Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-189-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
Melisa Diaz Resquin
CORRESPONDING AUTHOR
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
Modeling and Observing Systems, Center for Climate and Resilience Research (CR), Santiago, Chile
Pablo Lichtig
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Comisión de Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Diego Alessandrello
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Marcelo De Oto
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Darío Gómez
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
Cristina Rössler
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Buenos Aires, Argentina
Paula Castesana
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Comisión de Ambiente, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Misión Ambiente, YPF Tecnología S. A. (Y-TEC), Buenos Aires, Argentina
Laura Dawidowski
CORRESPONDING AUTHOR
Comisión Nacional de Energía Atómica, Gerencia Química, Buenos Aires, Argentina
Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, Buenos Aires, Argentina
Viewed
Total article views: 4,832 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 13 Oct 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
3,719 | 995 | 118 | 4,832 | 301 | 119 | 141 |
- HTML: 3,719
- PDF: 995
- XML: 118
- Total: 4,832
- Supplement: 301
- BibTeX: 119
- EndNote: 141
Total article views: 3,095 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 10 Jan 2023)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,554 | 459 | 82 | 3,095 | 115 | 94 | 119 |
- HTML: 2,554
- PDF: 459
- XML: 82
- Total: 3,095
- Supplement: 115
- BibTeX: 94
- EndNote: 119
Total article views: 1,737 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 13 Oct 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,165 | 536 | 36 | 1,737 | 186 | 25 | 22 |
- HTML: 1,165
- PDF: 536
- XML: 36
- Total: 1,737
- Supplement: 186
- BibTeX: 25
- EndNote: 22
Viewed (geographical distribution)
Total article views: 4,832 (including HTML, PDF, and XML)
Thereof 4,642 with geography defined
and 190 with unknown origin.
Total article views: 3,095 (including HTML, PDF, and XML)
Thereof 3,012 with geography defined
and 83 with unknown origin.
Total article views: 1,737 (including HTML, PDF, and XML)
Thereof 1,630 with geography defined
and 107 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
8 citations as recorded by crossref.
- Impacts of sea-land breeze on the coastal ozone in the Pearl River Delta, China C. Liu et al. 10.1016/j.jes.2025.08.037
- Optimization of graph wavenet model for dissolved oxygen prediction using self-distillation and whale optimization algorithm F. Ding et al. 10.1016/j.jwpe.2025.108013
- A general review on the applications of machine learning to PM2.5 air pollution forecasting S. Patel et al. 10.1007/s44379-025-00034-y
- Carbonaceous fraction in PM2.5 of six Latin American cities: Seasonal variations, sources and secondary organic carbon contribution L. Dawidowski et al. 10.1016/j.scitotenv.2024.174630
- Evaluating emissions and meteorological contributions to air quality trends in northern China based on measurements at a regional background station W. Pu et al. 10.1039/D4EA00070F
- Comprehensive chemical profile and source apportionment of PM2.5 in Buenos Aires: Insights from the southernmost megalopolis P. Lichtig et al. 10.1016/j.atmosenv.2025.121236
- A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina M. Diaz Resquin et al. 10.5194/essd-15-189-2023
- Advancing sustainable air quality through calibration of miniature air quality monitors with SRA-SVR combined model X. Wang 10.3389/fenvs.2024.1348794
6 citations as recorded by crossref.
- Impacts of sea-land breeze on the coastal ozone in the Pearl River Delta, China C. Liu et al. 10.1016/j.jes.2025.08.037
- Optimization of graph wavenet model for dissolved oxygen prediction using self-distillation and whale optimization algorithm F. Ding et al. 10.1016/j.jwpe.2025.108013
- A general review on the applications of machine learning to PM2.5 air pollution forecasting S. Patel et al. 10.1007/s44379-025-00034-y
- Carbonaceous fraction in PM2.5 of six Latin American cities: Seasonal variations, sources and secondary organic carbon contribution L. Dawidowski et al. 10.1016/j.scitotenv.2024.174630
- Evaluating emissions and meteorological contributions to air quality trends in northern China based on measurements at a regional background station W. Pu et al. 10.1039/D4EA00070F
- Comprehensive chemical profile and source apportionment of PM2.5 in Buenos Aires: Insights from the southernmost megalopolis P. Lichtig et al. 10.1016/j.atmosenv.2025.121236
2 citations as recorded by crossref.
- A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina M. Diaz Resquin et al. 10.5194/essd-15-189-2023
- Advancing sustainable air quality through calibration of miniature air quality monitors with SRA-SVR combined model X. Wang 10.3389/fenvs.2024.1348794
Latest update: 17 Sep 2025
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8407 KB) - Full-text XML
- Corrigendum
-
Supplement
(1918 KB) - BibTeX
- EndNote
Short summary
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3 air quality concentrations and comparatively assessed the monitored and modeled concentrations during the COVID-19 lockdown phases. We provide the first long-term O3 and SO2 observational dataset for an urban–residential area of Buenos Aires in more than a decade and study the responses of O3 to the reduction in the emissions of its precursors because of its relevance regarding emission control.
We explored the performance of the random forest algorithm to predict CO, NOx, PM10, SO2, and O3...
Altmetrics
Final-revised paper
Preprint