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Abstract. The South China Sea (SCS) is the largest marginal sea of the North Pacific Ocean, where intensive
field observations, including mappings of the sea surface partial pressure of CO2 (pCO2), have been conducted
over the last 2 decades. It is one of the most studied marginal seas in terms of carbon cycling and could thus
be a model system for marginal sea carbon research. However, the cruise-based sea surface pCO2 datasets are
still temporally and spatially sparse. Using a machine-learning-based method facilitated by empirical orthogonal
function (EOF) analysis, this study provides a reconstructed dataset of the monthly sea surface pCO2 in the
SCS with a reasonably high spatial resolution (0.05◦× 0.05◦) and temporal coverage between 2003 and 2020.
The data input to our model includes remote-sensing-derived sea surface salinity, sea surface temperature, and
chlorophyll, the spatial pattern of pCO2 constrained by EOF, atmospheric pCO2, and time labels (month). We
validated our reconstruction with three independent testing datasets that are not involved in the model training.
Among them, Test 1 includes 10 % of our in situ data, Test 2 contains four independent in situ datasets corre-
sponding to the four seasons, and Test 3 is an in situ monthly dataset available from 2003–2019 at the South
East Asia Time-series Study (SEATs) station located in the northern basin of the SCS. Our Test 1 validation
demonstrated that the reconstructed pCO2 field successfully simulated the spatial and temporal patterns of sea
surface pCO2 observations. The root mean square error (RMSE) between our reconstructed data and in situ data
in Test 1 averaged ∼ 10 µatm, which is much smaller (by ∼ 50 %) than that between the remote-sensing-derived
data and in situ data. Test 2 verified the accuracy of our retrieval algorithm in months lacking observations,
showing a relatively small bias (RMSE of ∼ 8 µatm). Test 3 evaluated the accuracy of the reconstructed long-
term trend, showing that, at the SEATs station, the difference between the reconstructed pCO2 and in situ data
ranged from −10 to 4 µatm (−2.5 % to 1 %). In addition to the typical machine learning performance metrics,
we assessed the uncertainty resulting from reconstruction bias and its feature sensitivity. These validations and
uncertainty analyses strongly suggest that our reconstruction effectively captures the main spatial and temporal
features of sea surface pCO2 distributions in the SCS. Using the reconstructed dataset, we show the long-term
trends of sea surface pCO2 in five subregions of the SCS with differing physicobiogeochemical characteristics.
We show that mesoscale processes such as the Pearl River plume and China coastal currents significantly impact
sea surface pCO2 in the SCS during different seasons. While the SCS is overall a weak source of atmospheric
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CO2, the northern SCS acts as a sink, showing a trend of increasing strength over the past 2 decades. The data
used in this article are available at https://doi.org/10.57760/sciencedb.02050 (Wang and Dai, 2022).

1 Introduction

The ocean possesses a large portion of the global capacity for
atmospheric carbon dioxide (CO2) sequestration, annually
mitigating 22 %–26 % of the anthropogenic CO2 emissions
associated with fossil fuel burning and land use changes
over the period from 2012–2021 (Friedlingstein et al., 2022).
Ocean margins are an essential part of the land–ocean contin-
uum, representing a particularly challenging regime to study
(e.g., Chen and Borges, 2009; Dai et al., 2022; Laruelle et
al., 2015), as they are often characterized by large spatial and
temporal variations in air–sea CO2 fluxes that lead to larger
uncertainties in their overall estimation and predictions than
those made in the open ocean (Dai et al., 2013, 2022; Cao
et al., 2020; Laruelle et al., 2015; Chen and Borges, 2009,
and references therein). Limited spatiotemporal coverage of
in situ observations is a large source of these uncertainties.

In recent years, many studies have used numerical models
or data-based approaches to improve estimates of the partial
pressure of carbon dioxide (pCO2) at the sea surface and the
accuracy of the global carbon budget for periods and regions
with poor coverage of in situ data (e.g., Rödenbeck et al.,
2015; Wanninkhof et al., 2013). Numerical models can suc-
cessfully quantify the generally increasing trend in oceanic
pCO2 and simulate some critical carbon cycling processes
(e.g., net ecosystem production) but still suffer from regional
and seasonal differences in their estimates of ocean carbon-
ate parameters (e.g., Luo et al., 2015; Mongwe et al., 2016;
Tahata et al., 2015; Wanninkhof et al., 2013). Thus, data-
based approaches, which typically apply statistical interpo-
lation and regression methods, have become an important
complement to numerical models (e.g., Jones et al., 2014;
Lefèvre et al., 2005; Landschützer et al., 2014, 2017; Tel-
szewski et al., 2009). Statistical interpolation improves the
spatial coverage of in situ data but does not work for periods
in which in situ data are unavailable. Regression methods al-
low the mapping of the relationships between in situ pCO2
data and other parameters that may drive changes in sur-
face ocean pCO2, and then the extrapolation of this relation-
ship to improve estimates of the spatiotemporal distribution
of pCO2. Machine learning methods, and remote-sensing-
derived products (as proxy variables in regression methods)
have aided the development of data-based methods (Röden-
beck et al., 2015; Bakker et al., 2016) and can improve the
model results for the oceanic carbonate system by numer-
ical assimilation methods. Consequently, machine learning
has increasingly become a routine approach for reconstruct-
ing sea surface pCO2 in open-ocean regimes (e.g., Zeng et
al., 2017; Li et al., 2019); however, it remains challenging

to extend this method to ocean margins, which are more dy-
namic in both time and space.

The South China Sea (SCS) is the largest marginal sea of
the North Pacific Ocean, with a surface area of 3.5×106 km2.
Although extensive field observations of sea surface pCO2
have been conducted in the SCS over the past 2 decades, their
spatial and temporal coverage is still limited with respect to
coverage of different physicobiogeochemical domains and
subseasonal timescales (e.g., Guo and Wong, 2015; Li et al.,
2020; Zhai et al., 2005, 2013). Therefore, there is a strong
need for improved surface water pCO2 coverage in the SCS
to constrain air–sea CO2 fluxes and improve initial condi-
tions of numerical models. Moreover, the reasonably high
spatiotemporal resolution of pCO2 data can help identify the
controlling factors of pCO2 changes in the SCS and reliably
resolve long-term changes.

