Articles | Volume 15, issue 7
https://doi.org/10.5194/essd-15-2809-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2809-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-frequency, year-round time series of the carbonate chemistry in a high-Arctic fjord (Svalbard)
Jean-Pierre Gattuso
CORRESPONDING AUTHOR
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Team Ocean, Institute for Sustainable Development and International Relations, Sciences Po,27 Rue Saint-Guillaume, 75007 Paris, France
Samir Alliouane
Laboratoire d'Océanographie de Villefranche, Sorbonne Université, CNRS, 181 chemin du Lazaret, 06230 Villefranche-sur-Mer, France
Philipp Fischer
Center for Scientific Diving, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Kurpromenade 211, 27498 Helgoland, Germany
Related authors
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Preprint under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024, https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Short summary
We tested the effects of warming, low salinity, and low irradiance on Arctic kelps. We show that growth rates were similar across species and treatments. Alaria esculenta is adapted to low-light conditions. Saccharina latissima exhibited nitrogen limitation, suggesting coastal erosion and permafrost thawing could be beneficial. Laminaria digitata did not respond to the treatments. Gene expression of Hedophyllum nigripes and S. latissima indicated acclimation to the experimental treatments.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Robert W. Schlegel and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, https://doi.org/10.5194/essd-15-3733-2023, 2023
Short summary
Short summary
A single dataset was created for investigations of changes in the socio-ecological systems within seven Arctic fjords by amalgamating roughly 1400 datasets from a number of sources. The many variables in these data were organised into five distinct categories and classified into 14 key drivers. Data for seawater temperature and salinity are available from the late 19th century, with some other drivers having data available from the 1950s and 1960s and the others starting from the 1990s onward.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Jean-Pierre Gattuso, Bernard Gentili, David Antoine, and David Doxaran
Earth Syst. Sci. Data, 12, 1697–1709, https://doi.org/10.5194/essd-12-1697-2020, https://doi.org/10.5194/essd-12-1697-2020, 2020
Short summary
Short summary
Light is a key ocean variable shaping the composition of benthic and pelagic communities by controlling the three-dimensional distribution of primary producers. It also plays a major role in the global carbon cycle. We provide a continuous monthly data set of the global distribution of light reaching the seabed. It is 4 times longer (21 vs 5 years) than the previous data set, the spatial resolution is better (4.6 vs 9.3 km), and the bathymetric resolution is also better (0.46 vs 3.7 km).
Miguel Gómez Batista, Marc Metian, François Oberhänsli, Simon Pouil, Peter W. Swarzenski, Eric Tambutté, Jean-Pierre Gattuso, Carlos M. Alonso Hernández, and Frédéric Gazeau
Biogeosciences, 17, 887–899, https://doi.org/10.5194/bg-17-887-2020, https://doi.org/10.5194/bg-17-887-2020, 2020
Short summary
Short summary
In this paper, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of a reef-building coral. Under all conditions (light vs. dark incubations and ambient vs. lowered pH levels), calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated, while significantly different results were obtained with the 13C incorporation technique.
Lydia Kapsenberg, Samir Alliouane, Frédéric Gazeau, Laure Mousseau, and Jean-Pierre Gattuso
Ocean Sci., 13, 411–426, https://doi.org/10.5194/os-13-411-2017, https://doi.org/10.5194/os-13-411-2017, 2017
Short summary
Short summary
In the interest of global ocean change, weekly water samples were collected at a coastal site in the northwestern Mediterranean Sea (2007–2015). Seawater pH declined faster than expected from anthropogenic carbon dioxide increase. Total alkalinity increased, but the driver could not be identified, and it may be linked to changes in freshwater chemistry of watersheds. This is the first coastal acidification time-series providing multiyear data at high temporal resolution.
Ella L. Howes, Karina Kaczmarek, Markus Raitzsch, Antje Mewes, Nienke Bijma, Ingo Horn, Sambuddha Misra, Jean-Pierre Gattuso, and Jelle Bijma
Biogeosciences, 14, 415–430, https://doi.org/10.5194/bg-14-415-2017, https://doi.org/10.5194/bg-14-415-2017, 2017
Short summary
Short summary
To calculate the seawater carbonate system, proxies for 2 out of 7 parameters are required. The boron isotopic composition of foraminifera shells can be used as a proxy for pH and it has been suggested that B / Ca ratios may act as a proxy for carbonate ion concentration. However, differentiating between the effects of pH and [CO32−] is problematic, as they co-vary in natural systems. To deconvolve the effects, we conducted culture experiments with the planktonic foraminifer Orbulina universa.
Merinda C. Nash, Sophie Martin, and Jean-Pierre Gattuso
Biogeosciences, 13, 5937–5945, https://doi.org/10.5194/bg-13-5937-2016, https://doi.org/10.5194/bg-13-5937-2016, 2016
Short summary
Short summary
We carried out a 1-year experiment on coralline algae to test how higher CO2 and temperature might change the mineral composition of the algal skeleton. We expected there to be a decline in magnesium with CO2 and an increase with temperature. We found that CO2 did not change the mineral composition, but higher temperature increased the amount of magnesium.
T. Erin Cox, Frédéric Gazeau, Samir Alliouane, Iris E. Hendriks, Paul Mahacek, Arnaud Le Fur, and Jean-Pierre Gattuso
Biogeosciences, 13, 2179–2194, https://doi.org/10.5194/bg-13-2179-2016, https://doi.org/10.5194/bg-13-2179-2016, 2016
Short summary
Short summary
The ocean absorbs atmospheric carbon dioxide (CO2) which increases the concentrations of CO2 and decreases pH in a process called ocean acidification. Because seagrass rely on carbon for photosynthesis they are expected to benefit under future ocean acidification. We manipulated pH in a Posidonia oceanica seagrass meadow. Seagrass traits, photosynthesis, and growth were not affected. Any benefit from ocean acidification over the next century on Posidonia physiology and growth may be minimal.
Y. Yang, L. Hansson, and J.-P. Gattuso
Earth Syst. Sci. Data, 8, 79–87, https://doi.org/10.5194/essd-8-79-2016, https://doi.org/10.5194/essd-8-79-2016, 2016
Short summary
Short summary
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation was initiated in 2008 and is updated on a regular basis. By January 2015, a total of 581 data sets (over 4,000,000 data points) from 539 papers had been archived.
