Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-189-2023
https://doi.org/10.5194/essd-15-189-2023
Data description paper
 | 
10 Jan 2023
Data description paper |  | 10 Jan 2023

A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina

Melisa Diaz Resquin, Pablo Lichtig, Diego Alessandrello, Marcelo De Oto, Darío Gómez, Cristina Rössler, Paula Castesana, and Laura Dawidowski

Data sets

AQ-CNEA-CAC Air quality dataset (2019-2020): "A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina" Melisa Diaz Resquin, Diego Alessandrello, Marcelo De Oto, Pablo Lichtig, Hector Bajano, Alejandro Ponso, Facundo Bajano, Darío Gomez, and Laura Dawidowski https://doi.org/10.17632/h9y4hb8sf8.1

Model code and software

AQ-CNEA-CAC Air quality dataset (2019-2020): "A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina" Melisa Diaz Resquin, Diego Alessandrello, Marcelo De Oto, Pablo Lichtig, Hector Bajano, Alejandro Ponso, Facundo Bajano, Darío Gomez, and Laura Dawidowski https://doi.org/10.17632/h9y4hb8sf8.1

Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3...
Share
Altmetrics
Final-revised paper
Preprint