Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Melisa Diaz Resquin
CORRESPONDING AUTHOR
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
Modeling and Observing Systems, Center for Climate and Resilience Research (CR), Santiago, Chile
Pablo Lichtig
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Comisión de Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Diego Alessandrello
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Marcelo De Oto
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Darío Gómez
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
Cristina Rössler
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Buenos Aires, Argentina
Paula Castesana
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Comisión de Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Misión Ambiente, YPF Tecnología S. A. (Y-TEC), Buenos Aires, Argentina
Laura Dawidowski
CORRESPONDING AUTHOR
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Buenos Aires, Argentina
Related authors
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, https://doi.org/10.5194/essd-14-271-2022, 2022
Short summary
Short summary
This work presents the results of the first joint effort of South American and European researchers to generate regional maps of emissions. The PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3, and SO2) from anthropogenic sources in the region for the period 2014–2016. This was developed on the basis of the CAMS-GLOB-ANT v4.1 dataset, enriching it with derived data from locally available emission inventories for Argentina, Chile, and Colombia.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, P. Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gómez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal L. Weagle, and Xi Zhao
Atmos. Chem. Phys., 25, 4665–4702, https://doi.org/10.5194/acp-25-4665-2025, https://doi.org/10.5194/acp-25-4665-2025, 2025
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as being variable in size and composition. Here, we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the data sets to model output.
Sarah E. Hancock, Daniel J. Jacob, Zichong Chen, Hannah Nesser, Aaron Davitt, Daniel J. Varon, Melissa P. Sulprizio, Nicholas Balasus, Lucas A. Estrada, María Cazorla, Laura Dawidowski, Sebastián Diez, James D. East, Elise Penn, Cynthia A. Randles, John Worden, Ilse Aben, Robert J. Parker, and Joannes D. Maasakkers
Atmos. Chem. Phys., 25, 797–817, https://doi.org/10.5194/acp-25-797-2025, https://doi.org/10.5194/acp-25-797-2025, 2025
Short summary
Short summary
We quantify 2021 methane emissions in South America at up to 25 km × 25 km resolution using satellite methane observations. We find a 55 % upward adjustment to anthropogenic emission inventories, including those reported to the UN Framework Convention on Climate Change under the Paris Agreement. Our estimates match inventories for Brazil, Bolivia, and Paraguay but are much higher for other countries. Livestock emissions (65 % of anthropogenic emissions) show the largest discrepancies.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Yuting Wang, Yong-Feng Ma, Domingo Muñoz-Esparza, Jianing Dai, Cathy Wing Yi Li, Pablo Lichtig, Roy Chun-Wang Tsang, Chun-Ho Liu, Tao Wang, and Guy Pierre Brasseur
Atmos. Chem. Phys., 23, 5905–5927, https://doi.org/10.5194/acp-23-5905-2023, https://doi.org/10.5194/acp-23-5905-2023, 2023
Short summary
Short summary
Air quality in urban areas is difficult to simulate in coarse-resolution models. This work exploits the WRF (Weather Research and Forecasting) model coupled with a large-eddy simulation (LES) component and online chemistry to perform high-resolution (33.3 m) simulations of air quality in a large city. The evaluation of the simulations with observations shows that increased model resolution improves the representation of the chemical species near the pollution sources.
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, https://doi.org/10.5194/essd-14-271-2022, 2022
Short summary
Short summary
This work presents the results of the first joint effort of South American and European researchers to generate regional maps of emissions. The PAPILA dataset is a collection of annual emission inventories of reactive gases (CO, NOx, NMVOCs, NH3, and SO2) from anthropogenic sources in the region for the period 2014–2016. This was developed on the basis of the CAMS-GLOB-ANT v4.1 dataset, enriching it with derived data from locally available emission inventories for Argentina, Chile, and Colombia.