J. C. Orr, J.-M. Epitalon, and J.-P. Gattuso
Biogeosciences, 12, 1483–1510, https://doi.org/10.5194/bg-12-1483-2015, https://doi.org/10.5194/bg-12-1483-2015, 2015
Short summary
Short summary
Basic marine carbonate system variables such as pH are often computed from others. Such calculations are made with many public software packages, but their results have never been compared. A new study compares 10 of these packages, quantifying differences, isolating causes, and making recommendations to reduce future discrepancies. This comparison effort has led to more than a 10-fold reduction in differences between packages for some computed variables.
J.-P. Gattuso, W. Kirkwood, J. P. Barry, E. Cox, F. Gazeau, L. Hansson, I. Hendriks, D.I. Kline, P. Mahacek, S. Martin, P. McElhany, E. T. Peltzer, J. Reeve, D. Roberts, V. Saderne, K. Tait, S. Widdicombe, and P. G. Brewer
Biogeosciences, 11, 4057–4075, https://doi.org/10.5194/bg-11-4057-2014, https://doi.org/10.5194/bg-11-4057-2014, 2014
C. Maier, F. Bils, M. G. Weinbauer, P. Watremez, M. A. Peck, and J.-P. Gattuso
Biogeosciences, 10, 5671–5680, https://doi.org/10.5194/bg-10-5671-2013, https://doi.org/10.5194/bg-10-5671-2013, 2013
C. Motegi, T. Tanaka, J. Piontek, C. P. D. Brussaard, J.-P. Gattuso, and M. G. Weinbauer
Biogeosciences, 10, 3285–3296, https://doi.org/10.5194/bg-10-3285-2013, https://doi.org/10.5194/bg-10-3285-2013, 2013
T. Tanaka, S. Alliouane, R. G. B. Bellerby, J. Czerny, A. de Kluijver, U. Riebesell, K. G. Schulz, A. Silyakova, and J.-P. Gattuso
Biogeosciences, 10, 315–325, https://doi.org/10.5194/bg-10-315-2013, https://doi.org/10.5194/bg-10-315-2013, 2013
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, Bruno Bombled, Jacqueline Boutin, Yann Bozec, Steeve Comeau, Pascal Conan, Laurent Coppola, Pascale Cuet, Eva Ferreira, Jean-Pierre Gattuso, Frédéric Gazeau, Catherine Goyet, Emilie Grossteffan, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Coraline Leseurre, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Peggy Rimmelin-Maury, Jean-François Ternon, Franck Touratier, Aline Tribollet, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-464, https://doi.org/10.5194/essd-2024-464, 2024
Preprint under review for ESSD
Short summary
Short summary
This work presents a new synthesis of 67 000 total alkalinity and total dissolved inorganic carbon observations obtained between 1993 and 2023 in the global ocean, coastal zones and the Mediterranean Sea. We describe the data assemblage and associated quality control and discuss some potential uses of this dataset. The dataset is provided in a single format and include the quality flag for each sample.
Anaïs Lebrun, Cale A. Miller, Marc Meynadier, Steeve Comeau, Pierre Urrutti, Samir Alliouane, Robert Schlegel, Jean-Pierre Gattuso, and Frédéric Gazeau
Biogeosciences, 21, 4605–4620, https://doi.org/10.5194/bg-21-4605-2024, https://doi.org/10.5194/bg-21-4605-2024, 2024
Short summary
Short summary
We tested the effects of warming, low salinity, and low irradiance on Arctic kelps. We show that growth rates were similar across species and treatments. Alaria esculenta is adapted to low-light conditions. Saccharina latissima exhibited nitrogen limitation, suggesting coastal erosion and permafrost thawing could be beneficial. Laminaria digitata did not respond to the treatments. Gene expression of Hedophyllum nigripes and S. latissima indicated acclimation to the experimental treatments.
Ingeborg Bussmann, Eric P. Achterberg, Holger Brix, Nicolas Brüggemann, Götz Flöser, Claudia Schütze, and Philipp Fischer
Biogeosciences, 21, 3819–3838, https://doi.org/10.5194/bg-21-3819-2024, https://doi.org/10.5194/bg-21-3819-2024, 2024
Short summary
Short summary
Methane (CH4) is an important greenhouse gas and contributes to climate warming. However, the input of CH4 from coastal areas to the atmosphere is not well defined. Dissolved and atmospheric CH4 was determined at high spatial resolution in or above the North Sea. The atmospheric CH4 concentration was mainly influenced by wind direction. With our detailed study on the spatial distribution of CH4 fluxes we were able to provide a detailed and more realistic estimation of coastal CH4 fluxes.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Cale A. Miller, Pierre Urrutti, Jean-Pierre Gattuso, Steeve Comeau, Anaïs Lebrun, Samir Alliouane, Robert W. Schlegel, and Frédéric Gazeau
Biogeosciences, 21, 315–333, https://doi.org/10.5194/bg-21-315-2024, https://doi.org/10.5194/bg-21-315-2024, 2024
Short summary
Short summary
This work describes an experimental system that can replicate and manipulate environmental conditions in marine or aquatic systems. Here, we show how the temperature and salinity of seawater delivered from a fjord is manipulated to experimental tanks on land. By constantly monitoring temperature and salinity in each tank via a computer program, the system continuously adjusts automated flow valves to ensure the seawater in each tank matches the targeted experimental conditions.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Li-Qing Jiang, Adam V. Subhas, Daniela Basso, Katja Fennel, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 13, https://doi.org/10.5194/sp-2-oae2023-13-2023, https://doi.org/10.5194/sp-2-oae2023-13-2023, 2023
Short summary
Short summary
This paper provides comprehensive guidelines for ocean alkalinity enhancement (OAE) researchers on archiving their metadata and data. It includes data standards for various OAE studies and a universal metadata template. Controlled vocabularies for terms like alkalinization methods are included. These guidelines also apply to ocean acidification data.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Robert W. Schlegel and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, https://doi.org/10.5194/essd-15-3733-2023, 2023
Short summary
Short summary
A single dataset was created for investigations of changes in the socio-ecological systems within seven Arctic fjords by amalgamating roughly 1400 datasets from a number of sources. The many variables in these data were organised into five distinct categories and classified into 14 key drivers. Data for seawater temperature and salinity are available from the late 19th century, with some other drivers having data available from the 1950s and 1960s and the others starting from the 1990s onward.
Chloe Carbonne, Steeve Comeau, Phoebe T. W. Chan, Keyla Plichon, Jean-Pierre Gattuso, and Núria Teixidó
Biogeosciences, 19, 4767–4777, https://doi.org/10.5194/bg-19-4767-2022, https://doi.org/10.5194/bg-19-4767-2022, 2022
Short summary
Short summary
For the first time, our study highlights the synergistic effects of a 9-month warming and acidification combined stress on the early life stages of a Mediterranean azooxanthellate coral, Astroides calycularis. Our results predict a decrease in dispersion, settlement, post-settlement linear extention, budding and survival under future global change and that larvae and recruits of A. calycularis are stages of interest for this Mediterranean coral resistance, resilience and conservation.
