Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4569-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4569-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oil slicks in the Gulf of Guinea – 10 years of Envisat Advanced Synthetic Aperture Radar observations
Zhour Najoui
CORRESPONDING AUTHOR
VisioTerra, 14 rue Albert Einstein, Champs-sur-Marne, France
Nellya Amoussou
Laboratoire d'Océanographie et du
Climat: Expérimentations et Approches Numériques (LOCEAN), Sorbonne Université, 4 Place
Jussieu, Paris, France
Serge Riazanoff
VisioTerra, 14 rue Albert Einstein, Champs-sur-Marne, France
Institut Gaspard Monge (IGM), Université Gustave Eiffel, 5
boulevard Descartes, Champs sur Marne, France
Guillaume Aurel
VisioTerra, 14 rue Albert Einstein, Champs-sur-Marne, France
Frédéric Frappart
INRAE, ISPA, UMR 1391 INRAE/Bordeaux Sciences Agro, Villenave
d'Ornon, France
Related authors
No articles found.
Zanpin Xing, Xiaojun Li, Frédéric Frappart, Gabrielle De Lannoy, Thomas Jagdhuber, Jian Peng, Lei Fan, Hongliang Ma, Karthikeyan Lanka, Xiangzhuo Liu, Mengjia Wang, Lin Zhao, Yongqin Liu, and Jean-Pierre Wigneron
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-728, https://doi.org/10.5194/essd-2025-728, 2026
Preprint under review for ESSD
Short summary
Short summary
Satellite observations of Earth's land surface are important for tracking soil and vegetation water. We use data from the Soil Moisture and Ocean Salinity satellite to build a new product that cleans the raw microwave signal and yields more reliable estimates of soil moisture and vegetation water content. Tests against ground stations and other satellites show that the new record exceeds existing products and can support applications such as drought, freeze–thaw, and carbon monitoring.
Benjamin M. Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Frederic Frappart, Stephane Calmant, Omid Elmi, Ayan Santos Fleischmann, Melanie Becker, Mohammad J. Tourian, Rômulo A. Jucá Oliveira, and Sly Wongchuig
Earth Syst. Sci. Data, 15, 2957–2982, https://doi.org/10.5194/essd-15-2957-2023, https://doi.org/10.5194/essd-15-2957-2023, 2023
Short summary
Short summary
The surface water storage (SWS) in the Congo River basin (CB) remains unknown. In this study, the multi-satellite and hypsometric curve approaches are used to estimate SWS in the CB over 1992–2015. The results provide monthly SWS characterized by strong variability with an annual mean amplitude of ~101 ± 23 km3. The evaluation of SWS against independent datasets performed well. This SWS dataset contributes to the better understanding of the Congo basin’s surface hydrology using remote sensing.
P. Zeiger, F. Frappart, and J. Darrozes
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 93–100, https://doi.org/10.5194/isprs-annals-V-3-2022-93-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-93-2022, 2022
P. A. Strobl, C. Bielski, P. L. Guth, C. H. Grohmann, J.-P. Muller, C. López-Vázquez, D. B. Gesch, G. Amatulli, S. Riazanoff, and C. Carabajal
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 395–400, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, 2021
Cited articles
Adelana, S. and Adeosun, T.: Environmental pollution and remediation:
challenges and management of oil Spillage in the Nigerian coastal areas,
Am. J. Sci. Ind. Res., 2, 834–845,
https://doi.org/10.5251/ajsir.2011.2.6.834.845, 2011.
Albakjaji, M.: La pollution de la mer méditerranée par les
hydrocarbures liée au trafic maritime,
https://tel.archives-ouvertes.fr/tel-00598492/document (last access: 14 October 2022), 2010.
Alpers, W., Holt, B., and Zeng, K.: Oil spill detection by imaging radars:
Challenges and pitfalls, Remote Sens. Environ., 201, 133–147,
https://doi.org/10.1016/j.rse.2017.09.002, 2017.