Zhu et al. (2009) presented an empirical approach to esti-
mate sea surface pCO2 in the northern SCS using remote-
sensing-derived (RS-derived) data, including sea surface
temperature (SST) and chlorophyll a (Chl a). Their recon-
structed pCO2 data were generally consistent with the in
situ data. However, uncertainties remained large, primarily
caused by limited in situ data from only two summer cruises
in their study. Jo et al. (2012) developed a neural-network-
based algorithm using SST and Chl a to estimate sea sur-
face pCO2 in the northern SCS. In their study, in situ sea
surface pCO2 data were collected from three cruises dur-
ing May 2001 and February and July 2004. The reconstruc-
tion also suffered a relatively large bias (Wang et al., 2021).
Bai et al. (2015) employed a mechanic semi-analytical algo-
rithm (MeSAA) to estimate satellite remote-sensing-derived
sea surface pCO2 in the East China Sea from 2000–2014 and
then expanded the application of this algorithm to estimate
sea surface pCO2 for the whole China seas region, includ-
ing the South China Sea. These authors explained that their
MeSAA did not fully account for some localized processes,
which resulted in a RMSE of about 45 µatm for the SCS
(Wang et al., 2021). Yu et al. (2022) subsequently used a non-
linear regression method to develop a retrieval algorithm for
seawater pCO2 in the China seas, and the RS-derived pCO2
data from 2003–2018 were provided by the SatCO2 platform
(http://www.SatCO2.com, last access: 8 October 2022). In
this retrieval algorithm, the input parameters included sea
surface temperature, Chl a concentrations, remote sensing
reflectance at three bands (Rrs412, 443, and 488 nm), the
temperature anomaly in the longitudinal direction, and the
theoretical thermodynamic background pCO2 under the cor-
responding SST. Although the RMSE associated with the
RS-derived pCO2 product was relatively large (21.1 µatm),
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it successfully showed the major spatial patterns of sea sur-
face pCO2 in the China seas (Yu et al., 2022).

To take advantage of both the high spatiotemporal reso-
lution of the RS-derived pCO2 data and the accuracy of the
in situ data, Wang et al. (2021) reconstructed a basin-scale
sea surface pCO2 dataset in the SCS during summer using
an empirical orthogonal function (EOF) based on a multi-
linear regression method. They demonstrated that the spatial
modes of RS-derived data calculated using the EOF can ef-
fectively provide spatial constraints on the data reconstruc-
tion, and thus, this approach is adopted in this study. How-
ever, the reconstructed results may still be subject to bias
when the standard deviation of spatial in situ data is rela-
tively large because of the influence of outliers (Wang et al.,
2021). Therefore, many studies have used machine-learning-
based regression methods to reduce the influence of outliers
in open-ocean areas and have achieved a RMSE of < 17 µatm
in most cases (e.g., Zeng et al., 2017; Li et al., 2019).

Building on the ability of the EOF method to significantly
improve reconstructions in terms of spatial patterns and accu-
racy (Wang et al., 2021), we developed a machine-learning-
based regression method facilitated by the EOF to fully re-
solve the long-term spatial distribution of sea surface pCO2
at a resolution of 0.05◦× 0.05◦ in the SCS. Our reconstructed
model uses input data that include remote-sensing-derived
sea surface salinity, sea surface temperature, and Chl a, the
spatial pattern of pCO2 constrained by the EOF, atmospheric
pCO2, and time labels (month). In addition to assessing typ-
ical machine learning performance metrics, we evaluated the
uncertainty resulting from the bias of the reconstruction and
its sensitivity to the features.

2 Study site and data sources

2.1 Study area

The SCS, located in the northwestern Pacific, is a semi-
enclosed marginal sea with a maximum water depth of
ca. 4700 m (e.g., Gan et al., 2006, 2010). The rhombus-
shaped deep-water basin, with a southwesterly–northeasterly
direction, accounts for about half of the total area of the SCS
(Fig. 1). Largely modulated by the Asian monsoon and to-
pography, the SCS exhibits seasonally varying surface circu-
lation, river inputs, and upwelling. The circulation of the up-
per layer shows a large cyclonic circulation structure in win-
ter (Fig. 1), while in summer it exhibits an anticyclonic circu-
lation structure (Fig. 1; Hu et al., 2010). In the northern SCS,
the Pearl River discharges into the SCS with an annual fresh-
water input of 3.26× 1011 m3 (e.g., Dong et al., 2004; Dai
et al., 2014). The area influenced by the Pearl River plume
may extend southeastward to a few hundred kilometers from
the estuary in summer because of the monsoonal wind stress
(Dai et al., 2014). The northern and western coastal regions
of the SCS feature summer coastal upwelling, such as the
eastern Guangdong and Qiongdong upwelling systems in

Figure 1. Topographic map of the South China Sea (SCS) showing
the basin-wide cyclonic circulation in winter (solid line) and anti-
cyclonic circulation over the southern half of the SCS in summer
(dashed line). Also shown are the Kuroshio branch (KB; orange
line), the China coastal current (CCC; green line), and the Pearl
River plume (PRP; blue line).

the northern SCS and the Vietnam upwelling systems in the
western SCS (e.g., Cao et al., 2011; Chen et al., 2012; Gan
et al., 2006, 2010; Li et al., 2020). These seasonal changes in
sea surface circulation lead to strong seasonal characteristics
of sea surface pCO2 in the SCS.