Frédéric Gazeau, France Van Wambeke, Emilio Marañón, Maria Pérez-Lorenzo, Samir Alliouane, Christian Stolpe, Thierry Blasco, Nathalie Leblond, Birthe Zäncker, Anja Engel, Barbara Marie, Julie Dinasquet, and Cécile Guieu
Biogeosciences, 18, 5423–5446, https://doi.org/10.5194/bg-18-5423-2021, https://doi.org/10.5194/bg-18-5423-2021, 2021
Short summary
Short summary
Our study shows that the impact of dust deposition on primary production depends on the initial composition and metabolic state of the tested community and is constrained by the amount of nutrients added, to sustain both the fast response of heterotrophic prokaryotes and the delayed one of phytoplankton. Under future environmental conditions, heterotrophic metabolism will be more impacted than primary production, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Jean-Pierre Gattuso, Bernard Gentili, David Antoine, and David Doxaran
Earth Syst. Sci. Data, 12, 1697–1709, https://doi.org/10.5194/essd-12-1697-2020, https://doi.org/10.5194/essd-12-1697-2020, 2020
Short summary
Short summary
Light is a key ocean variable shaping the composition of benthic and pelagic communities by controlling the three-dimensional distribution of primary producers. It also plays a major role in the global carbon cycle. We provide a continuous monthly data set of the global distribution of light reaching the seabed. It is 4 times longer (21 vs 5 years) than the previous data set, the spatial resolution is better (4.6 vs 9.3 km), and the bathymetric resolution is also better (0.46 vs 3.7 km).
Miguel Gómez Batista, Marc Metian, François Oberhänsli, Simon Pouil, Peter W. Swarzenski, Eric Tambutté, Jean-Pierre Gattuso, Carlos M. Alonso Hernández, and Frédéric Gazeau
Biogeosciences, 17, 887–899, https://doi.org/10.5194/bg-17-887-2020, https://doi.org/10.5194/bg-17-887-2020, 2020
Short summary
Short summary
In this paper, we assessed four methods (total alkalinity anomaly, calcium anomaly, 45Ca incorporation, and 13C incorporation) to determine coral calcification of a reef-building coral. Under all conditions (light vs. dark incubations and ambient vs. lowered pH levels), calcification rates estimated using the alkalinity and calcium anomaly techniques as well as 45Ca incorporation were highly correlated, while significantly different results were obtained with the 13C incorporation technique.
Lydia Kapsenberg, Samir Alliouane, Frédéric Gazeau, Laure Mousseau, and Jean-Pierre Gattuso
Ocean Sci., 13, 411–426, https://doi.org/10.5194/os-13-411-2017, https://doi.org/10.5194/os-13-411-2017, 2017
Short summary
Short summary
In the interest of global ocean change, weekly water samples were collected at a coastal site in the northwestern Mediterranean Sea (2007–2015). Seawater pH declined faster than expected from anthropogenic carbon dioxide increase. Total alkalinity increased, but the driver could not be identified, and it may be linked to changes in freshwater chemistry of watersheds. This is the first coastal acidification time-series providing multiyear data at high temporal resolution.
Burkard Baschek, Friedhelm Schroeder, Holger Brix, Rolf Riethmüller, Thomas H. Badewien, Gisbert Breitbach, Bernd Brügge, Franciscus Colijn, Roland Doerffer, Christiane Eschenbach, Jana Friedrich, Philipp Fischer, Stefan Garthe, Jochen Horstmann, Hajo Krasemann, Katja Metfies, Lucas Merckelbach, Nino Ohle, Wilhelm Petersen, Daniel Pröfrock, Rüdiger Röttgers, Michael Schlüter, Jan Schulz, Johannes Schulz-Stellenfleth, Emil Stanev, Joanna Staneva, Christian Winter, Kai Wirtz, Jochen Wollschläger, Oliver Zielinski, and Friedwart Ziemer
Ocean Sci., 13, 379–410, https://doi.org/10.5194/os-13-379-2017, https://doi.org/10.5194/os-13-379-2017, 2017
Short summary
Short summary
The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the heavily used German Bight in the North Sea. The automated observing and modelling system is designed to monitor real-time conditions, to provide short-term forecasts and data products, and to assess the impact of anthropogenically induced change.
Philipp Fischer, Max Schwanitz, Reiner Loth, Uwe Posner, Markus Brand, and Friedhelm Schröder
Ocean Sci., 13, 259–272, https://doi.org/10.5194/os-13-259-2017, https://doi.org/10.5194/os-13-259-2017, 2017
Short summary
Short summary
We observed oceanographic and community data from October 2013 to November 2014 in the shallow waters of Kongsfjorden on the western coast of Svalbard (Norway) using remote controlled hydrographic and optic sensors. Daily vertical profiles of temperature, salinity, and turbidity were sampled together with stereo images of the macrobiotic community, including fish. A distinct seasonal cycle in total species abundances was found with surprisingly high animal counts during the polar winter.
Ella L. Howes, Karina Kaczmarek, Markus Raitzsch, Antje Mewes, Nienke Bijma, Ingo Horn, Sambuddha Misra, Jean-Pierre Gattuso, and Jelle Bijma
Biogeosciences, 14, 415–430, https://doi.org/10.5194/bg-14-415-2017, https://doi.org/10.5194/bg-14-415-2017, 2017
Short summary
Short summary
To calculate the seawater carbonate system, proxies for 2 out of 7 parameters are required. The boron isotopic composition of foraminifera shells can be used as a proxy for pH and it has been suggested that B / Ca ratios may act as a proxy for carbonate ion concentration. However, differentiating between the effects of pH and [CO32−] is problematic, as they co-vary in natural systems. To deconvolve the effects, we conducted culture experiments with the planktonic foraminifer Orbulina universa.
Merinda C. Nash, Sophie Martin, and Jean-Pierre Gattuso
Biogeosciences, 13, 5937–5945, https://doi.org/10.5194/bg-13-5937-2016, https://doi.org/10.5194/bg-13-5937-2016, 2016
Short summary
Short summary
We carried out a 1-year experiment on coralline algae to test how higher CO2 and temperature might change the mineral composition of the algal skeleton. We expected there to be a decline in magnesium with CO2 and an increase with temperature. We found that CO2 did not change the mineral composition, but higher temperature increased the amount of magnesium.