Bagby, S. C., Reddy, C. M., Aeppli, C., Fisher, G. B., and Valentine, D. L.:
Persistence and biodegradation of oil at the ocean floor following
Deepwater Horizon, P. Natl. Acad. Sci. USA, 114, E9–E18,
https://doi.org/10.1073/pnas.1610110114, 2017.
Bassou, A.: Le Golfe de Guinée, Zone de Contrastes: Richesses et Vulnérabilités/The Gulf of Guinea, an Area of Contrasts: Wealth and Vulnerabilities, https://www.africaportal.org/publications/le-golfe-de-guinée-zone-de-contrastes-richesses-et-vulnérabilités-gulf-guinea-area-contrasts-wealth-and-vulnerabilities/ (last access: 17 October 2022), 2016.
Brekke, C. and Solberg, A. H. S.: Oil spill detection by satellite remote
sensing, Remote Sens. Environ., 95, 1–13,
https://doi.org/10.1016/j.rse.2004.11.015, 2005.
Brekke, C. and Solberg, A. H. S.: Classifiers and Confidence Estimation for
Oil Spill Detection in ENVISAT ASAR Images, IEEE Geosci. Remote S.,
5, 65–69, https://doi.org/10.1109/LGRS.2007.907174, 2008.
Caruso, M., Migliaccio, M., Hargrove, J., Garcia-Pineda, O., and Graber, H.:
Oil Spills and Slicks Imaged by Synthetic Aperture Radar, Oceanography, 26, 112–123,
https://doi.org/10.5670/oceanog.2013.34, 2013.
Chalghmi, H.: Etude de la pollution marine par les hydrocarbures et
caractérisation de leurs effets biochimiques et moléculaires sur la
palourde de Ruditapes sp, https://hal.archives-ouvertes.fr/tel-01583022 (last access: 14 October 2022),
2015.
Del Frate, F., Petrocchi, A., Lichtenegger, J., and Calabresi, G.: Neural
networks for oil spill detection using ERS-SAR data,
IEEE T. Geosci. Remote, 38, 2282–2287, https://doi.org/10.1109/36.868885, 2000.
Dong, Y., Liu, Y., Hu, C., MacDonald, I. R., and Lu, Y.: Chronic oiling in
global oceans, Science, 376, 1300–1304,
https://doi.org/10.1126/science.abm5940, 2022.
Espedal, H. A.: Satellite SAR oil spill detection using wind history
information, Int. J. Remote Sens., 20, 49–65,
https://doi.org/10.1080/014311699213596, 1999.
European Space Agency: Envisat ASAR Wide Swath Medium Resolution L1 Product, IPF version 6.03, https://doi.org/10.5270/EN1-4c37krv, 2021.
Favennec, J.-P., Copinschi, P., Cavatorta, T., and Esen, F.: Les nouveaux
enjeux pétroliers en Afrique, Polit. Afr., 89, 127–148,
https://doi.org/10.3917/polaf.089.0127, 2003.
Fingas, M. and Brown, C.: A Review of Oil Spill Remote Sensing, Sensors, 18,
91, https://doi.org/10.3390/s18010091, 2017.
Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., and Trivero, P.: Oil
spill detection using marine SAR images, Int. J. Remote Sens., 21,
3561–3566, https://doi.org/10.1080/014311600750037589, 2000.
Fuhrer, M.: Transport maritime de produits chimiques liquides et flottants:
etude experimentale du rejet accidentel sous-marin suite a un naufrage,
https://tel.archives-ouvertes.fr/tel-00849580 (last access: 14 October 2022), 2012.
Gade, M., Alpers, W., Hühnerfuss, H., Masuko, H., and Kobayashi, T.:
Imaging of biogenic and anthropogenic ocean surface films by the
multifrequency/multipolarization SIR-C/X-SAR, J. Geophys. Res.-Oceans, 103,
18851–18866, https://doi.org/10.1029/97JC01915, 1998.