The SCS is subject to dynamic water exchanges with the
East China Sea via the Taiwan Strait and the western Pa-
cific via the Luzon Strait (Fig. 1). In winter, driven by the
winter monsoon, the China coastal current (CCC; green line
in Fig. 1; Han et al., 2013; Yang et al., 2021) flows south
along the Chinese mainland through the Taiwan Strait, and
occupies the northern SCS with cold, fresh, nutrient-rich wa-
ters. The strong northeasterly winds in winter also slow down
the western boundary ocean current, forcing the intrusion of
Kuroshio water, featuring high surface salinity and high total
alkalinity, into the SCS via the Luzon Strait (orange line in
Fig. 1; Du et al., 2013; Park, 2013; Yang et al., 2021). These
water exchange processes increase the complexity of the spa-
tial distribution of sea surface pCO2 in the SCS, which, as a
result, has strong seasonal characteristics and spatial variabil-
ity.
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2.2 Observational pCO2 data

Data collected from field surveys during the study period
2003–2020 are summarized in Table 1. Most observations
were made in July, with fewer observations made in March
and December of each year. The rough sea state in the SCS in
winter and early spring limited the field surveys during these
seasons. Data collected from July 2000 to January 2018 were
originally published in Li et al. (2020). The in situ pCO2
were collected from R/Vs Dongfanghong-2 and Tan Kah Kee
(TKK) (shown in Table 1). During the cruises, sea surface
pCO2 was measured during the cruise. The measurements
and data processing followed the SOCAT (Surface Ocean
CO2 Atlas) protocol (Li et al., 2020). More details of the data
collection methods are provided in Li et al. (2020). The spa-
tial coverage and frequency of the observations are shown
in Fig. 2, revealing pronounced seasonal changes across a
large spatial area. For example, the spatial coverage of the
in situ data in spring and fall are relatively uniformly dis-
tributed, and the south end of the spatial coverage reaches
5◦ N in spring, whereas during other seasons the data are con-
centrated in the northern and central regions of the SCS. In
addition, only one observation was made in the basin area in
winter, while the northern coastal area was more frequently
surveyed, especially in summer.

Figure 3 shows the spatial and temporal distributions of in
situ sea surface pCO2. Seasonally, the lowest pCO2 occurs
in January, and the highest concentrations occur in May and
June. Spatially, the pCO2 distribution in the basin is rela-
tively homogeneous, although is highly variable in the north-
ern region. In the northern coastal area in summer, the pCO2
distribution is affected by the Pearl River plume (yielding
low values) and coastal upwelling (yielding high values),
which last into early fall. In winter and early spring, relatively
low pCO2 values (∼ 350 µatm) were found in the near-shore
area. In addition, the high pCO2 values recorded on the west-
ern side of the Luzon Strait in December demonstrate the in-
fluence of winter upwelling during some of the surveys.

In addition to the above in situ sea surface pCO2 data,
we selected in situ sea surface pCO2 data collected during
four independent surveys across the four seasons in Septem-
ber 2018 (fall), December 2018 (winter), August 2019 (sum-
mer), and April 2020 (spring) to verify the accuracy of our re-
construction model in extrapolating periods lacking training
datasets. Furthermore, we used an additional dataset of sea
surface pCO2 calculated from observed dissolved inorganic
carbon and total alkalinity during 2003–2019 at the South-
east Asia Time-series Study (SEATs) station (data from Dai
et al., 2022) to test the long-term consistency of the recon-
struction.

2.3 Remote-sensing-derived sea surface pCO2 data

The gridded (0.05◦× 0.05◦) RS-derived pCO2 data cover al-
most the entire SCS (5–25◦ N, 109–122◦ E) and show ma-

Figure 2. Cruise tracks of the observations conducted in the South
China Sea in each season from 2000 to 2020. (a) Winter, (b) spring,
(c) summer, and (d) fall are shown. The data collected before Febru-
ary 2018 are from Li et al. (2020), except for those collected in
July 2015 and June 2017.

jor variations in sea surface pCO2 at the basin scale (Wang
et al., 2021; Yu et al., 2022). Further details of the RS-
derived pCO2 data can be found on the SatCO2 platform
(http://www.SatCO2.com).

A grid-to-grid comparison was undertaken between the
RS-derived pCO2 and the in situ pCO2 data (Table 2). The
differences in between range from 35 to 120 µatm in the near-
shore area. The largest biases occur in summer when the
RMSE is up to 29.95 µatm (Table 2). Relatively large dis-
crepancies may reflect the limitations of the current algo-
rithm (MeSAA and nonlinear regression), which only con-
siders biological processes and the turbidity induced by the
Pearl River discharge (characterized by Chl a and the remote
sensing reflectance at 555 nm (Rrs555) and does not take into
account the riverine dissolved inorganic carbon and the input
of other substances that may affect pCO2 (Bai et al., 2015;
Yu et al., 2022; Wang et al., 2021).

To remove the influence of the bias in RS-derived pCO2
data on our reconstructed results, this study used the EOF
method to compute the spatial patterns of the RS-derived
pCO2 data as input data instead of directly using the RS-
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Figure 3. Seasonal and monthly sea surface pCO2 fields in the South China Sea. (a) Winter. (b) December, (c) January. (d) February.
(e) Spring. (f) March. (g) April. (h) May. (i) Summer. (j) June. (k) July. (l) August. (m) Fall. (n) September. (o) October. (p) November. The
data sources are given in Table 1.

derived pCO2 data. Moreover, using EOF modes of the RS-
derived pCO2 as input data in the reconstructed model can
provide spatial constraints on the pCO2 reconstruction.

2.4 Other data

The RS-derived SST data produced by MODIS (Moderate
Resolution Imaging Spectroradiometer; https://oceancolor.
gsfc.nasa.gov/, last access: 8 October 2022) are adopted
in our reconstruction. The uncertainty in this dataset in
the SCS is ∼ 0.27◦ (Qin et al., 2014). For sea sur-
face salinity (SSS) data, Wang et al. (2022) found rela-

tively large differences between different open-source SSS
databases (i.e., multi-satellite fusion data from https://
podaac.jpl.nasa.gov/, last access: 8 October 2022; model data
from https://climatedataguide.ucar.edu/, last access: 8 Oc-
tober 2022; multidimensional covariance model data from
https://resources.marine.copernicus.eu/, last access: 8 Octo-
ber 2022) and the in situ SSS data. Thus, Wang et al. (2022)
produced an RS-derived SSS database using machine learn-
ing methods based on the MODIS Aqua remote sensing data.
The bias between the RS-derived SSS (Wang et al., 2022)
and in situ data was near zero (mean absolute error, MAE,
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Table 1. Summary of seasonal in situ data of sea surface pCO2 in the South China Sea for the period 2003–2020 used in this study.