T. Erin Cox, Frédéric Gazeau, Samir Alliouane, Iris E. Hendriks, Paul Mahacek, Arnaud Le Fur, and Jean-Pierre Gattuso
Biogeosciences, 13, 2179–2194, https://doi.org/10.5194/bg-13-2179-2016, https://doi.org/10.5194/bg-13-2179-2016, 2016
Short summary
Short summary
The ocean absorbs atmospheric carbon dioxide (CO2) which increases the concentrations of CO2 and decreases pH in a process called ocean acidification. Because seagrass rely on carbon for photosynthesis they are expected to benefit under future ocean acidification. We manipulated pH in a Posidonia oceanica seagrass meadow. Seagrass traits, photosynthesis, and growth were not affected. Any benefit from ocean acidification over the next century on Posidonia physiology and growth may be minimal.
Y. Yang, L. Hansson, and J.-P. Gattuso
Earth Syst. Sci. Data, 8, 79–87, https://doi.org/10.5194/essd-8-79-2016, https://doi.org/10.5194/essd-8-79-2016, 2016
Short summary
Short summary
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation was initiated in 2008 and is updated on a regular basis. By January 2015, a total of 581 data sets (over 4,000,000 data points) from 539 papers had been archived.
J. C. Orr, J.-M. Epitalon, and J.-P. Gattuso
Biogeosciences, 12, 1483–1510, https://doi.org/10.5194/bg-12-1483-2015, https://doi.org/10.5194/bg-12-1483-2015, 2015
Short summary
Short summary
Basic marine carbonate system variables such as pH are often computed from others. Such calculations are made with many public software packages, but their results have never been compared. A new study compares 10 of these packages, quantifying differences, isolating causes, and making recommendations to reduce future discrepancies. This comparison effort has led to more than a 10-fold reduction in differences between packages for some computed variables.
J.-P. Gattuso, W. Kirkwood, J. P. Barry, E. Cox, F. Gazeau, L. Hansson, I. Hendriks, D.I. Kline, P. Mahacek, S. Martin, P. McElhany, E. T. Peltzer, J. Reeve, D. Roberts, V. Saderne, K. Tait, S. Widdicombe, and P. G. Brewer
Biogeosciences, 11, 4057–4075, https://doi.org/10.5194/bg-11-4057-2014, https://doi.org/10.5194/bg-11-4057-2014, 2014
C. Maier, F. Bils, M. G. Weinbauer, P. Watremez, M. A. Peck, and J.-P. Gattuso
Biogeosciences, 10, 5671–5680, https://doi.org/10.5194/bg-10-5671-2013, https://doi.org/10.5194/bg-10-5671-2013, 2013
C. Motegi, T. Tanaka, J. Piontek, C. P. D. Brussaard, J.-P. Gattuso, and M. G. Weinbauer
Biogeosciences, 10, 3285–3296, https://doi.org/10.5194/bg-10-3285-2013, https://doi.org/10.5194/bg-10-3285-2013, 2013
T. Tanaka, S. Alliouane, R. G. B. Bellerby, J. Czerny, A. de Kluijver, U. Riebesell, K. G. Schulz, A. Silyakova, and J.-P. Gattuso
Biogeosciences, 10, 315–325, https://doi.org/10.5194/bg-10-315-2013, https://doi.org/10.5194/bg-10-315-2013, 2013
Related subject area
Domain: ESSD – Ocean | Subject: Chemical oceanography
A 20-year (1998–2017) global sea surface dimethyl sulfide gridded dataset with daily resolution
A machine-learning reconstruction of sea surface pCO2 in the North American Atlantic Coastal Ocean Margin from 1993 to 2021
High-resolution global shipping emission inventory by Shipping Emission Inventory Model (SEIM)
Distributions of in situ parameters, dissolved (in)organic carbon, and nutrients in the water column and pore waters of Arctic fjords (western Spitsbergen) during a melting season
Climatological distribution of ocean acidification variables along the North American ocean margins
Updated climatological mean ΔfCO2 and net sea–air CO2 flux over the global open ocean regions
The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product
Synthesis Product for Ocean Time Series (SPOTS) – a ship-based biogeochemical pilot
French coastal network for carbonate system monitoring: the CocoriCO2 dataset
A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)
A decade-long cruise time series (2008–2018) of physical and biogeochemical conditions in the southern Salish Sea, North America
A regional pCO2 climatology of the Baltic Sea from in situ pCO2 observations and a model-based extrapolation approach
A 12-year-long (2010–2021) hydrological and biogeochemical dataset in the Sicily Channel (Mediterranean Sea)
A decade of marine inorganic carbon chemistry observations in the northern Gulf of Alaska – insights into an environment in transition
A novel sea surface pCO2-product for the global coastal ocean resolving trends over 1982–2020
A high-resolution synthesis dataset for multistressor analyses along the US West Coast
CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the surface ocean carbonate system
A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset
A consistent ocean oxygen profile dataset with new quality control and bias assessment
CO2 and hydrography acquired by Autonomous Surface Vehicles from the Atlantic Ocean to the Mediterranean Sea: data correction and validation
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Database of nitrification and nitrifiers in the global ocean
GOBAI-O2: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly 2 decades
Spatiotemporal variability in pH and carbonate parameters on the Canadian Atlantic continental shelf between 2014 and 2022
Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning
Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N2 fixation
OceanSODA-UNEXE: a multi-year gridded Amazon and Congo River outflow surface ocean carbonate system dataset
Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer
Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis
OceanSODA-MDB: a standardised surface ocean carbonate system dataset for model–data intercomparisons
Hyperspectral reflectance dataset of pristine, weathered, and biofouled plastics
A database of marine macronutrient, temperature and salinity measurements made around the highly productive island of South Georgia, the Scotia Sea and the Antarctic Peninsula between 1980 and 2009
GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product
Oil slicks in the Gulf of Guinea – 10 years of Envisat Advanced Synthetic Aperture Radar observations
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data, 16, 4267–4290, https://doi.org/10.5194/essd-16-4267-2024, https://doi.org/10.5194/essd-16-4267-2024, 2024
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Zelun Wu, Wenfang Lu, Alizée Roobaert, Luping Song, Xiao-Hai Yan, and Wei-Jun Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-309, https://doi.org/10.5194/essd-2024-309, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study addresses the lack of comprehensive sea surface CO2 data in North American Atlantic coastal regions by developing a new pCO2-product (ReCAD-NAACOM-pCO2). Using machine learning and environmental data, it reconstructs sea surface CO2 levels from 1993–2021. The product accurately captures seasonal cycles, regional variations, and long-term trends, outperforming earlier attempts. It provides crucial data for studying coastal carbon dynamics and climate change impacts.