Garcia-Pineda, O., MacDonald, I., and Zimmer, B.: Synthetic Aperture Radar
Image Processing using the Supervised Textural-Neural Network Classification
Algorithm, in: IGARSS 2008–2008 IEEE International Geoscience and Remote
Sensing Symposium, 7–11 July 2008, Boston, MA, USA, IV-1265–IV-1268,
https://doi.org/10.1109/IGARSS.2008.4779960, 2008.
Grimaud, J.-L., Rouby, D., Chardon, D., and Beauvais, A.: Cenozoic sediment
budget of West Africa and the Niger delta, Basin Res., 30, 169–186,
https://doi.org/10.1111/bre.12248, 2018.
Jackson, C. R., Apel, J. R., and United States (Eds.): Synthetic aperture
radar: marine user's manual, U.S. Dept. of Commerce: National Oceanic and
Atmospheric Administration, Washington, D.C., 464 pp., ISBN 10 016073214X, 2004.
Jafarzadeh, H., Mahdianpari, M., Homayouni, S., Mohammadimanesh, F., and
Dabboor, M.: Oil spill detection from Synthetic Aperture Radar Earth
observations: a meta-analysis and comprehensive review,
GIScience Remote
Sens., 58, 1022–1051, https://doi.org/10.1080/15481603.2021.1952542, 2021.
Jatiault, R., Dhont, D., Loncke, L., and Dubucq, D.: Monitoring of natural
oil seepage in the Lower Congo Basin using SAR observations, Remote Sens.
Environ., 191, 258–272, https://doi.org/10.1016/j.rse.2017.01.031, 2017.
Johannessen, O. M., Sandven, S., Jenkins, A. D., Durand, D., Pettersson, L.
H., Espedal, H., Evensen, G., and Hamre, T.: Satellite earth observation in
operational oceanography, Coast. Eng., 41, 155–176,
https://doi.org/10.1016/S0378-3839(00)00030-2, 2000.
Kanaa, T. F. N., Tonye, E., Mercier, G., Onana, V. P., Ngono, J. M., Frison,
P. L., Rudant, J. P., and Garello, R.: Detection of oil slick signatures in
SAR images by fusion of hysteresis thresholding responses, in: IGARSS 2003.
2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings
(IEEE Cat. No.03CH37477), Toulouse, France, 2750–2752,
https://doi.org/10.1109/IGARSS.2003.1294573, 2003.
Khanna, S., Santos, M., Ustin, S., Shapiro, K., Haverkamp, P., and Lay, M.:
Comparing the Potential of Multispectral and Hyperspectral Data for
Monitoring Oil Spill Impact, Sensors, 18, 558,
https://doi.org/10.3390/s18020558, 2018.
Kubat, M., Holte, R. C., and Matwin, S.: Machine Learning for the Detection
of Oil Spills in Satellite Radar Images, Mach. Learn., 30, 195–215,
https://doi.org/10.1023/A:1007452223027, 1998.
Langangen, Ø., Olsen, E., Stige, L. C., Ohlberger, J., Yaragina, N. A.,
Vikebø, F. B., Bogstad, B., Stenseth, N. C., and Hjermann, D. Ø.: The
effects of oil spills on marine fish: Implications of spatial variation in
natural mortality, Mar. Pollut. Bull., 119, 102–109,
https://doi.org/10.1016/j.marpolbul.2017.03.037, 2017.
Lawrence, S. R., Munday, S., and Bray, R.: Regional geology and geophysics
of the eastern Gulf of Guinea (Niger Delta to Rio Muni), Lead. Edge, 21,
1112–1117, https://doi.org/10.1190/1.1523752, 2002.
Leifer, I., Lehr, W. J., Simecek-Beatty, D., Bradley, E., Clark, R.,
Dennison, P., Hu, Y., Matheson, S., Jones, C. E., Holt, B., Reif, M.,
Roberts, D. A., Svejkovsky, J., Swayze, G., and Wozencraft, J.: State of the
art satellite and airborne marine oil spill remote sensing: Application to
the BP Deepwater Horizon oil spill, Remote Sens. Environ., 124, 185–209,
https://doi.org/10.1016/j.rse.2012.03.024, 2012.
