Articles | Volume 15, issue 1
Data description paper
10 Jan 2023
Data description paper |  | 10 Jan 2023

A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina

Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski

Related authors

PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information
Paula Castesana, Melisa Diaz Resquin, Nicolás Huneeus, Enrique Puliafito, Sabine Darras, Darío Gómez, Claire Granier, Mauricio Osses Alvarado, Néstor Rojas, and Laura Dawidowski
Earth Syst. Sci. Data, 14, 271–293,,, 2022
Short summary

Related subject area

Domain: ESSD – Atmosphere | Subject: Atmospheric chemistry and physics
Visibility-derived aerosol optical depth over global land from 1959 to 2021
Hongfei Hao, Kaicun Wang, Chuanfeng Zhao, Guocan Wu, and Jing Li
Earth Syst. Sci. Data, 16, 3233–3260,,, 2024
Short summary
Characterizing clouds with the CCClim dataset, a machine learning cloud class climatology
Arndt Kaps, Axel Lauer, Rémi Kazeroni, Martin Stengel, and Veronika Eyring
Earth Syst. Sci. Data, 16, 3001–3016,,, 2024
Short summary
A Level 3 monthly gridded ice cloud dataset derived from 12 years of CALIOP measurements
David Winker, Xia Cai, Mark Vaughan, Anne Garnier, Brian Magill, Melody Avery, and Brian Getzewich
Earth Syst. Sci. Data, 16, 2831–2855,,, 2024
Short summary
IPB-MSA&SO4: a daily 0.25° resolution dataset of in situ-produced biogenic methanesulfonic acid and sulfate over the North Atlantic during 1998–2022 based on machine learning
Karam Mansour, Stefano Decesari, Darius Ceburnis, Jurgita Ovadnevaite, Lynn M. Russell, Marco Paglione, Laurent Poulain, Shan Huang, Colin O'Dowd, and Matteo Rinaldi
Earth Syst. Sci. Data, 16, 2717–2740,,, 2024
Short summary
Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658,,, 2024
Short summary

Cited articles

Act 1356: Preservación del recurso aire y prevención y control de la contaminación atmosférica, (last access: 7 September 2021), 2004. a
Agencia de Protección Ambiental (APrA), Secretaría de Ambiente, Jefatura de Gobierno: Calidad de Aire, Buenos Aires Data [data set], (last access: 4 January 2023), 2021. a, b
Aktay, A., Bavadekar, S., Cossoul, G., Davis, J., Desfontaines, D., Fabrikant, A., Gabrilovich, E., Gadepalli, K., Gipson, B., Guevara, M., Kamath, C., Kansal, M., Lange, A., Mandayam, C., Oplinger, A., Pluntke, C., Roessler, T., Schlosberg, A., Shekel, T., Vispute, S., Vu, M., Wellenius, G., Williams, B., and Wilson, R. J.: Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.1), arXiv [preprint],, 2020. a
Anapolsky, S.: ¿cómo nos movemos en el AMBA? Conclusiones de la evidencia empírica y alternativas post-covid, Universidad de San Martín. ISSN: 2469-1631 Serie: Documentos de Trabajo del IT, 18/ Comonos/ movemos/ en/ el/ AMBA/ -/ Anapolsky.pdfl (last access: 7 September 2021), 2020. a
Arkouli, M., Ulke, A. G., Endlicher, W., Baumbach, G., Schultz, E., Vogt, U., Müller, M., Dawidowski, L., Faggi, A., Wolf-Benning, U., and Scheffknecht, G.: Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires, Atmos. Pollut. Res., 1, 1–8,, 2010. a, b

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3 air quality concentrations and comparatively assessed the monitored and modeled concentrations during the COVID-19 lockdown phases. We provide the first long-term O3 and SO2 observational dataset for an urban–residential area of Buenos Aires in more than a decade and study the responses of O3 to the reduction in the emissions of its precursors because of its relevance regarding emission control.
Final-revised paper