Articles | Volume 15, issue 4
https://doi.org/10.5194/essd-15-1711-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1711-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis
Zhixuan Wang
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
Guizhi Wang
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
Xianghui Guo
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
Yan Bai
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
Yi Xu
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
Related authors
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Jialu Huang, Moriaki Yasuhara, He Wang, Pedro Julião Jimenez, Jiying Li, and Minhan Dai
Biogeosciences, 22, 4763–4777, https://doi.org/10.5194/bg-22-4763-2025, https://doi.org/10.5194/bg-22-4763-2025, 2025
Short summary
Short summary
We investigated the abundance, diversity, composition, and distribution of ostracods (a meiobenthic group) and their interactions with eutrophication and pollution through high-resolution sampling of surface sediment in Deep Bay, a small semi-enclosed riverine bay adjacent to two of the world’s most populated cities: Hong Kong and Shenzhen. The results support the idea that ostracods are a useful bioindicator of coastal benthic ecosystems shaped by distinct environmental problems.
Yuye Han, Zvi Steiner, Zhimian Cao, Di Fan, Junhui Chen, Jimin Yu, and Minhan Dai
Biogeosciences, 22, 3681–3697, https://doi.org/10.5194/bg-22-3681-2025, https://doi.org/10.5194/bg-22-3681-2025, 2025
Short summary
Short summary
Our results suggest coccolithophore calcite accounts for a major fraction of PIC (particulate inorganic carbon) standing stocks in the western North Pacific, with a markedly higher contribution in the oligotrophic subtropical gyre than in the Kuroshio–Oyashio transition region, which highlights the importance of coccolithophores for PIC production in the pelagic ocean, particularly in oligotrophic ocean waters.
Yanmin Wang, Xianghui Guo, Guizhi Wang, Lifang Wang, Tao Huang, Yan Li, Zhe Wang, and Minhan Dai
EGUsphere, https://doi.org/10.5194/egusphere-2023-3155, https://doi.org/10.5194/egusphere-2023-3155, 2024
Preprint archived
Short summary
Short summary
This study reports higher nutrient release in fish farming system compared to river inputs and other sources with implications for coastal environment. DIN and DIP variation in Sansha Bay are dominated by mariculture activity relative to river input during spring. The N/P budget shows that 52.8 ± 4.7 % of DIN and 33.0 ± 3.7 % of DIP released from fish feeds exceeded other nutrient inputs. Co-culture strategies (e.g., of fish, kelp and oysters) allow effective mitigation of environmental impacts.
Yifan Ma, Kuanbo Zhou, Weifang Chen, Junhui Chen, Jin-Yu Terence Yang, and Minhan Dai
Biogeosciences, 20, 2013–2030, https://doi.org/10.5194/bg-20-2013-2023, https://doi.org/10.5194/bg-20-2013-2023, 2023
Short summary
Short summary
We distinguished particulate organic carbon (POC) export fluxes out of the nutrient-depleted layer (NDL) and the euphotic zone. The amount of POC export flux at the NDL base suggests that the NDL could be a hotspot of particle export. The substantial POC export flux at the NDL base challenges traditional concepts that the NDL was limited in terms of POC export. The dominant nutrient source for POC export fluxes should be subsurface nutrients, which was determined by 15N isotopic mass balance.
Guang Gao, Tifeng Wang, Jiazhen Sun, Xin Zhao, Lifang Wang, Xianghui Guo, and Kunshan Gao
Biogeosciences, 19, 2795–2804, https://doi.org/10.5194/bg-19-2795-2022, https://doi.org/10.5194/bg-19-2795-2022, 2022
Short summary
Short summary
After conducting large-scale deck-incubation experiments, we found that seawater acidification (SA) increased primary production (PP) in coastal waters but reduced it in pelagic zones, which is mainly regulated by local pH, light intensity, salinity, and community structure. In future oceans, SA combined with decreased upward transports of nutrients may synergistically reduce PP in pelagic zones.