Wen Yi, Xiaotong Wang, Tingkun He, Huan Liu, Zhenyu Luo, Zhaofeng Lv, and Kebin He
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-258, https://doi.org/10.5194/essd-2024-258, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This study presents a detailed global dataset on ship emissions, covering the years 2013 and 2016–2021, using advanced modeling techniques. The dataset includes emissions data for 4 types of greenhouse gases and 5 types of air pollutants. The data, available for research, offers valuable insights into ship emission spatiotemporal patterns by vessel type and age, providing a solid data foundation for fine-scale scientific research and shipping emission mitigation.
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
Li-Qing Jiang, Tim P. Boyer, Christopher R. Paver, Hyelim Yoo, James R. Reagan, Simone R. Alin, Leticia Barbero, Brendan R. Carter, Richard A. Feely, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 3383–3390, https://doi.org/10.5194/essd-16-3383-2024, https://doi.org/10.5194/essd-16-3383-2024, 2024
Short summary
Short summary
In this paper, we unveil a data product featuring ten coastal ocean acidification variables. These indicators are provided on 1°×1° spatial grids at 14 standardized depth levels, ranging from the surface to a depth of 500 m, along the North American ocean margins.
Amanda R. Fay, David R. Munro, Galen A. McKinley, Denis Pierrot, Stewart C. Sutherland, Colm Sweeney, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 2123–2139, https://doi.org/10.5194/essd-16-2123-2024, https://doi.org/10.5194/essd-16-2123-2024, 2024
Short summary
Short summary
Presented here is a near-global monthly climatological estimate of the difference between atmosphere and ocean carbon dioxide concentrations. The ocean's ability to take up carbon, both now and in the future, is defined by this difference in concentrations. With over 30 million measurements of surface ocean carbon over the last 40 years and utilization of an extrapolation technique, a mean estimate of surface ocean ΔfCO2 is presented.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data, 16, 837–865, https://doi.org/10.5194/essd-16-837-2024, https://doi.org/10.5194/essd-16-837-2024, 2024
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Francesco Placenti, Marco Torri, Katrin Schroeder, Mireno Borghini, Gabriella Cerrati, Angela Cuttitta, Vincenzo Tancredi, Carmelo Buscaino, and Bernardo Patti
Earth Syst. Sci. Data, 16, 743–752, https://doi.org/10.5194/essd-16-743-2024, https://doi.org/10.5194/essd-16-743-2024, 2024
Short summary
Short summary
Oceanographic surveys were conducted in the Strait of Sicily between 2010 and 2021. This paper provides a description of the time series of nutrients and hydrological data collected in this zone. The dataset fills an important gap in field observations of a crucial area where exchanges with the Mediterranean sub-basin take place, providing support for studies aimed at describing ongoing processes and at realizing reliable projections of the effects of these processes in the near future.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data, 16, 647–665, https://doi.org/10.5194/essd-16-647-2024, https://doi.org/10.5194/essd-16-647-2024, 2024
Short summary
Short summary
As carbon dioxide is released into the air through human-generated activity, about one third dissolves into the surface water of oceans, lowering pH and increasing acidity. This is known as ocean acidification. We merged 10 years of ocean carbon data and made them publicly available for adaptation planning during a time of change. The data confirmed that Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Alizée Roobaert, Pierre Regnier, Peter Landschützer, and Goulven G. Laruelle
Earth Syst. Sci. Data, 16, 421–441, https://doi.org/10.5194/essd-16-421-2024, https://doi.org/10.5194/essd-16-421-2024, 2024
Short summary
Short summary
The quantification of the coastal air–sea CO2 exchange (FCO2) has improved in recent years, but its multiannual variability remains unclear. This study, based on interpolated observations, reconstructs the longest global time series of coastal FCO2 (1982–2020). Results show the coastal ocean acts as a CO2 sink, with increasing intensity over time. This new coastal FCO2-product allows establishing regional carbon budgets and provides new constraints for closing the global carbon cycle.
Esther G. Kennedy, Meghan Zulian, Sara L. Hamilton, Tessa M. Hill, Manuel Delgado, Carina R. Fish, Brian Gaylord, Kristy J. Kroeker, Hannah M. Palmer, Aurora M. Ricart, Eric Sanford, Ana K. Spalding, Melissa Ward, Guadalupe Carrasco, Meredith Elliott, Genece V. Grisby, Evan Harris, Jaime Jahncke, Catherine N. Rocheleau, Sebastian Westerink, and Maddie I. Wilmot
Earth Syst. Sci. Data, 16, 219–243, https://doi.org/10.5194/essd-16-219-2024, https://doi.org/10.5194/essd-16-219-2024, 2024
Short summary
Short summary
We present a new synthesis of oceanographic observations along the US West Coast that has been optimized for multiparameter investigations of coastal warming, deoxygenation, and acidification risk. This synthesis includes both previously published and new observations, all of which have been consistently formatted and quality-controlled to facilitate high-resolution investigations of climate risks and consequences across a wide range of spatial and temporal scales.