Cited articles
Act 1356: Preservación del recurso aire y prevención y control de la
contaminación atmosférica,
https://www.buenosaires.gob.ar/sites/gcaba/files/documents/ley_1356.pdf
(last access: 7 September 2021), 2004. a
Aktay, A., Bavadekar, S., Cossoul, G., Davis, J., Desfontaines, D., Fabrikant,
A., Gabrilovich, E., Gadepalli, K., Gipson, B., Guevara, M., Kamath, C.,
Kansal, M., Lange, A., Mandayam, C., Oplinger, A., Pluntke, C., Roessler, T.,
Schlosberg, A., Shekel, T., Vispute, S., Vu, M., Wellenius, G., Williams, B.,
and Wilson, R. J.: Google COVID-19 Community Mobility Reports: Anonymization
Process Description (version 1.1), arXiv [preprint], https://doi.org/10.48550/arXiv.2004.04145, 2020. a
Anapolsky, S.: ¿cómo nos movemos en el AMBA? Conclusiones de la
evidencia empírica y alternativas post-covid, Universidad de San
Martín. ISSN: 2469-1631 Serie: Documentos de Trabajo del IT,
https://www.unsam.edu.ar/institutos/transporte/publicaciones/Documento/ 18/ Comonos/ movemos/ en/ el/ AMBA/ -/ Anapolsky.pdfl
(last access: 7 September 2021), 2020. a
Arkouli, M., Ulke, A. G., Endlicher, W., Baumbach, G., Schultz, E., Vogt, U.,
Müller, M., Dawidowski, L., Faggi, A., Wolf-Benning, U., and Scheffknecht,
G.: Distribution and temporal behavior of particulate matter over the urban
area of Buenos Aires, Atmos. Pollut. Res., 1, 1–8,
https://doi.org/10.5094/APR.2010.001, 2010. a, b
Barros, V., Clarke, R., and Dias, P. S.: Climate change in the La Plata basin,
Publication of the Inter-American Institute for Global Change Research (IAI),
São José dos Campos, Brazil, ISBN 950-692-066-4, ISBN-13 978-950-692-066-1, 2006. a
Blanchard, C. and Tanenbaum, S.: Weekday/Weekend differences in ambient air
pollutant concentrations in atlanta and the southeastern United States,
J. Air Waste Manage., 56, 271–284, https://doi.org/10.1080/10473289.2006.10464455, 2006. a
Blanchard, C. L. and Fairley, D.: Spatial mapping of VOC and
NOx-limitation of ozone formation in central California, Atmos.
Environ., 35, 3861–3873, https://doi.org/10.1016/S1352-2310(01)00153-4, 2001. a
Bon, D. M., Ulbrich, I. M., de Gouw, J. A., Warneke, C., Kuster, W. C., Alexander, M. L., Baker, A., Beyersdorf, A. J., Blake, D., Fall, R., Jimenez, J. L., Herndon, S. C., Huey, L. G., Knighton, W. B., Ortega, J., Springston, S., and Vargas, O.: Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution, Atmos. Chem. Phys., 11, 2399–2421, https://doi.org/10.5194/acp-11-2399-2011, 2011. a
Brasseur, G. P. and Jacob, D. J.: Modeling of Atmospheric Chemistry, Cambridge
University Press, 1 edn., https://doi.org/10.1017/9781316544754, 2017. a, b
Carslaw, D. C. and Beevers, S. D.: Characterising and understanding emission
sources using bivariate polar plots and k-means clustering,
Environ. Modell. Softw., 40, 325–329, https://doi.org/10.1016/j.envsoft.2012.09.005,
2013. a
Carslaw, D. C. and Ropkins, K.: openair – An R package for air quality data
analysis, Environ. Model. Softw., 27–28, 52–61,
https://doi.org/10.1016/j.envsoft.2011.09.008, 2012. a
Castesana, P., Diaz Resquin, M., Huneeus, N., Puliafito, E., Darras, S., Gómez, D., Granier, C., Osses Alvarado, M., Rojas, N., and Dawidowski, L.: PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information, Earth Syst. Sci. Data, 14, 271–293, https://doi.org/10.5194/essd-14-271-2022, 2022. a, b, c
Cazorla, M., Herrera, E., Palomeque, E., and Saud, N.: What the COVID-19
lockdown revealed about photochemistry and ozone production in Quito,