Season Spring Summer

Cruise time

March April May June July August

Mar 2004 Apr 2005 May 2004 Jun 2006 Jul 2004 Aug 2007
Apr 2008 May 2011 Jun 2016 Jul 2005 Aug 2008
Apr 2009 May 2014 Jun 2017∗ Jul 2007 Aug 2019∗

Apr 2012 May 2020∗ Jun 2019∗ Jul 2008
Apr 2020∗ Jun 2020∗ Jul 2009

Jul 2012
Jul 2015∗

Jul 2019∗

Season Fall Winter

Cruise time

September October November December January February

Sep 2004 Oct 2003 Nov 2006 Dec 2006 Jan 2009 Feb 2004
Sep 2007 Oct 2006 Nov 2010 Jan 2010 Feb 2006
Sep 2008 Jan 2018
Sep 2020*

Data sources
Li et al. (2020)
∗ This study

Table 2. Biases between the seasonal remote-sensing-derived pCO2 data and in situ pCO2 data and between the reconstructed and the in
situ pCO2 data (µatm). The remote-sensing-derived pCO2 data during 2003–2019 are from http://www.SatCO2.com, and the source of the
in situ data can be found in Table 1. The reconstructed pCO2 data are from Sect. 3; all data were gridded into 0.05◦× 0.05◦; the slash (/)
means no data). MAE is the mean absolute error. RMSE is the root mean square error. R2 is the coefficient of determination. MAPE is the
mean absolute percentage error.

RS-derived Training Testing Testing Testing
pCO2 data data data I data II data III

Spring

MAE 9.00 2.44 4.76 1.68 /
RMSE 12.70 3.47 7.43 2.26 /
R2 / 0.98 0.92 / /
MAPE / 0.01 0.01 / /

Summer

MAE 16.75 2.48 8.46 5.73 /
RMSE 29.95 3.54 14.69 15.18 /
R2 / 0.99 0.89 / /
MAPE / 0.01 0.02 / /

Fall

MAE 9.93 2.41 4.90 7.133 /
RMSE 13.08 3.39 6.85 8.94 /
R2 / 0.98 0.92 / /
MAPE / 0.01 0.01 / /

Winter

MAE 9.25 2.18 5.61 11.41 /
RMSE 14.26 3.14 8.82 12.63 /
R2 / 0.98 0.89 / /
MAPE / 0.01 0.01 / /

Annual

MAE 11.95 2.41 6.30 5.27 6.19
RMSE 20.66 3.43 10.79 11.18 8.26
R2 / 0.99 0.91 / /
MAPE / 0.01 0.01 / /
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of ∼ 0.25). Next, we used Chl a (from https://oceancolor.
gsfc.nasa.gov/, last access: 8 October 2022) as an indica-
tor of biological influence, which has a bias of ∼ 0.35 on
a log scale and ∼ 115 % in the SCS (Zhang et al., 2006). At-
mospheric pCO2 also influences sea surface pCO2 through
air–sea CO2 exchange. We chose the atmospheric CO2 mole
fraction (xCO2) data from the monthly mean CO2 concen-
trations measured at the Mauna Loa Observatory, Hawaii
(https://gml.noaa.gov/, last access: 8 October 2022), and then
calculated the atmospheric pCO2 values from xCO2 using
the method in Li et al. (2020).

3 Methods

The pCO2 reconstruction procedure is shown in Fig. 4. It
includes (1) data processing and (2) model training and test-
ing. For the former, we first gridded the in situ data and RS-
derived pCO2 data into 0.05◦× 0.05◦ boxes with a monthly
temporal resolution. Second, we filled missing pCO2 mea-
surements with the RS-derived pCO2 data, according to Fay
et al. (2021; see more details in Sect. 3.1). We then used EOF
to ignore any biases in the RS-derived pCO2 dataset itself
or from the pCO2 filling method. Third, the gridded in situ
pCO2 data and their corresponding RS-derived data were di-
vided into a training set (90 %) and a testing set (10 %) to
calculate the pCO2 retrieval model. To ensure that the model
had sufficient training samples in the coastal area, we divided
the entire SCS into two regions along the 200 m isobath (as
shown in Fig. 5). The data from these two regions were di-
vided into training and testing sets with the same ratios listed
above (9 : 1) and then combined to obtain the final training
and testing sets. Note that all the data used in the machine
learning have been interpolated on the same grid.

For model training and testing, we chose a relatively
reliable algorithm to undertake the pCO2 reconstruc-
tion. Next, we determined the optimal range of the
parameters using hyperparameter methods (code from
https://github.com/optuna/, last access: 8 October 2022)
for the training set. The final optimal parameter values
were then determined using the K-fold and cross-validation
methods (code from https://github.com/suryanktiwari/
Linear-Regression-and-K-fold-cross-validation, last access:
8 October 2022) for the training set. These optimal parame-
ters were applied to the chosen algorithm. Finally, the testing
set was used to verify the accuracy of the pCO2 retrieval
algorithm produced by the training set, and some indicators
of the model’s accuracy were calculated. More detailed
methods employed in the present study are described below.

3.1 Remote sensing data filling

As mentioned in the SatCO2 platform (http://www.SatCO2.
com), RS-derived pCO2 datasets have some missing values.
Thus, we used the pCO2 data-filling method, suggested by
Fay et al. (2021), to obtain the missing data points. First, a

scaling factor for a filled month was calculated according to
Eq. (1):

sfpCO2 =meanx,y

(
pCOens

2

pCOclim
2

)
, (1)

where sfpCO2 is the scaling factor, pCOens
2 is the monthly RS-

derived pCO2 data, and pCOclim
2 is the monthly climatology

RS-derived pCO2 data. x and y indicate that we took the
area-weighted average over longitude (x) and latitude (y) to
produce the monthly sfpCO2 value. Then, the filled portion of
the data can be calculated from the pCOclim

2 data multiplied
by the sfpCO2 value (see Fay et al., 2021, for details of this
method).

Briefly, this filling method scales the climatological
monthly pCO2 field values to fill in the missing measure-
ments. Therefore, although specific values may be biased, the
interpolated measurements still retain the main spatial distri-
bution pattern of the filled months.