Yangyang Zhao, Khanittha Uthaipan, Zhongming Lu, Yan Li, Jing Liu, Hongbin Liu, Jianping Gan, Feifei Meng, and Minhan Dai
Biogeosciences, 18, 2755–2775, https://doi.org/10.5194/bg-18-2755-2021, https://doi.org/10.5194/bg-18-2755-2021, 2021
Short summary
Short summary
In situ oxygen consumption rates were estimated for the first time during destruction of coastal hypoxia as disturbed by a typhoon and its reinstatement in the South China Sea off the Pearl River estuary. The reinstatement of summer hypoxia was rapid with a comparable timescale with that of its initial disturbance from frequent tropical cyclones, which has important implications for better understanding the intermittent nature of coastal hypoxia and its prediction in a changing climate.
Guizhi Wang, Samuel S. P. Shen, Yao Chen, Yan Bai, Huan Qin, Zhixuan Wang, Baoshan Chen, Xianghui Guo, and Minhan Dai
Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, https://doi.org/10.5194/essd-13-1403-2021, 2021
Short summary
Short summary
This study reconstructs a complete field of summer sea surface partial pressure of CO2 (pCO2) over the South China Sea (SCS) with a 0.5° resolution in the period of 2000–2017 using the scattered underway pCO2 observations. The spectral optimal gridding method was used in this reconstruction with empirical orthogonal functions computed from remote sensing data. Our reconstructed data show that the rate of sea surface pCO2 increase in the SCS is 2.4 ± 0.8 µatm yr-1 during 2000–2017.
Yanhong Lu, Shunyan Cheung, Ling Chen, Shuh-Ji Kao, Xiaomin Xia, Jianping Gan, Minhan Dai, and Hongbin Liu
Biogeosciences, 17, 6017–6032, https://doi.org/10.5194/bg-17-6017-2020, https://doi.org/10.5194/bg-17-6017-2020, 2020
Short summary
Short summary
Through a comprehensive investigation, we observed differential niche partitioning among diverse ammonia-oxidizing archaea (AOA) sublineages in a typical subtropical estuary. Distinct AOA communities observed at DNA and RNA levels suggested that a strong divergence in ammonia-oxidizing activity among different AOA groups occurs. Our result highlights the importance of identifying major ammonia oxidizers at RNA level in future studies.
Cited articles
Bai, Y., Cai, W., He, X., Zhai, W., Pan, D., Dai, M., and Yu, P.: A
mechanistic semi-analytical method for remotely sensing sea surface
pCO2 in river-dominated coastal oceans: A case study from the East China
Sea, J. Geophys. Res.-Oceans, 120, 2331–2349, 2015.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Cao, Z., Dai, M., Zheng, N., Wang, D., Li, Q., Zhai, W., Meng, F., and Gan,
J.: Dynamics of the carbonate system in a large continental shelf system
under the influence of both a river plume and coastal upwelling, J. Geophys.
Res.-Biogeo., 116, G02010, https://doi.org/10.1029/2010JG001596, 2011.
Cao, Z., Yang, W., Zhao, Y., Guo, X., Yin, Z., Du, C., Zhao, H., and Dai,
M.: Diagnosis of CO2 dynamics and fluxes in global coastal oceans,
Natl. Sci. Rev., 7, 786–797, 2020.
Chen, C. and Borges, A. V.: Reconciling opposing views on carbon cycling in
the coastal ocean: Continental shelves as sinks and near-shore ecosystems as
sources of atmospheric CO2, Deep-Sea Res. Pt. I, 56, 578–590, 2009.
Chen, C., Lai, Z., Beardsley, R. C., Xu, Q., Lin, H., and Viet, N.
T.: Current separation and upwelling over the southeast shelf of Vietnam in
the South China Sea, J. Geophys. Res.-Oceans, 117, C03033, https://doi.org/10.1029/2011JC007150, 2012.
Chen, F., Cai, W. J., Benitez-Nelson, C., and Wang, Y.: Sea surface
pCO2–SST relationships across a cold-core cyclonic eddy: Implications
for understanding regional variability and air-sea gas exchange, Geophys.
Res. Lett., 341, 265–278, 2007.
Cheng, C., Xu, P. F., Cheng, H., Ding, Y., Zheng, J., Ge, T., and Xu, J.:
Ensemble learning approach based on stacking for unmanned surface vehicle's
dynamics. Ocean Eng., 207, 107388, https://doi.org/10.1016/j.oceaneng.2020.107388, 2020.