Ecuador, Atmos. Pollut. Res., 12, 124–133, https://doi.org/10.1016/j.apr.2020.08.028, 2020. a
D'Angiola, A., Dawidowski, L. E., Gómez, D. R., and Osses, M.: On-road
traffic emissions in a megacity, Atmos. Environ., 44, 483–493,
https://doi.org/10.1016/j.atmosenv.2009.11.004, 2010. a, b
Decree 1074/18: Decreto 1074/2018,
https://normas.gba.gob.ar/ar-b/decreto/2018/1074/17866
(last access: 3 January 2023), 2018. a
Decree 297/2020: AISLAMIENTO SOCIAL PREVENTIVO Y OBLIGATORIO, Decreto 297/2020,
http://servicios.infoleg.gob.ar/infolegInternet/anexos/335000-339999/335741/norma.htm
(last access: 7 September 2021), 2020. a
Diaz Resquin, M., Santágata, D., Gallardo, L., Gómez, D.,
Rössler, C., and Dawidowski, L.: Local and remote black carbon sources
in the Metropolitan Area of Buenos Aires, Atmos. Environ., 182, 105–114,
https://doi.org/10.1016/j.atmosenv.2018.03.018, 2018. a, b, c
Diaz Resquin, M. C., Alessandrello, D., De Oto, M., Lichtig, P., Bajano, H.,
Ponso, A., Bajano, F., Dawidowski, L., and Gómez, D.: AQ-CNEA-CAC Air
quality dataset (2019–2020): “A machine learning approach to address air
quality changes during the COVID-19 lockdown in Buenos Aires, Argentina”, v1,
Mendeley Data [data set, code], https://doi.org/10.17632/h9y4hb8sf8.1, 2021. a, b, c
Faridi, S., Yousefian, F., Janjani, H., Niazi, S., Azimi, F., Naddafi, K., and
Hassanvand, M. S.: The effect of COVID-19 pandemic on human mobility and
ambient air quality around the world: A systematic review, Urban Clim., 38,
100888, https://doi.org/10.1016/j.uclim.2021.100888, 2021. a
Feng, R., jun Zheng, H., Gao, H., Ran Zhang, A., Huang, C., Xi Zhang, J., Luo,
K., and Ren Fan, J.: Recurrent Neural Network and random forest for analysis
and accurate forecast of atmospheric pollutants: A case study in Hangzhou,
China, J. Clean. Prod., 231, 1005–1015,
https://doi.org/10.1016/j.jclepro.2019.05.319, 2019. a
Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., and Sánchez Gácita, M.: PREP-CHEM-SRC – 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models, Geosci. Model Dev., 4, 419–433, https://doi.org/10.5194/gmd-4-419-2011, 2011. a
Gaubert, B., Bouarar, I., Doumbia, T., Liu, Y., Stavrakou, T., Deroubaix, A.,
Darras, S., Elguindi, N., Granier, C., Lacey, F., Müller, J. F., Shi,
X., Tilmes, S., Wang, T., and Brasseur, G. P.: Global Changes in Secondary
Atmospheric Pollutants During the 2020 COVID-19 Pandemic, J. Geophys. Res.-Atmos., 126, e2020JD034213, https://doi.org/10.1029/2020JD034213, 2021. a, b
Gelman Constantin, J., Londonio, A., Bajano, H., Smichowski, P., and Gómez,
D.: Plasma-based technique applied to the determination of 21 elements in ten
size fractions of atmospheric aerosols, Microchem. J., 160,
105736, https://doi.org/10.1016/j.microc.2020.105736, 2021. a
Ghaffarpasand, O., Beddows, D. C., Ropkins, K., and Pope, F. D.: Real-world
assessment of vehicle air pollutant emissions subset by vehicle type, fuel
and EURO class: New findings from the recent UK EDAR field campaigns, and
implications for emissions restricted zones, Sci. Total Environ., 734,
139416, https://doi.org/10.1016/j.scitotenv.2020.139416, 2020. a
Grange, S. K. and Carslaw, D. C.: Using meteorological normalisation to detect
interventions in air quality time series, Sci. Total Environ.,
653, 578–588, https://doi.org/10.1016/j.scitotenv.2018.10.344, 2019. a, b, c, d
Grange, S. K., Lewis, A. C., and Carslaw, D. C.: Source apportionment advances