3.2 Feature engineering and selection

As mentioned above, the pCO2 data-filling method may bias
some of the actual values. To avoid the influence of such bi-
ases on the reconstructed results, instead of directly using
the RS-derived pCO2 data as features in our reconstructed
model, we used the EOF method to obtain the main spa-
tiotemporal distribution patterns of the RS-derived pCO2
data as features in our reconstructed model. The EOF re-
flects the spatial commonality of variables shown in the time
series, and thus it is widely used to calculate spatial pat-
terns of climate variability (e.g., Levitus et al., 2005; Dye
et al., 2020; McMonigal and Larson, 2022). Typically, the
spatial commonality of variables (EOF modes) is found by
computing the eigenvalues and eigenvectors of a spatially
weighted anomaly covariance matrix of a field. Each EOF
mode’s corresponding variance represents its degree of inter-
pretation of the spatial pattern of a variable. For each of the
12 months, the cumulative variance contribution of the first
eight EOF values was consistently > 90 %, indicating that it
could explain the main pCO2 spatial characteristics during
each month; we therefore selected them as features.

The features selected in our reconstructed model can be
divided into two main categories. In the first category, the
features are related to the underlying physicochemical mech-
anisms controlling the pCO2 distribution; for example, SST
exerts a primary control on the seasonal variations in surface
water pCO2 in the northern SCS (Zhai et al., 2005; Chen et
al., 2007; Li et al., 2020). In the second category, they pro-
vide spatiotemporal information for the pCO2 reconstruc-
tion. Previous studies (Landschützer et al., 2014; Laruelle
et al., 2017; Denvil-Sommer et al., 2019) have shown that
Chl a plays a critical role in fitting the influence of biologi-
cal activity to pCO2, especially in the northern SCS (Land-
schützer et al., 2014; Laruelle et al., 2017; Denvil-Sommer
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Figure 4. Procedure for the reconstruction of surface water pCO2 using machine learning. RS-derived data are remote-sensing-derived data.
RMSE is the root mean square error. MAPE is the mean absolute percentage error. R2 is the coefficient of determination. MAE is the mean
absolute error.

et al., 2019). Sutton et al. (2017) suggest that increasing at-
mospheric pCO2 controls the overall increase in seawater
pCO2. For the features that provide spatiotemporal informa-
tion for the pCO2 reconstruction, in the present study we
selected the first eight EOF values of pCO2 as the main spa-
tial distribution feature and the monthly information of the in
situ datasets as the temporal feature.

3.3 Algorithm selection

Ensemble learning, which is the process of training multiple
machine learning models and combining their output to im-
prove the reliability and accuracy of predictions, is one of
the most powerful machine learning techniques (e.g., Zhan
et al., 2022; Cheng et al., 2020). In other words, several
different models are used as the basis to develop an op-
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Figure 5. Spatial distributions of training samples (a) and testing samples (b). The dashed black line shows the 200 m isobath.

timal predictive model. There are two main ways to em-
ploy ensemble learning, namely bagging (to decrease the
model’s variance) or boosting (to decrease the model’s bias).
The random forest algorithm (code from https://scikit-learn.
org/stable/, last access: 6 May 2022) is an extension of
the bagging method, as it utilizes both bagging and fea-
ture randomness to create an uncorrelated forest of deci-
sion trees. The light gradient-boosting machine (LightGBM;
code from https://github.com/microsoft/LightGBM/, last ac-
cess: 6 May 2022) is a gradient-boosting framework that uses
tree-based learning algorithms. LightGBM can be used for
regression, classification, and other machine learning tasks; it
exhibits rapid, high-performance as a machine learning algo-
rithm. CatBoost (code from https://github.com/catboost/, last
access: 6 May 2022) is a gradient-boosting algorithm which
improves prediction accuracy by adjusting weights according
to the data distribution and by incorporating prior knowledge
about the dataset. This can help to reduce overfitting and im-
prove general performance.

From the above options, we chose three ensemble learning
algorithms as the machine-learning-based regression portion
and multilinear regression methods (Wang et al., 2021) as
the linear regression portion. We then used the K-fold and
cross-validation methods to verify the applicability of dif-
ferent regression algorithms in the pCO2 reconstruction for
seasonal training data. The results show that, in summer, the
CatBoost algorithm yields the best degree of accuracy, with
an RMSE of 16 µatm (Table 3). In contrast, the RMSE of
LightGBM was 27 µatm and that of random forest (RF) was

26 µatm. The RMSE was nearly 20 µatm, using the linear re-
gression algorithm employed by Wang et al. (2021). Thus,
CatBoost appears to provide a reliable algorithm for recon-
structing pCO2. In the other three seasons, however, using
different algorithms resulted in minor differences (∼ 2 µatm
in RMSE).

3.4 Evaluation metrics

It is necessary to evaluate the accuracy of any model based
on certain error metrics before applying it to specific scenar-
ios. Common model evaluation metrics include RMSE, mean
absolute percentage error (MAPE), R2 (coefficient of deter-
mination), and MAE.

The mean squared error (MSE) is the standard deviation
of the residuals (prediction error), and the residuals are the
distances between the fitted line and the data points (i.e.,
the residuals show the degree of concentration of the recon-
structed data around the regression line). In regression analy-
sis, RMSE is commonly used to verify experimental results.
To assess bias, the RMSE needs to combine the magnitude
of the model data and is calculated as follows:

RMSE=

√√√√1
n

n∑
i=1

(yi − yri)2, (2)

where y stands for the in situ data, yr represents the recon-
structed data, and n is the number of data points.

The MAPE is a statistical measure used to define the accu-
racy of a machine learning algorithm on a particular dataset.
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Table 3. RMSEs associated with different algorithms in the four seasons.

Season Random forest LightGBM CatBoost Multilinear regression (Wang et al., 2021)

Spring 10.65 µatm 9.52 µatm 8.17 µatm NaN∗

Summer 26.53 µatm 27.83 µatm 16.15 µatm 20.13 µatm
Fall 10.34 µatm 11.56 µatm 10.35 µatm NaN
Winter 12.48 µatm 12.75 µatm 11.52 µatm NaN

∗ NaN stands for missing values.

