https://doi.org/10.1021/cr0503557, 2007. a
Millero, F. J.: Carbonate constants for estuarine waters, Mar.
Freshwater Res., 61, 139–142, 2010. a
Mintrop, L., Pérez, F. F., González-Dávila, M.,
Santana-Casiano, M., and Körtzinger, A.: Alkalinity determination by
potentiometry: Intercalibration using three different methods, Cienc. Mar., 26, 23–27, https://doi.org/10.7773/cm.v26i1.573, 2000. a
Mitchell, M. R., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and
Strain, P.: Atlantic zonal monitoring program sampling protocol, Canadian
Technical Report of Hydrography and Ocean Sciences, 223, iv + 23 pp., ISSN 071 1-6764, 2002. a
Mucci, A.: The solubility of calcite and aragonite in seawater at various
salinities, temperatures, and one atmosphere total pressure, Am.
J. Sci., 283, 780–799, 1983. a
Mucci, A., Starr, M., Gilbert, D., and Sundby, B.: Acidification of Lower St.
Lawrence Estuary Bottom Waters, Atmos. Ocean, 49, 206–218,
https://doi.org/10.1080/07055900.2011.599265, 2011. a, b
Mucci, A., Levasseur, M., Gratton, Y., Martias, C., Scarratt, M., Gilbert, D.,
Tremblay, J.-Ã., Ferreyra, G., and Lansard, B.: Tidally-induced variations
of pH at the head of the Laurentian Channel., Can. J. Fish.
Aquat. Sci., 75, 1128–1141, https://doi.org/10.1139/cjfas-2017-0007, 2017. a, b
Orr, J. C., Epitalon, J.-M., and Gattuso, J.-P.: Comparison of ten packages that compute ocean carbonate chemistry, Biogeosciences, 12, 1483–1510, https://doi.org/10.5194/bg-12-1483-2015, 2015. a, b, c, d
Petrie, B. and Drinkwater, K.: Temperature and salinity variability on the
Scotian Shelf and in the Gulf of Maine 1945–1990, J. Geophys.
Res., 98, 20079–20089, 1993. a
Pilcher, D. J., Naiman, D. M., Cross, J. N., Hermann, A. J., Siedlecki, S. A.,
Gibson, G. A., and Mathis, J. T.: Modeled effect of coastal biogeochemical
processes, climate variability, and ocean acidification on aragonite
saturation state in the bering sea, Frontiers in Marine Science, 5, 508,
https://doi.org/10.3389/fmars.2018.00508, 2019. a
Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M.: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press, Cambridge, UK and New York, NY, USA, 3–35, https://doi.org/10.1017/9781009157964.001, 2019. a
Shadwick, E. H., Thomas, H., Azetsu-Scott, K., Greenan, B. J., Head, E., and
Horne, E.: Seasonal variability of dissolved inorganic carbon and surface
water pCO2 in the Scotian Shelf region of the Northwestern Atlantic, Mar.
Chem., 124, 23–37, https://doi.org/10.1016/j.marchem.2010.11.004,
2011. a
Siedlecki, S. A., Salisbury, J., Gledhill, D. K., Bastidas, C., Meseck, S.,
McGarry, K., Hunt, C. W., Alexander, M., Lavoie, D., Wang, Z. A., Scott, J.,
Brady, D. C., Mlsna, I., Azetsu-Scott, K., Liberti, C. M., Melrose, D. C.,
White, M. M., Pershing, A., Vandemark, D., Townsend, D. W., Chen, C., Mook,
W., and Morrison, R.: Projecting ocean acidification impacts for the Gulf of
Maine to 2050: new tools and expectations, Elementa, 9, 00062,
https://doi.org/10.1525/elementa.2020.00062, 2021.
a, b
Therriault, J., Petrie, B., Pepin, P., Gagnon, J., Gregory, D., Helbig, J.,
Herman, A., Lefaivre, D., Mitchell, M., Pelchat, B., Runge, J., and Sameoto,
D.: Proposal for a northwest zonal monitoring program, Canadian Technical
Report of Hydrographic and Ocean Sciences, 194, vii + 57 p., ISSN 07 1 1-6764, 1998. a
Thibodeau, B., Devernal, a., and Mucci, a.: Recent eutrophication and
consequent hypoxia in the bottom waters of the Lower St. Lawrence Estuary:
Micropaleontological and geochemical evidence, Mar. Geol., 231, 37–50,
https://doi.org/10.1016/j.margeo.2006.05.010, 2006. a
Tilbrook, B., Jewett, E. B., DeGrandpre, M. D., Hernandez-Ayon, J. M., Feely,
R. A., Gledhill, D. K., Hansson, L., Isensee, K., Kurz, M. L., Newton, J. A.,
Siedlecki, S. A., Chai, F., Dupont, S., Graco, M., Calvo, E., Greeley, D.,
Kapsenberg, L., Lebrec, M., Pelejero, C., Schoo, K. L., and Telszewski, M.:
An enhanced ocean acidification observing network: From people to technology
to data synthesis and information exchange, Frontiers in Marine Science, 6, 337,
https://doi.org/10.3389/fmars.2019.00337, 2019. a
Uppstrom, L. R.: The boron/chlorinity ratio of deep-sea water from the Pacific
Ocean, Deep-Sea Res. Part A. Oceanographic Research Papers, 21, 161–162, 1974. a
Waldbusser, G. G., Hales, B., Langdon, C. J., Haley, B. A., Schrader, P.,
Brunner, E. L., Gray, M. W., Miller, C. A., and Gimenez, I.:
Saturation-state sensitivity of marine bivalve larvae to ocean
acidification, Nat. Clim. Change, 5, 273–280,
https://doi.org/10.1038/nclimate2479, 2015. a
Wanninkhof, R., Barbero, L., Byrne, R., Cai, W.-J., Huang, W.-J., Zhang, J.-Z.,
Baringer, M., and Langdon, C.: Ocean acidification along the Gulf Coast and
East Coast of the USA, Cont. Shelf Res., 98, 54–71, 2015. a
Wilson, T. J., Cooley, S. R., Tai, T. C., Cheung, W. W., and Tyedmers, P. H.:
Potential socioeconomic impacts from ocean acidification and climate change
effects on Atlantic Canadian fisheries, PLoS ONE, 15, e0226544,
https://doi.org/10.1371/journal.pone.0226544, 2020. a
Yashayaev, I. and Loder, J. W.: Further intensification of deep convection in
the Labrador Sea in 2016, Geophys. Res. Lett., 44, 1429–1438,
https://doi.org/10.1002/2016GL071668, 2017. a
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a...
Altmetrics
Final-revised paper
Preprint