using polar plots of bivariate correlation and regression statistics,
Atmos. Environ., 145, 128–134, https://doi.org/10.1016/j.atmosenv.2016.09.016,
2016. a
Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.: Random forest meteorological normalisation models for Swiss PM10 trend analysis, Atmos. Chem. Phys., 18, 6223–6239, https://doi.org/10.5194/acp-18-6223-2018, 2018. a, b
Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., and Carslaw, D. C.: COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas, Atmos. Chem. Phys., 21, 4169–4185, https://doi.org/10.5194/acp-21-4169-2021, 2021. a, b
Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., and Zhang, X.: Analysis
of the Relationship between O3, NO and NO2 in Tianjin, China, Aerosol Air
Qual. Res., 11, 128–139, https://doi.org/10.4209/aaqr.2010.07.0055, 2011. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S.,Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, 2020. a
Heuss, J. M., Kahlbaum, D. F., and Wolff, G. T.: Weekday/Weekend Ozone
Differences: What Can We Learn from Them?, J. Air Waste Manage., 53,
772–788, https://doi.org/10.1080/10473289.2003.10466227, 2003. a
IGN: Mapas base de Argentina Bicontinental y Argentina Parte Continental
Americana, Capas SIG [data set],
https://www.ign.gob.ar/NuestrasActividades/InformacionGeoespacial/CapasSIG,
last access: 7 September 2021. a
Jiang, N. and Riley, M. L.: Exploring the utility of the random forest method
for forecasting ozone pollution in SYDNEY, J. Environ. Protect. Sustainable
Develop, 1, 245–254, 2015. a
Koo, B., Jung, J., Pollack, A. K., Lindhjem, C., Jimenez, M., and Yarwood, G.:
Impact of meteorology and anthropogenic emissions on the local and regional
ozone weekend effect in Midwestern US, Atmos. Environ., 57, 13–21,
https://doi.org/10.1016/j.atmosenv.2012.04.043, 2012. a
Kroll, J. H., Heald, C. L., Cappa, C. D., Farmer, D. K., Fry, J. L., Murphy,
J. G., and Steiner, A. L.: The complex chemical effects of COVID-19
shutdowns on air quality, Nat. Chem., 12, 777–779,
https://doi.org/10.1038/s41557-020-0535-z, 2020. a
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., and Seinfeld, J. H.:
Unexpected air pollution with marked emission reductions during the COVID-19
outbreak in China, Science, 369, 702–706, https://doi.org/10.1126/science.abb7431,
2020. a
Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H.,
Zhang, Q., and Zhai, S.: A two-pollutant strategy for improving ozone and
particulate air quality in China, Nat. Geosci., 12, 906–910,
https://doi.org/10.1038/s41561-019-0464-x, 2019. a
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R News,
2, 18–22, https://CRAN.R-project.org/doc/Rnews/ (last access: 3 January 2023), 2002. a
Liu, Y., Wang, T., Stavrakou, T., Elguindi, N., Doumbia, T., Granier, C.,
Bouarar, I., Gaubert, B., and Brasseur, G. P.: Diverse response of surface
ozone to COVID-19 lockdown in China, Sci. Total Environ., 789, 147739,
https://doi.org/10.1016/j.scitotenv.2021.147739, 2021. a, b
Masih, A.: Machine learning algorithms in air quality modeling, Glob. J.
Environ. Sci. Manag., 5, 515–534, https://doi.org/10.22034/GJESM.2019.04.10, 2019. a
Muhammad, S., Long, X., and Salman, M.: COVID-19 pandemic and environmental
pollution: A blessing in disguise?, Sci. Total Environ., 728, 138820,
https://doi.org/10.1016/j.scitotenv.2020.138820, 2020. a
Nakada, L. Y. K. and Urban, R. C.: COVID-19 pandemic: Impacts on the air
quality during the partial lockdown in São Paulo state, Brazil, Sci.