It is commonly used because, compared to other metrics, it
uses a percentage to measure the magnitude of the bias and
is easy to understand and interpret; the lower the value of the
MAPE, the better a model is at forecasting. MAPE is calcu-
lated as follows:

MAPE=
1
n

n∑
i=1

|yi − yri |

|yi |
. (3)

The regression error metric, the coefficient of determination
(R2), can describe the performance of a model by evaluat-
ing the accuracy and efficiency of the modeled results; i.e., it
indicates the magnitude of the dependent variable, as calcu-
lated by the regression model, that can be explained by the
independent variable. It is calculated as follows:

R2
= 1−

n∑
i=1

(yi − yi)2

n∑
i=1

(yi − yri)2
. (4)

MAE is the average absolute difference between the in situ
data (true values) and the model output (predicted values).
The sign of these differences is ignored so that cancelations
between positive and negative values do not occur. It is cal-
culated as follows:

MAE=
1
n

∑n

i
|yi − yri |. (5)

3.5 Uncertainty

In previous studies, RMSE and MAE have primarily been
used to represent the uncertainties in reconstructed datasets.
However, this expression of uncertainty ignores the sensitiv-
ity of the reconstructed model to the features; i.e., the biases
that the features themselves pass to the reconstructed model
are ignored. Moreover, it is clearly unreasonable to use a sin-
gle RMSE or MAE value to represent the entire region be-
cause the spatial bias pattern in the coastal region clearly dif-
fers from that in the basin.

Thus, here we present a novel method for calculating un-
certainty, as shown below:

Uncertainty

=MAX
([ n∑

i=1,j=1,k=1

|OR_Monthly_Data(i,j,k)−Obs_Monthly_Data(i,j,k)|
Obs_Monthly_Data(i,j,k)

num(i)+ num(j )
, . . .,

·

n∑
i=1,j=1,k=n

|OR_Monthly_Data(i,j,k)−Obs_Monthly_Data(i,j,k)|
Obs_Monthly_Data(i,j,k)

num(i)+ num(j )

])
· 100% ·pCO2_recon+

(
∂pCO2

∂Feature

)
dFeature . (6)

Equation (6) includes two terms. The first term is the con-
servative bias between the reconstructed pCO2 fields and the
in situ data, and the second is the sum over sensitivity of
the reconstructed model to the features. For the first term in
Eq. (6), k stands for the kth month, OR_Monthly_Data(ijk)
stands for the kth monthly reconstructed data at longitude
(i) and latitude (j ), and Obs_Monthly_Data(ijk) stands for
the kth monthly in situ data at longitude (i) and latitude (j ).
Therefore, MAX in the first term stands for the maximum of
the k monthly bias ratios. And pCO2_recon stands for the re-
constructed pCO2 data. In the second term, dFeature stands
for the bias of the features. We conducted a sensitivity analy-
sis using a chain rule to evaluate the influence of these biases
in the features on pCO2. Then we estimated pCO2 changes
due to the variabilities in these features by constraining these
features based on our model and computed ∂pCO2

∂Feature . For ex-
ample, for ∂pCO2

∂SST , we only changed the value of SST and kept
the values of the other features constant to calculate the effect
of each additional unit of SST on the simulated pCO2.

4 Results and discussion

4.1 Results

The reconstructed pCO2 fields show relatively low values
in the northern coastal region of the study area and gener-
ally high values in the middle and southern basins (Fig. 6).
The continuous changes in the spatiotemporal distribution
can be found in the reconstruction results (Fig. 6). The recon-
structed pCO2 fields show a trend of slow but sustained in-
creases from 2003 to 2020. Spatial patterns of pCO2 change
between 2003 and 2020, such that the coastal portion of
the northern SCS shows relatively complex variability from
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Figure 6. Reconstructed seasonal and annual pCO2 fields in the South China Sea from 2003 to 2020 (a, 2003–2011; b, 2012–2020).

multiple controlling factors, such as coastal upwelling, river
plumes, biological activity, etc. However, pCO2 values in the
middle and southern basins are relatively homogeneous, as
they are mainly controlled by atmospheric pCO2 forcing and
SST. Temporal changes in pCO2 between 2003 and 2020 are
relatively large (∼ 44 µatm) in summer and relatively small
(∼ 33 µatm) in winter.

4.2 Model validation

Figure 7 compares the monthly reconstructed and in situ data.
For the training dataset, the reconstructed pCO2 fields of the
four seasons fit the in situ data well (Fig. 7), with an average
RMSE of 3.43 µatm and an average MAE of 2.14 µatm (Ta-
ble 2). For the testing sets, although there are some outliers,
most of the reconstructed pCO2 data are consistent with the
in situ data, with RMSE averaging 10.79 µatm and MAE av-
eraging 6.30 µatm. The R2 of the testing set is ca. 0.91. In
terms of MAPE, the accuracies of the four seasonal mod-
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Figure 7. Comparisons between the monthly reconstructed and in situ pCO2 values for the testing set. The monthly results are grouped into
the four seasons, including (a) winter, in December, January, and February, (b) spring, in March, April, and May, (c) summer, in June, July,
and August, and (d) fall, in September, October, and November.

els are all around 99 % (Table 2), with the highest value for
spring data and the lowest value for summer data. The rel-
atively large bias (14.67 µatm) in the summer may be the
influence of relatively complex regional processes, such as
river plumes and upwelling. The four evaluation metrics in-
dicate that our reconstructed pCO2 field is highly accurate in
simulating both the training and testing sets.

The distributions of the biases between the reconstructed
fields and the in situ data for both the training and testing
datasets can be found in Fig. 8. In terms of the temporal pat-
tern, the larger biases were more concentrated in the sum-
mer. For the spatial pattern, the biases in the northern coastal
area are much greater than those in the basin. However, 95 %
of the biases are <±10 µatm; therefore, our reconstructed
dataset exhibits relatively high accuracy.