Dai, M., Gan, J., Han, A., Kung, H., and Yin, Z.: Physical Dynamics and
Biogeochemistry of the Pearl River Plume, in: Biogeochemical Dynamics at
Large River-Coastal Interfaces, edited by: Bianchi, T., Allison, M. and Cai, W. J.,
Cambridge University Press, Cambridge, 321–352, 2014.
Dai, M., J. Su, Zhao, Y., Hofmann, E. E., Cao, Z., Cai, W., Gan, J., Lacroix,
F., Laruelle, G., Meng, F., Müller, J., Regnier, P., Wang, G., and Wang,
Z.: Carbon fluxes in the coastal ocean: Synthesis, boundary processes and
future trends, Annu. Rev. Earth Pl. Sc., 50, 593–626, 2022.
Dai, M. H., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Q., Xu, Y., Gan, J.,
Hu, J., and Du, C.: Why are some marginal seas sources of atmospheric
CO2?, Geophys. Res. Lett., 40, 2154–2158, 2013.
Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean, Geosci. Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-2091-2019, 2019.
Dong, L., Su, J. Wong, L. Cao, Z. and Chen, J.: Seasonal variation and
dynamics of the Pearl River plume, Cont. Shelf Res., 24, 1761–1777, 2004.
Du, C., Liu, Z., Dai, M., Kao, S.-J., Cao, Z., Zhang, Y., Huang, T., Wang, L., and Li, Y.: Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model, Biogeosciences, 10, 6419–6432, https://doi.org/10.5194/bg-10-6419-2013, 2013.
Dye, A. W., Rastogi, B., Clemesha, R. E. S., Kim, J. B., Samelson, R.
M., Still, C. J., and Williams, A. P.: Spatial patterns and trends of
summertime low cloudiness for the Pacific Northwest, 1996–2017, Geophys.
Res. Lett., 47, e2020GL088121, https://doi.org/10.1029/2020GL088121, 2020.
Fay, A. R., Gregor, L., Landschützer, P., McKinley, G. A., Gruber, N., Gehlen, M., Iida, Y., Laruelle, G. G., Rödenbeck, C., Roobaert, A., and Zeng, J.: SeaFlux: harmonization of air–sea CO2 fluxes from surface pCO2 data products using a standardized approach, Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, 2021.
Gan, J., Li, H., Curchitser, E. N., and Haidvogel, D. B.: Modeling South
China sea circulation: Response to seasonal forcing regimes, J. Geophys. Res.-Oceans, 111, C06034, https://doi.org/10.1029/2005JC003298, 2006.
Gan, J., Lu, Z., Dai, M., Cheung, A. Y. Y., Liu, H., and Harrison, P.:
Biological response to intensified upwelling and to a river plume in the
northeastern South China Sea: A modeling study, J. Geophys. Res.-Oceans,
115, C09001, https://doi.org/10.1029/2009JC005569, 2010.
Guo, X. and Wong, G.: Carbonate chemistry in the Northern South China Sea
shelf-sea in June 2010, Deep-Sea Res. Pt. II, 117, 119–130, 2015.
Han, A. Q., Dai, M. H., Gan, J. P., Kao, S.-J., Zhao, X. Z., Jan, S., Li, Q., Lin, H., Chen, C.-T. A., Wang, L., Hu, J. Y., Wang, L. F., and Gong, F.: Inter-shelf nutrient transport from the East China Sea as a major nutrient source supporting winter primary production on the northeast South China Sea shelf, Biogeosciences, 10, 8159–8170, https://doi.org/10.5194/bg-10-8159-2013, 2013.
Hu, J., Kawamura, H., Li, C., Hong, H., and Jiang, Y.: Review on current and
seawater volume transport through the Taiwan Strait, J. Oceanogr., 66,
591–610, 2010.
Jo, Y., Dai, M., Zhai, W., Yan, X., and Shang, S.: On the Variations of Sea
Surface pCO2 in the Northern South China Sea - A Remote Sensing Based
Neural Network Approach, J. Geophys. Res.-Oceans, 117, C08022, https://doi.org/10.1029/2011JC007745, 2012.
Jones, S. D., Quéré, C., and Rödenbeck, C.: Spatial
decorrelation lengths of surface ocean fCO2 results in NetCDF format,
Global Biogeochem. Cy., 26, GB2042, https://doi.org/10.1029/2010GB004017, 2014.