Total Environ., 730, 139087, https://doi.org/10.1016/j.scitotenv.2020.139087, 2020. a
Nakada Kondo, L. Y. and Urban, R. C.: COVID-19 pandemic: Impacts on the air
quality during the partial lockdown in São Paulo state, Brazil, Sci.
Total Environ., 730, 139087, https://doi.org/10.1016/j.scitotenv.2020.139087, 2020. a
Ordóñez, C., Garrido-Perez, J. M., and García-Herrera, R.:
Early spring near-surface ozone in Europe during the COVID-19 shutdown:
Meteorological effects outweigh emission changes, Sci. Total Environ., 747,
141322, https://doi.org/10.1016/j.scitotenv.2020.141322, 2020. a
Pineda Rojas, A. L., Borge, R., Mazzeo, N. A., Saurral, R. I., Matarazzo,
B. N., Cordero, J. M., and Kropff, E.: High PM10 concentrations in the city
of Buenos Aires and their relationship with meteorological conditions, Atmos.
Environ., 241, 117773, https://doi.org/10.1016/j.atmosenv.2020.117773, 2020. a
Puliafito, S. E., Allende, D. G., Castesana, P. S., and Ruggeri, M. F.:
High-resolution atmospheric emission inventory of the argentine energy
sector. Comparison with edgar global emission database, Heliyon, 3, e00489,
https://doi.org/10.1016/j.heliyon.2017.e00489, 2017. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 16 December 2022), 2019. a
Rahman, M. M., Paul, K. C., Hossain, M. A., Ali, G. G. M. N., Rahman, M. S.,
and Thill, J.-C.: Machine Learning on the COVID-19 Pandemic, Human Mobility
and Air Quality: A Review, IEEE Access, 9, 72420–72450,
https://doi.org/10.1109/ACCESS.2021.3079121, 2021. a
Reich, S., Magallanes, J., Dawidowski, L., Gómez, D., Grošelj, N.,
and Zupan, J.: An Analysis of Secondary Pollutants in Buenos Aires City,
Environ. Monit. Assess., 119, 441–457,
https://doi.org/10.1007/s10661-005-9035-2, 2006. a
Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E.,
Mena-Carrasco, M. A., and Pagowski, M.: Forecasting urban PM10 and
PM2.5 pollution episodes in very stable nocturnal conditions and complex
terrain using WRF–Chem CO tracer model, Atmos. Environ., 45,
2769–2780, https://doi.org/10.1016/j.atmosenv.2011.02.001, 2011. a
Seguel, R. J., Morales S., R. G., and Leiva, G. M. A.: Ozone weekend
effect in Santiago, Chile, Environ. Pollut., 162, 72–79,
https://doi.org/10.1016/j.envpol.2011.10.019, 2012. a
Seinfeld, J. and Pandis, S.: Atmospheric Chemistry & Physics: From Air
Pollution to Climate Change, Wiley, ISBN 0-471-17815-2, 1998. a
Servicio Meteorológico Nacional: Descarga del Catálogo de Datos Abiertos del SMN [data set], https://www.smn.gob.ar/descarga-de-datos, last access: 3 January 2023. a
Shi, X. and Brasseur, G. P.: The Response in Air Quality to the Reduction of
Chinese Economic Activities During the COVID-19 Outbreak, Geophys. Res.
Lett., 47, 1–8, https://doi.org/10.1029/2020GL088070, 2020. a, b
Shi, Z., Song, C., Liu, B., Lu, G., Xu, J., Vu, T. V., Elliott, R. J. R., Li,
W., Bloss, W. J., and Harrison, R. M.: Abrupt but smaller than expected
changes in surface air quality attributable to COVID-19 lockdowns, Sci.