Figure 9 shows the bias between our reconstructed fields
and the four independent in situ datasets corresponding to
the four seasons. This validation can verify the accuracy
of the retrieval algorithm for months without observations,
namely the applicability of the retrieval algorithm extrapo-
lation. This comparison shows that the retrieval algorithm is
relatively accurate in the basin, with a near-zero bias (MAE
of ∼ 8 µatm; Fig. 9a). The largest bias occurs in the Pearl
River plume area in summer (∼ 35 µatm). The retrieval al-
gorithm also has a high accuracy for pCO2 spatial variabil-
ity, except in the Pearl River plume area in summer (22–
20◦ N; Fig. 9b–e). The effect of the Pearl River plume on
the pCO2 spatial distribution in our retrieval algorithm is

smaller than that shown by the in situ data. This is because,
at around the survey time (24–28 August 2019), a large
amount of precipitation (∼ 30 mm d−1; https://psl.noaa.gov/
data/gridded/data.ncep.reanalysis2.surface.html, last access:
8 October 2022) occurred around the Pearl River estuary re-
gion (24–20◦ N), which led to the intensification of the Pearl
River plume. The plume has relatively low pCO2 values that
eventually decreased the observed values along the coast.
However, the monthly average runoff of the Pearl River dur-
ing that month (August 2019; http://www.pearlwater.gov.cn/,
last access: 8 October 2022; see the Pearl River plume in-
dex in Wang et al., 2022) was low, indicating that our re-
trieval algorithm is still highly reliable from the perspective
of monthly averages. Thus, the inconsistencies between the
reconstructed (monthly average) and the in situ datasets are
mainly due to the differences in the timescales of the remote
sensing and the in situ data. The reconstructed data in this
study were determined on a monthly scale, while the tempo-
ral resolution of the in situ data were on the order of hours.
It is clear that relatively pronounced short-term changes in
pCO2, such as the diurnal variability caused by short-term
heavy precipitation, cannot be reflected in the reconstructed
data.

Dai et al. (2022) produced a time series of in situ data from
2003 to 2019 at the SEATs station, which we used here to
validate the accuracy of the long-term trends of our model
data (results shown in Fig. 10). The long-term trend of re-
constructed pCO2 data at the SEATs station is largely con-
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Figure 8. Differences between the reconstructed and in situ pCO2 data, both seasonally and monthly, for the testing set, including (a) winter,
(b) December, (c) January, (d) February, (e) spring, (f) March, (g) April, (h) May, (i) summer, (j) June, (k) July, (l) August, (m) fall,
(n) September, (o) October, and (p) November).

sistent with the in situ data, with differences mainly found
before 2005. Thus, the long-term trend produced in our re-
constructed model is also highly reliable.

4.3 Uncertainties

As shown in Table 2, our reconstructed data have a high de-
gree of accuracy, with an RMSE of ∼ 10 µatm and MAE of

∼ 6 µatm. According to Eq. (6), the bias of RS-derived pCO2
data used in the second term of Eq. (6) is ∼ 21 µatm (Ta-
ble 2), the bias of SST is ∼ 0.27 ◦C (Qin et al., 2014), the
bias of SSS is ∼ 0.33 (Wang et al., 2022), and the bias of
Chl a is∼ 115 % (Zhang et al., 2006). We then estimated the
pCO2 changes due to the variations in these features by con-
straining these features based on our model and computed
∂pCO2
∂Feature .
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Figure 9. Difference between the reconstructed pCO2 data and four independently tested in situ datasets during the four seasons. In panel (a),
the numbers 1–4 represent September 2018 (b), December 2018 (c), August 2019 (d), and April 2020 (e), respectively.

Figure 10. Comparison of the reconstructed pCO2 with in situ data
at the Southeast Asia Time-series Study (SEATs) station (116◦ E,
18◦ N). The in situ data are from Dai et al. (2022), which were cal-
culated from dissolved inorganic carbon and total alkalinity values.

The overall uncertainty in the reconstructed dataset is
greater in the coastal area (∼ 13 µatm) than in the basin
(∼ 10 µatm; Fig. 11a), and this spatial pattern is mainly deter-
mined by the second term in Eq. (6). The spatial distribution
of the first term in Eq. (6) (Fig. 11b), calculated from a max
bias ratio, is consistent with that of pCO2 (Fig. 11b). The
second term in Eq. (6) (Fig. 11c) is calculated from the prop-
agation of the bias from each variable (Fig. 11c). The Chl a

bias (Fig. 11f) shows that it has the greatest effect on the re-
construction, among all the features (Fig. 11f). Although the
bias of the RS-derived pCO2 data is relatively large, the final
influence that it has on the results from the retrieval algorithm
is negligible due to the use of the EOF method (Fig. 11g).

4.4 Spatial and temporal pCO2 features

The climatological monthly reconstructed pCO2 fields are
shown in Fig. 12. The highest values occur in May and June,
and the lowest values occur in January. In winter, pCO2 first
decreases in December and then increases after January; the
pCO2 value is ca. 325 µatm in the northern coastal area and
ca. 350 µatm in the basin. In spring, pCO2 gradually in-
creases from the basin to the northern coastal area, and the
high pCO2 values in the central basin gradually expand out-
ward starting in April. In summer, pCO2 gradually declines,
starting in June. In fall, pCO2 increases from north to south,
and the southern region shows consistently high values.

To better show specific regions in the northern coastal
area, we magnified the reconstructed pCO2 fields at locations
north of 18◦ N (Fig. 13). The reconstructed pCO2 fields suc-
cessfully reflect the influence of the meso–microscale pro-
cesses on pCO2 in this northern coastal area of the SCS. For
example, in winter, the relatively low pCO2 values, which
last into early spring, are mainly controlled by the low SST
and the high pCO2 around Luzon Strait affected by winter
upwelling. In summer, the reconstructed pCO2 field shows
that the influence of the Pearl River plume on pCO2 is the
strongest in July and lasts until September; it also effectively
shows the influence of coastal upwelling in the northeastern
shelf (∼ 23◦ N, 117◦ E). Thus, our reconstructed pCO2 fields
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Figure 11. Uncertainties in the reconstructed pCO2 fields. (a) Total uncertainty in Eq. (6). (b) The first term of Eq. (6). (c) The second term
of Eq. (6). (d) ( ∂pCO2

∂SSS )dSSS in the second term of Eq. (6). (e) ( ∂pCO2
∂SST )dSST in the second term of Eq. (6). (f) ( ∂pCO2

∂Chl a
)dChl a in the second

term of Eq. (6). (g) ( ∂pCO2
∂RS_derived_pCO2

)dRS_derived_pCO2 in the second term of Eq. (6).

clearly reflect the spatial pattern of the in situ pCO2 (Fig. 3),
which are generally consistent with previously reported pat-
terns (Li et al., 2020; Zhai et al., 2013; Gan et al., 2010).