Thi-Tuyet-Trang Chau, Marion Gehlen, Nicolas Metzl, and Frédéric Chevallier
Earth Syst. Sci. Data, 16, 121–160, https://doi.org/10.5194/essd-16-121-2024, https://doi.org/10.5194/essd-16-121-2024, 2024
Short summary
Short summary
CMEMS-LSCE leads as the first global observation-based reconstructions of six carbonate system variables for the years 1985–2021 at monthly and 0.25° resolutions. The high-resolution reconstructions outperform their 1° counterpart in reproducing horizontal and temporal gradients of observations over various oceanic regions to nearshore time series stations. New datasets can be exploited in numerous studies, including monitoring changes in ocean carbon uptake and ocean acidification.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, and Fei Chai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-518, https://doi.org/10.5194/essd-2023-518, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis and estimates of the residual offsets were obtained.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Poulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, and Ingunn Skjelvan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-457, https://doi.org/10.5194/essd-2023-457, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The ATL2MED experiment was a collaborative project involving European academic institutions and Saildrone Inc. These ASVs embarked on a nine-month mission that ranged from the tropical eastern North Atlantic to the Adriatic Sea, covering a region characterised by a transition zone between temperate and tropical climate belts. Nevertheless, challenges exist, with biofouling being one of the major problems affecting the measurement such as conductivity, dissolved oxygen and chlorophyll-a.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Yayoi Inomata and Michio Aoyama
Earth Syst. Sci. Data, 15, 1969–2007, https://doi.org/10.5194/essd-15-1969-2023, https://doi.org/10.5194/essd-15-1969-2023, 2023
Short summary
Short summary
The behavior of 137Cs in surface seawater in the global ocean was analyzed by using the HAMGlobal2021 database. Approximately 32 % of 137Cs existed in the surface seawater in 1970. The 137Cs released into the North Pacific Ocean by large-scale nuclear weapons tests was transported to the Indian Ocean and then the Atlantic Ocean on a 4–5 decadal timescale, whereas 137Cs released from nuclear reprocessing plants was transported northward to the Arctic Ocean on a decadal scale.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Giulia Leone, Ana I. Catarino, Liesbeth De Keukelaere, Mattias Bossaer, Els Knaeps, and Gert Everaert
Earth Syst. Sci. Data, 15, 745–752, https://doi.org/10.5194/essd-15-745-2023, https://doi.org/10.5194/essd-15-745-2023, 2023
Short summary
Short summary
This paper illustrates a dataset of hyperspectral reflectance measurements of macroplastics. Plastic samples consisted of pristine, artificially weathered, and biofouled plastic items and field plastic debris. Samples were measured in dry conditions and a subset of plastics in wet and submerged conditions. This dataset can be used to better understand plastic optical features when exposed to natural agents and to support the development of algorithms for monitoring environmental plastics.
Michael J. Whitehouse, Katharine R. Hendry, Geraint A. Tarling, Sally E. Thorpe, and Petra ten Hoopen
Earth Syst. Sci. Data, 15, 211–224, https://doi.org/10.5194/essd-15-211-2023, https://doi.org/10.5194/essd-15-211-2023, 2023
Short summary
Short summary
We present a database of Southern Ocean macronutrient, temperature and salinity measurements collected on 20 oceanographic cruises between 1980 and 2009. Vertical profiles and underway surface measurements were collected year-round as part of an integrated ecosystem study. Our data provide a novel view of biogeochemical cycling in biologically productive regions across a critical period in recent climate history and will contribute to a better understanding of the drivers of primary production.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Zhour Najoui, Nellya Amoussou, Serge Riazanoff, Guillaume Aurel, and Frédéric Frappart
Earth Syst. Sci. Data, 14, 4569–4588, https://doi.org/10.5194/essd-14-4569-2022, https://doi.org/10.5194/essd-14-4569-2022, 2022
Short summary
Short summary
Oil spills could have serious repercussions for both the marine environment and ecosystem. The Gulf of Guinea is a very active area with respect to maritime traffic as well as oil and gas exploitation (platforms). As a result, the region is subject to a large number of oil pollution events. This study aims to detect oil slicks in the Gulf of Guinea and analyse their spatial and temporal distribution using satellite data.
Cited articles
Anderson, L. G., Ek, J., Ericson, Y., Humborg, C., Semiletov, I., Sundbom, M., and Ulfsbo, A.:
Export of calcium carbonate corrosive waters from the East Siberian Sea, Biogeosciences, 14, 1811–1823, https://doi.org/10.5194/bg-14-1811-2017, 2017. a
Bakker, D., Alin, S., Becker, M., Bittig, H., Castaño-Primo, R., Feely, R., Gkritzalis, T., Kadono, K., Kozyr, A., Lauvset, S., Metzl, N., Munro, D., Nakaoka, S.-i., Nojiri, Y., O'Brien, K., Olsen, A., Pfeil, B., Pierrot, D., Steinhoff, T., Sullivan, K., Sutton, A., Sweeney, C., Tilbrook, B., Wada, C., Wanninkhof, R., Willstrand Wranne, A., Akl, J., Apelthun, L., Bates, N., Beatty, C., Burger, E., Cai, W.-J., Cosca, C., Corredor, J., Cronin, M., Cross, J., De Carlo, E., DeGrandpre, M., Emerson, S., Enright, M., Enyo, K., Evans, W., Frangoulis, C., Fransson, A., García-Ibáñez, M., Gehrung, M., Giannoudi, L., Glockzin, M., Hales, B., Howden, S., Hunt, C., Ibánhez, J., Jones, S., Kamb, L., Körtzinger, A., Landa, C., Landschützer, P., Lefèvre, N., Lo Monaco, C., Macovei, V., Maenner Jones, S., Meinig, C., Millero, F., Monacci, N., Mordy, C., Morell, J., Murata, A., Musielewicz, S., Neill, C., Newberger, T., Nomura, D., Ohman, M., Ono, T., Passmore, A., Petersen, W., Petihakis, G., Perivoliotis, L., Plueddemann, A., Rehder, G., Reynaud, T., Rodriguez, C., Ross, A., Rutgersson, A., Sabine, C., Salisbury, J., Schlitzer, R., Send, U., Skjelvan, I., Stamataki, N., Sutherland, S., Sweeney, C., Tadokoro, K., Tanhua, T., Telszewski, M., Trull, T., Vandemark, D., van Ooijen, E., Voynova, Y., Wang, H., Weller, R., Whitehead, C., and Wilson, D.:
Surface Ocean CO2 Atlas Database Version 2022 (SOCATv2022) (NCEI Accession 0253659), NOAA National Centers for Environmental Information, https://doi.org/10.25921/1h9f-nb73, 2022. a
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.:
A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016. a
Bates, N., Cai, W.-J., and Mathis, J.:
The ocean carbon cycle in the western Arctic ocean: distributions and air-sea fluxes of carbon dioxide, Oceanography, 24, 186–201, 2011. a
Bates, N. R. and Mathis, J. T.:
The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459, https://doi.org/10.5194/bg-6-2433-2009, 2009. a
Bresnahan, PJ, J., Martz, T., Takeshita, Y., Johnson, K., and LaShomb, M.:
Best practices for autonomous measurement of seawater pH with the Honeywell Durafet, Methods in Oceanography, 9, 44–60, 2014. a
Chau, T. T. T., Gehlen, M., and Chevallier, F.:
A seamless ensemble-based reconstruction of surface ocean pCO2 and air–sea CO2 fluxes over the global coastal and open oceans, Biogeosciences, 19, 1087–1109, https://doi.org/10.5194/bg-19-1087-2022, 2022. a
Chen, B., Cai, W.-J., and Chen, L.:
The marine carbonate system of the Arctic Ocean: Assessment of internal consistency and sampling considerations, summer 2010, Mar. Chem., 176, 174–188, 2015. a
Chierici, M. and Fransson, A.:
Calcium carbonate saturation in the surface water of the Arctic Ocean: undersaturation in freshwater influenced shelves, Biogeosciences, 6, 2421–2431, https://doi.org/10.5194/bg-6-2421-2009, 2009. a
Comeau, S., Gattuso, J.-P., Nisumaa, A.-M., and Orr, J.:
Impact of aragonite saturation state changes on migratory pteropods, P. R. Soc. Lond. B, 279, 732–738, 2011. a
De Carlo, E., Mousseau, L., Passafiume, O., Drupp, P., and Gattuso, J.-P.:
Carbonate chemistry and air–sea CO2 flux in a NW Mediterranean Bay over a four-year period: 2007–2011, Aquat. Geochem., 19, 399–442, 2013. a
Dickson, A. G. and Riley, J. P.:
The effect of analytical error on the evaluation of the components of the aquatic carbon-dioxide system, Mar. Chem., 6, 77–85, 1978. a
Dobashi, R. and Ho, D. T.:
Air–sea gas exchange in a seagrass ecosystem – results from a tracer release experiment, Biogeosciences, 20, 1075–1087, https://doi.org/10.5194/bg-20-1075-2023, 2023. a, b, c, d
DOE:
Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 1994. a
Dong, Y., Yang, M., Bakker, D. C. E., Liss, P. S., Kitidis, V., Brown, I., Chierici, M., Fransson, A., and Bell, T. G.:
Near-surface stratification due to ice melt biases arctic air–sea CO2 flux estimates, Geophys. Res. Lett., 48, e2021GL095266, https://doi.org/10.1029/2021GL095266, 2021. a
Edmond, J. M.:
High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration, Deep-Sea Res., 17, 737–750, 1970. a
Fischer, P., Schwanitz, M., Loth, R., Posner, U., Brand, M., and Schröder, F.:
First year of practical experiences of the new Arctic AWIPEV-COSYNA cabled Underwater Observatory in Kongsfjorden, Spitsbergen, Ocean Sci., 13, 259–272, https://doi.org/10.5194/os-13-259-2017, 2017. a, b, c
Fischer, P., Schwanitz, M., Brand, M., Posner, U., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2012, Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.896828, 2018a. a
Fischer, P., Schwanitz, M., Brand, M., Posner, U., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2013, Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.896822, 2018b. a
Fischer, P., Schwanitz, M., Brand, M., Posner, U., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2014. Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.896821, 2018c. a
Fischer, P., Schwanitz, M., Brand, M., Posner, U., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2015, Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.896771, 2018d. a
Fischer, P., Schwanitz, M., Brand, M., Posner, U., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2016, Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.896770, 2018e. a
Fischer, P., Schwanitz, M., Brand, M., Posner, U., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2017. Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.896170, 2018f. a
Fischer, P., Schwanitz, M., Brand, M., Posner, U., Gattuso, J.-P., Alliouane, S., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2018, Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.897349, 2019. a
Fischer, P., Brix, H., Baschek, B., Kraberg, A., Brand, M., Cisewski, B., Riethmüller, R., Breitbach, G., Möller, K., Gattuso, J.-P., Posner, U., Alliouane, S., Loth, R., Van De Poll, W., and Witbaard, R.:
Operating cabled underwater observatories in rough shelf-sea environments: a technological challenge, Front. Mar. Sci., 7, 551, https://doi.org/10.3389/fmars.2020.00551, 2020. a, b
Fischer, P., Posner, U., Gattuso, J.-P., Alliouane, S., Spotowitz, L., Schwanitz, M., Brand, M., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2019, Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.927607, 2021a. a
Fischer, P., Spotowitz, L., Posner, U., Schwanitz, M., Brand, M., Gattuso, J.-P., Alliouane, S., Friedrich, M., Brix, H., and Baschek, B.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2020, Alfred Wegener Institute – Biological Institute Helgoland, PANGAEA, https://doi.org/10.1594/PANGAEA.929583, 2021b. a
Fischer, P., Happel, L., Lienkämper, M., Spotowitz, L., Brand, M., and Brix, H.: Hydrographical time series data of the littoral zone of Kongsfjorden, Svalbard 2021, PANGAEA, https://doi.org/10.1594/PANGAEA.950174, 2022. a
Fox-Kemper, B., Hewitt, H., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S., Edwards, T., Golledge, N., Hemer, M., Kopp, R., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I., Ruiz, L., Sallée, J.-B., Slangen, A., and Yu, Y.:
Ocean, cryosphere and sea level change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., 2021. a
Fransson, A., Chierici, M., Nomura, D., Granskog, M., Kristiansen, S., Martma, T., and Nehrke, G.:
Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years, J. Geophys. Res., 120, 2413–2429, 2015. a
Gattuso, J.-P., Alliouane, S., and Fischer, P.:
High-frequency, year-round time series of the carbonate chemistry in a high-Arctic fjord (Svalbard), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.960131, 2023a. a, b
Gerland, S. and Renner, A. H.:
Sea-ice mass-balance monitoring in an Arctic fjord, Ann. Glaciol., 46, 435–442, 2007. a
Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M., and Hill, P.:
Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, L16611, https://doi.org/10.1029/2006GL026817, 2006. a, b, c, d
Hunt, C., Salisbury, J., Vandemark, D., Aßmann, S., Fietzek, P., Melrose, C., Wanninkhof, R., and Azetsu-Scott, K.:
Variability of USA East Coast surface total alkalinity distributions revealed by automated instrument measurements, Mar. Chem., 232, 103960, https://doi.org/10.1016/j.marchem.2021, 2021. a
International Hydrographic Organization:
Limits of oceans and seas, Special Publication, 23, 1–45, 1953. a
Jakobsson, M., Grantz, A., Kristoffersen, Y., and Macnab, R.:
Bathymetry and physiography of the Arctic Ocean and its constituent seas, in: The organic carbon cycle in the Arctic Ocean, edited by: Stein, R. and Macdonald, R. W., Springer, Berlin, https://doi.org/10.1007/978-3-642-18912-8, 1–6, 2004. a