Adv., 7, eabd6696, https://doi.org/10.1126/sciadv.abd6696, 2021. a, b, c, d
Šimić, I., Lovrić, M., Godec, R., Kröll, M., and
Bešlić, I.: Applying machine learning methods to better
understand, model and estimate mass concentrations of traffic-related
pollutants at a typical street canyon, Environ. Pollut., 263,
114587, https://doi.org/10.1016/j.envpol.2020.114587, 2020. a
Srivastava, A.: COVID-19 and air pollution and meteorology-an intricate
relationship: A review, Chemosphere, 263, 128297,
https://doi.org/10.1016/j.chemosphere.2020.128297, 2021. a
Stafoggia, M., Johansson, C., Glantz, P., Renzi, M., Shtein, A., de Hoogh, K.,
Kloog, I., Davoli, M., Michelozzi, P., and Bellander, T.: A random forest
approach to estimate daily particulate matter, nitrogen dioxide, and ozone at
fine spatial resolution in Sweden, Atmosphere, 11, 239,
https://doi.org/10.3390/atmos11030239, 2020. a
Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M.,
Minguillón, M. C., Alastuey, A., and Querol, X.: Changes in air
quality during the lockdown in Barcelona (Spain) one month into the
SARS-CoV-2 epidemic, Sci. Total Environ., 726, 138540,
https://doi.org/10.1016/j.scitotenv.2020.138540, 2020. a, b
Uria-Tellaetxe, I. and Carslaw, D. C.: Conditional bivariate probability
function for source identification, Environ. Model. Softw., 59, 1–9,
https://doi.org/10.1016/j.envsoft.2014.05.002, 2014. a
Velders, G. J., Willers, S. M., Wesseling, J., van den Elshout, S., van der
Swaluw, E., Mooibroek, D., and van Ratingen, S.: Improvements in air quality
in the Netherlands during the corona lockdown based on observations and model
simulations, Atmos. Environ., 247, 118158,
https://doi.org/10.1016/j.atmosenv.2020.118158, 2021. a, b
Vu, T. V., Shi, Z., Cheng, J., Zhang, Q., He, K., Wang, S., and Harrison, R. M.: Assessing the impact of clean air action on air quality trends in Beijing using a machine learning technique, Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, 2019. a
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone
pollution in China: A review of concentrations, meteorological influences,
chemical precursors, and effects, Sci. Total Environ., 575, 1582–1596,
https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017. a
Wang, W., Li, X., Shao, M., Hu, M., Zeng, L., Wu, Y., and Tan, T.: The impact of aerosols on photolysis frequencies and ozone production in Beijing during the 4-year period 2012–2015, Atmos. Chem. Phys., 19, 9413–9429, https://doi.org/10.5194/acp-19-9413-2019, 2019. a
Yang, J., Wen, Y., Wang, Y., Zhang, S., Pinto, J. P., Pennington, E. A., Wang,
Z., Wu, Y., Sander, S. P., Jiang, J. H., Hao, J., Yung, Y. L., and Seinfeld,
J. H.: From COVID-19 to future electrification: Assessing traffic impacts on
air quality by a machine-learning model, P. Natl. Acad.
Sci. USA, 118, e2102705118, https://doi.org/10.1073/pnas.2102705118, 2021. a, b
Yarwood, G., Stoeckenius, T. E., Heiken, J. G., and Dunker, A. M.: Modeling
Weekday/Weekend Ozone Differences in the Los Angeles Region for 1997, J. Air
Waste Manage., 53, 864–875, https://doi.org/10.1080/10473289.2003.10466232,
2003.
a
Yu, R., Yang, Y., Yang, L., Han, G., and Move, O. A.: RAQ–A random forest
approach for predicting air quality in urban sensing systems, Sensors, 16, 86, https://doi.org/10.3390/s16010086, 2016. a
Zhan, Y., Luo, Y., Deng, X., Grieneisen, M. L., Zhang, M., and Di, B.:
Spatiotemporal prediction of daily ambient ozone levels across China using
random forest for human exposure assessment, Environ. Pollut., 233,
464–473, https://doi.org/10.1016/j.envpol.2017.10.029, 2018. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8407 KB) - Full-text XML
- Corrigendum
-
Supplement
(1918 KB) - BibTeX
- EndNote
Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3 air quality concentrations and comparatively assessed the monitored and modeled concentrations during the COVID-19 lockdown phases. We provide the first long-term O3 and SO2 observational dataset for an urban–residential area of Buenos Aires in more than a decade and study the responses of O3 to the reduction in the emissions of its precursors because of its relevance regarding emission control.
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3...
Altmetrics
Final-revised paper
Preprint