We divided SCS into five subregions, according to Li et
al. (2020). In Fig.14, Subregion_A stands for the northern
coastal area of the SCS, Subregion_B stands for the slope
area of the northern SCS, Subregion_C stands for the SCS
basin, Subregion_D stands for the region west of the Luzon
Strait, and Subregion_E stands for the slope and basin area
of the western SCS. All_region indicates the whole region
containing the five subregions described above. We then cal-
culated the deseasonalized long-term trend of spatially av-
eraged monthly data for each subregion, and the results are
shown in Fig. 14 and Table 3. This deseasonalized trend is
consistent with that of the in situ data, and its uncertainty is
on the 95 % confidence interval (much lower than that shown

by the in situ data). We can thus also infer that the long-term
trend of our reconstructed data shows high reliability in all
subregions and that our data can serve as an important basis
for predicting future changes in pCO2 in the SCS.

In Fig. 14a–e, we found that the sea surface pCO2 of the
entire SCS is slightly higher than the atmospheric pCO2, in-
dicating that the SCS is a weak source of atmospheric CO2.
This conclusion is consistent with previous studies (e.g., Li
et al., 2020). Moreover, compared to the rate of atmospheric
CO2 increase (∼ 2.2 µatmyr−1), for Subregion_A, the pCO2
trend is much slower than that of atmospheric pCO2, and the
spatially averaged monthly mean pCO2 is lower than the at-
mospheric pCO2. Thus, carbon accumulation in this region
is expected to increase in the future. For Subregion_C and
Subregion_E, the spatially averaged monthly mean pCO2 is
higher than the atmospheric pCO2; thus, these two regions
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Figure 12. Long-term (2003–2020) seasonal and monthly averaged pCO2 field (µatm). (a) Winter. (b) December. (c) January. (d) February.
(e) Spring. (f) March. (g) April. (h) May. (i) Summer. (j) June. (k) July. (l) August. (m) Fall. (n) September. (o) October. (p) November.

Table 4. Deseasonalized long-term trend of the spatially averaged monthly pCO2 data for each subregion of the South China Sea (µatm yr−1).

All_region Subregion_A Subregion_B Subregion_C Subregion_D Subregion_E

Reconstructed pCO2 2.12± 0.17 1.82± 0.14 2.23± 0.12 2.17± 0.12 2.20± 0.13 2.16± 0.13
In situ pCO2 2.10± 0.79 1.80± 0.86 1.73± 0.84 1.81± 0.85 1.41± 1.16 2.13± 1.10

will still provide a weak source of atmospheric CO2 in the
future. Finally, whether Subregion_B and Subregion_D act
as a source or sink of the atmospheric CO2 is influenced by
seasonal changes and physical processes. Subregion_B can
be a zone of significant sink of atmospheric CO2, as demon-
strated by its low sea surface pCO2 when the Pearl River

plume spreads more widely in summer. In contrast, in winter,
when the Kuroshio intrusion is strong, both Subregion_B and
Subregion_D have high sea surface pCO2, indicating both
subregions are sources of atmospheric CO2.
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Figure 13. Long-term (2003–2020) seasonal and monthly averaged pCO2 field in the region north of 18◦ N (µatm). (a) Winter. (b) December.
(c) January. (d) February. (e) Spring. (f) March. (g) April. (h) May. (i) Summer. (j) June. (k) July. (l) August. (m) Fall. (n) September.
(o) October. (p) November.

Figure 14. Time series of spatially averaged monthly pCO2 data in five subregions (a–e) and the entire South China Sea (f) under study.
The subregions are shown in panel (g). The lines indicate the deseasonalized long-term trend of the spatially averaged monthly pCO2 data
for each subregion, with the slopes shown in Table 3. The deseasonalized method can be found in Landschützer et al. (2016).
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5 Data availability

The data (the reconstructed pCO2 data, the in situ
pCO2 data before 2018 (0.5◦× 0.5◦), and the remote-
sensing-derived CO2 data) for this paper are available at
https://doi.org/10.57760/sciencedb.02050 (Wang and Dai,
2022).

6 Conclusions

Based on the machine learning method, we reconstructed the
sea surface pCO2 fields in the SCS with an 0.05◦× 0.05◦

spatial resolution over the last 2 decades (2003–2020) by cal-
culating the statistical relationship between the in situ pCO2
data and RS-derived data. The input data we used in ma-
chine learning include RS-derived data (sea surface salinity,
sea surface temperature, and chlorophyll), the spatial patterns
of pCO2 calculated by EOF, atmospheric CO2, and time la-
bels (month). The machine learning method (CatBoost) used
in this study was facilitated by the EOF method, which pro-
vides spatial constraints for the data reconstruction. In addi-
tion to the typical machine learning performance metrics, we
present a novel method for uncertainty calculation that incor-
porates the bias of both the reconstruction and the sensitivity
of reconstructed models to its features. This method effec-
tively shows the spatiotemporal patterns of bias and makes
up for the spatial representation of the typical performance
metrics.

We validate our reconstruction with three independent
testing datasets, and the results show that the bias between
our reconstruction and in situ pCO2 data in the SCS is rela-
tively small (about 10 µatm). Our reconstruction successfully
captures the main features of the spatial and temporal pat-
terns of pCO2 in the SCS, indicating that we can use these
reconstructed data to further analyze the effect of meso–
microscale processes (e.g., the Pearl River plume and CCC)
on sea surface pCO2 in the SCS.

We divided the SCS into five subregions, separately cal-
culated the deseasonalized long-term trend of pCO2 in each
subregion, and compared them with the long-term trend of
atmospheric pCO2. Our results show that the reconstructed
data are consistent with those of in situ data. Moreover, the
strength of the CO2 sink in the northern SCS shows an in-
creasing trend, whereas pCO2 trends in other subregions are
essentially the same as that of atmospheric pCO2.

This high spatiotemporal resolution of sea surface pCO2
data is helpful to clarify the controlling factors of pCO2
change in the SCS and may be useful to predict changes in
CO2 source or sink patterns in this system.
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