Jiang, L.-Q., Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R. H., Carter, B. R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, M., Humphreys, M. P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, E. R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. D., Tanhua, T., Trull, T. W., Velo, A., Allegra, A. J., Barker, P., Burger, E., Cai, W.-J., Chen, C.-T. A., Cross, J., Garcia, H., Hernandez-Ayon, J. M., Hu, X., Kozyr, A., Langdon, C., Lee, K., Salisbury, J., Wang, Z. A., and Xue, L.:
Best practice data standards for discrete chemical oceanographic observations, Front. Mar. Sci., 8, 705638, https://doi.org/10.3389/fmars.2021.705638, 2022. a
Koziorowska-Makuch, K., Szymczycha, B., Thomas, H., and Kuliński, K.:
The marine carbonate system variability in high meltwater season (Spitsbergen Fjords, Svalbard), Prog. Oceanogr., 211, 102977, https://doi.org/10.1016/j.pocean.2023.102977, 2023. a
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.:
Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020. a, b
Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F., Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Forbes, D. L., Graves-Gaylord, A., Grigoriev, M., Hubberten, H.-W., Jordan, J., Jorgenson, T., Ødegård, R. S., Ogorodov, S., Pollard, W. H., Rachold, V., Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., and Vasiliev, A.:
The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines, Estuar. Coast., 35, 383–400, 2012. a
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Alin, S., Álvarez, M., Azetsu-Scott, K., Barbero, L., Becker, S., Brown, P. J., Carter, B. R., da Cunha, L. C., Feely, R. A., Hoppema, M., Humphreys, M. P., Ishii, M., Jeansson, E., Jiang, L.-Q., Jones, S. D., Lo Monaco, C., Murata, A., Müller, J. D., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Ulfsbo, A., Velo, A., Woosley, R. J., and Key, R. M.:
GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product, Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, 2022. a
Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. A., and Liu, Y.-M.:
The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans, Geochim. Cosmochim. Ac., 74, 1801–1811, 2010. a
Maturilli, M.:
Continuous meteorological observations at station Ny-Ålesund (2011-08 et seq), PANGAEA, 23–46, https://doi.org/10.1594/PANGAEA.914979, 2020. a
McLaughlin, K., Dickson, A., Weisberg, S., Coale, K., Elrod, V., Hunter, C., Johnson, K., Kram, S., Kudela, R., Martz, T., Negrey, K., Passow, U., Shaughnessy, F., Smith, J., Tadesse, D., Washburn, L., and Weis, K.:
An evaluation of ISFET sensors for coastal pH monitoring applications, Regional Studies in Marine Science, 12, 11–18, 2017. a
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.:
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907, 1973. a
Meire, L., Søgaard, D. H., Mortensen, J., Meysman, F. J. R., Soetaert, K., Arendt, K. E., Juul-Pedersen, T., Blicher, M. E., and Rysgaard, S.:
Glacial meltwater and primary production are drivers of strong CO2 uptake in fjord and coastal waters adjacent to the Greenland Ice Sheet, Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, 2015. a
Menard, H. W. and Smith, S. M.:
Hypsometry of ocean basin provinces, J. Geophys. Res., 71, 4305–4325, 1966. a
Miller, L. A., Burgers, T. M., Burt, W. J., Granskog, M. A., and Papakyriakou, T. N.:
Air–sea CO2 flux estimates in stratified arctic coastal waters: how wrong can we be, Geophys. Res. Lett., 46, 235–243, 2019. a
Nondal, G., Bellerby, R. G. J., Olsen, A., Johannessen, T., and Olafsson, J.:
Optimal evaluation of the surface ocean CO2 system in the northern North Atlantic using data from voluntary observing ships, Limnol. Oceanogr. Meth., 7, 109–118, 2009. a
Orr, J., Epitalon, J.-M., Dickson, A., and Gattuso, J.-P.:
Routine uncertainty propagation for the marine carbon dioxide system, Mar. Chem., 207, 84–107, 2018. a
O'Neill, B., Oppenheimer, M., Warren, R., Hallegatte, S., Kopp, R., Pörtner, H., Scholes, R., Birkmann, J., Foden, W., Licker, R., Mach, K., Marbaix, P., Mastrandrea, M., Price, J., Takahashi, K., van Ypersele, J.-P., and Yohe, G.:
IPCC reasons for concern regarding climate change risks, Nat. Clim. Change, 7, 28–37, 2017. a
Pavlova, O., Gerland, S., and Hop, H.:
Changes in sea-Ice extent and thickness in Kongsfjorden, Svalbard (2003–2016), in: The ecosystem of Kongsfjorden, Svalbard, edited by: Hop, H. and Wiencke, C., Springer, Cham, https://doi.org/10.1007/978-3-319-46425-1, 105–136, 2019. a
Perez, F. F. and Fraga, F.:
Association constant of fluoride and hydrogen ions in seawater, Mar. Chem., 21, 161–168, 1987. a
Rysgaard, S., Mortensen, J., Juul-Pedersen, T., Sørensen, L., Lennert, K., Søgaard, D., Arendt, K., Blicher, M., Sejr, M., and Bendtsen, J.:
High air-sea CO2 uptake rates in nearshore and shelf areas of Southern Greenland: Temporal and spatial variability, Mar. Chem., 128–129, 26–33, 2012. a
Shiklomanov, I.:
Comprehensive assessment of the freshwater resources of the world: assessment of water resources and water availability in the world, World Meteorological Organization, Geneva, 1998. a
Stein, R. and Macdonald, R. W.:
Organic carbon budget: Arctic Ocean vs. glocal ocean, in: The organic carbon cycle in the Arctic Ocean, edited by: Stein, R. and Macdonald, R. W., Springer, Berlin, 315–322, https://doi.org/10.1007/978-3-642-18912-8, 2004. a
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., and Sabine, C.:
Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. Pt. II, 49, 1601–1622, 2002. a
Vihtakari, M.:
ggOceanMaps: plot data on oceanographic maps using “ggplot2”, R package version 1.3.4, https://CRAN.R-project.org/package=ggOceanMaps (last access: 26 April 2023), 2022. a
Wassmann, P., Duarte, C., Agustí, S., and Sejr, M.:
Footprints of climate change in the Arctic marine ecosystem, Glob. Change Biol., 17, 1235–1249, 2010. a
Zhang, Y., Yamamoto-Kawai, M., and Williams, W.:
Two decades of ocean acidification in the surface waters of the Beaufort Gyre, Arctic Ocean: effects of sea ice melt and retreat from 1997–2016, Geophys. Res. Lett., 47, e60119, https://doi.org/10.1029/2019GL086421, 2020. a
Short summary
The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical implications for marine organisms, ecosystems and the services they provide. We report here on the first high-frequency (1 h), multi-year (5 years) dataset of the carbonate system at a coastal site in a high-Arctic fjord (Kongsfjorden, Svalbard). This site is a significant sink for CO2 every month of the year (9 to 17 mol m-2 yr-1). The saturation state of aragonite can be as low as 1.3.
The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical...
Altmetrics
Final-revised paper
Preprint