Landschützer, P., Bakker, D. C. E., Gruber, N., and Schuster, U.: Recent
variability of the global ocean carbon sink, Global Biogeochem. Cy., 28,
927–949, 2014.
Landschützer, P., Gruber, N., and Bakker, D.: Decadal variations and
trends of the global ocean carbon sink, Global Biogeochem. Cy., 30,
1396–1417, 2016.
Landschützer, P., Gruber, N., and Bakker, D. C. E.: An updated
observation-based global monthly gridded sea surface pCO2 and air-sea
CO2 flux product from 1982 through 2015 and its monthly climatology,
Dataset, https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/SPCO2_1982_2015_ETH_SOM_FFN.html (last access: 8 October 2022), 2017.
Laruelle, G., Lauerwald, R., Pfeil, B., and Regnier, P.: Regionalized global
budget of the CO2 exchange at the air-water interface in continental
shelf seas, Global Biogeochem. Cy., 28, 1199–1214, 2015.
Laruelle, G. G., Landschützer, P., Gruber, N., Tison, J.-L., Delille, B., and Regnier, P.: Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, 2017.
Lefèvre, N., Watson, A., and Waston, A.: A comparison of multiple
regression and neural network techniques for mapping in situ
pCO2 data, Tellus B, 57, 375–384, 2005.
Levitus, S., Antonov, J. I., Boyer, T. P., Garcia, H. E., and Locarnini, R.
A.: EOF analysis of upper ocean heat content, 1956–2003, Geophys. Res.
Lett., 32, L18607, https://doi.org/10.1029/2005GL023606, 2005.
Li, Q., Guo, X., Zhai, W., Xu, Y., and Dai, M.: Partial pressure of CO2 and
air-sea CO2 fluxes in the South China Sea: Synthesis of an 18-year
dataset, Prog. Oceanogr., 182, 102272, https://doi.org/10.1016/j.pocean.2020.102272, 2020.
Li, Y., Xie, P., Tang, Z., Jiang, T., and Qi, P.: SVM-Based Sea-Surface
Small Target Detection: A False-Alarm-Rate-Controllable Approach, IEEE
Geosci. Remote, 16, 1225–1229, 2019.
Luo, X., Hao, W., Zhe, L., and Liang, Z.: Seasonal variability of air-sea
CO2 fluxes in the Yellow and East China Seas: A case study of
continental shelf sea carbon cycle model, Cont. Shelf Res., 107, 69–78,
2015.
McMonigal, K. and Larson, S. M.: ENSO explains the link between Indian
Ocean dipole and Meridional Ocean heat transport, Geophys. Res.
Lett., 49, e2021GL095796, https://doi.org/10.1029/2021GL095796, 2022.
Mongwe, N. P., Chang, N., and Monteiro, P.: The seasonal cycle as a mode to
diagnose biases in modelled CO2 fluxes in the Southern Ocean, Ocean
Model., 106, 90–103, 2016.
Park, J. H.: Effects of Kuroshio intrusions on nonlinear internal waves in
the South China Sea during winter, J. Geophys. Res.-Oceans, 118, 7081–7094,
2013.
Qin, H., Chen, G., Wang, W., Wang, D., and Zeng, L.: Validation and
application of MODIS-derived SST in the South China Sea, Int. J. Remote
Sens., 35, 4315–4328, 2014.
Rödenbeck, C., Bakker, D. C. E., Gruber, N., Iida, Y., Jacobson, A. R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.-H., Peylin, P., Rodgers, K. B., Sasse, T. P., Schuster, U., Shutler, J. D., Valsala, V., Wanninkhof, R., and Zeng, J.: Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM), Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, 2015.
Sutton, A. J., Wanninkhof, R., Sabine, C. L., Feely, R. A., Cronin, M. F., and Weller, R. A.: Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean, Geophys. Res. Lett., 44, 5627–5636, https://doi.org/10.1002/2017GL073814, 2017.
Tahata, M., Sawaki, Y., Ueno, Y., Nishizawa, M., Yoshida, N., Ebisuzaki, T.,
Komiya, T., and Maruyama, S.: Three-step modernization of the ocean:
Modeling of carbon cycles and the revolution of ecological systems in the
Ediacaran/Cambrian periods, Geosci. Front., 6, 121–136, 2015.
Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin, C., Bakker, D. C. E., González-Dávila, M., Johannessen, T., Körtzinger, A., Lüger, H., Olsen, A., Omar, A., Padin, X. A., Ríos, A. F., Steinhoff, T., Santana-Casiano, M., Wallace, D. W. R., and Wanninkhof, R.: Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network, Biogeosciences, 6, 1405–1421, https://doi.org/10.5194/bg-6-1405-2009, 2009.
Wang, G., Shen, S. S. P., Chen, Y., Bai, Y., Qin, H., Wang, Z., Chen, B., Guo, X., and Dai, M.: Feasibility of reconstructing the summer basin-scale sea surface partial pressure of carbon dioxide from sparse in situ observations over the South China Sea, Earth Syst. Sci. Data, 13, 1403–1417, https://doi.org/10.5194/essd-13-1403-2021, 2021.
Wang, Z. and Dai, M.: Datasets of reconstructed sea surface pCO2 in the
South China Sea, Science Data Bank [data set],
https://doi.org/10.57760/sciencedb.02050, 2022.
Wang, Z., Wang, G., Guo, X., Hu, J., and Dai, M.: Reconstruction of
High-Resolution Sea Surface Salinity over 2003–2020 in the South China Sea
Using the Machine Learning Algorithm LightGBM Model, Remote. Sens., 14,
6147, https://doi.org/10.3390/rs14236147, 2022.
Wanninkhof, R., Park, G.-H., Takahashi, T., Sweeney, C., Feely, R., Nojiri, Y., Gruber, N., Doney, S. C., McKinley, G. A., Lenton, A., Le Quéré, C., Heinze, C., Schwinger, J., Graven, H., and Khatiwala, S.: Global ocean carbon uptake: magnitude, variability and trends, Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, 2013.
Yang, W., Guo, X., Cao, Z., Wang, L., Guo, L., Huang, T., Li, Y., Xu, Y.,
Gan, J., and Dai, M.: Seasonal dynamics of the carbonate system under
complex circulation schemes on a large continental shelf: The northern South
China Sea, Prog Oceanogr., 197, 1026–1045, 2021.
Yu, S., Song, Z., Bai, Y., and He, X.: Remote Sensing based Sea Surface
partial pressure of CO2 (pCO2) in China Seas (2003–2019) (2.0), Zenodo [code], https://doi.org/10.5281/zenodo.7372479,
2022.
Zeng, J., Matsunaga, T., Saigusa, N., Shirai, T., Nakaoka, S., and Tan, Z.-H.: Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping, Ocean Sci., 13, 303–313, https://doi.org/10.5194/os-13-303-2017, 2017.
Zhai, W., Dai, M., Cai, W. J., Wang, Y., and Hong, H.: The partial pressure
of carbon dioxide and air-sea fluxes in the northern South China Sea in
spring, summer and fall, Mar. Chem., 96, 87–97, 2005.
Zhai, W.-D., Dai, M.-H., Chen, B.-S., Guo, X.-H., Li, Q., Shang, S.-L., Zhang, C.-Y., Cai, W.-J., and Wang, D.-X.: Seasonal variations of sea–air CO2 fluxes in the largest tropical marginal sea (South China Sea) based on multiple-year underway measurements, Biogeosciences, 10, 7775–7791, https://doi.org/10.5194/bg-10-7775-2013, 2013.
Zhan, Y., Zhang, H., Li, J., and Li, G.: Prediction Method for Ocean Wave
Height Based on Stacking Ensemble Learning Model, J. Mar. Sci. Eng., 10,
1150, https://doi.org/10.3390/jmse10081150, 2022.
Zhang, C., Hu, C., Shang, S., Müller-Karger, F., Yan, L., Dai, M.,
Huang, B., Ning, X., and Hong, H.: Bridging between SeaWiFS and MODIS for
continuity of chlorophyll-a concentration assessments off Southeastern
China, Remote Sens. Environ., 102, 250–263, 2006.
Zhu, Y., Shang, S., Zhai, W., and Dai, M.: Satellite-derived surface water
pCO2 and air-sea CO2 fluxes in the northern South China Sea in
summer, Prog. Nat. Sci., 19, 775–779, 2009.
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China...
Altmetrics
Final-revised paper
Preprint