Li, Y., Hu, C., Quigg, A., and Gao, H.: Potential influence of the Deepwater
Horizon oil spill on phytoplankton primary productivity in the northern Gulf
of Mexico, Environ. Res. Lett., 14, 094018,
https://doi.org/10.1088/1748-9326/ab3735, 2019.
Li, Z. and Johnson, W.: An Improved Method to Estimate the Probability of
Oil Spill Contact to Environmental Resources in the Gulf of Mexico, J. Mar.
Sci. Eng., 7, 41, https://doi.org/10.3390/jmse7020041, 2019.
Liu, A. K., Peng, C. Y., and Chang, S. Y.-S.: Wavelet analysis of satellite
images for coastal watch, IEEE J. Oceanic Eng., 22, 9–17,
https://doi.org/10.1109/48.557535, 1997.
Louet, J. and Bruzzi, S.: ENVISAT mission and system, in: IEEE 1999
International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat.
No.99CH36293), IEEE 1999 International Geoscience and Remote Sensing
Symposium, 28 June–2 July 1999, IGARSS'99, Hamburg, Germany, 1680–1682,
https://doi.org/10.1109/IGARSS.1999.772059, 1999.
MacDonald, I. R., Garcia-Pineda, O., Beet, A., Daneshgar Asl, S., Feng, L.,
Graettinger, G., French-McCay, D., Holmes, J., Hu, C., Huffer, F., Leifer,
I., Muller-Karger, F., Solow, A., Silva, M., and Swayze, G.: Natural and
unnatural oil slicks in the G ulf of M exico, J. Geophys.
Res.-Oceans, 120, 8364–8380, https://doi.org/10.1002/2015JC011062, 2015.
Marghany, M.: Automatic detection of oil spills in the Gulf of Mexico from
RADARSAT-2 SAR satellite data, Environ. Earth Sci., 74, 5935–5947,
https://doi.org/10.1007/s12665-015-4617-y, 2015.
Mercier, G. and Girard-Ardhuin, F.: Partially Supervised Oil-Slick Detection
by SAR Imagery Using Kernel Expansion, IEEE T. Geosci. Remote, 44,
2839–2846, https://doi.org/10.1109/TGRS.2006.881078, 2006.
Mfewou, A., Tchekote, H., and Lemouogue, J.: Frontières Et Dynamiques
Socio-Spatiales En Afrique: Une Analyse À Partir Des Frontières
Sud- Camerounaises, Eur. Sci. J. ESJ, 14, 285,
https://doi.org/10.19044/esj.2018.v14n5p285, 2018.
Mikidadu, M.: Oil Production and Economic Growth in Angola, Int. J. Energy
Econ. Policy, 8, 127–131, 2018.
Miranda, N., Rosich, B., Meadows, P. J., Haria, K., Small, D., Schubert, A.,
Lavalle, M., Collard, F., Johnsen, H., Monti-Guarnieri, A., and D'Aria, D.:
The Envisat ASAR mission: A look back at 10 years of operation, European Space Agency Special Publication: Paris, France,
https://doi.org/10.5167/UZH-96146, 2013.
NAE-NRC: Macondo Well Deepwater Horizon Blowout: Lessons for Improving
Offshore Drilling Safety, National Academies Press, Washington, D.C.,
https://doi.org/10.17226/13273, 2012.
Najoui, Z.: Prétraitement optimal des images radar et modélisation
des dérives de nappes d'hydrocarbures pour l'aide à la
photo-interprétation en exploration pétrolière et surveillance
environnementale,
https://pdfs.semanticscholar.org/92b2/e8e06b49d7f31c0847c694f4b4f3bea41222.pdf?_ga=2.235046721.1549874629.1594648502-969427726.1594648502 (last access: 14 October 2022), 2017.
Najoui, Z.: 100 geolocated oil spills in the Gulf of Guinea (1.0),
Zenodo, https://doi.org/10.5281/ZENODO.6907743, 2022a.
Najoui, Z.: Spatial distribution of oil slicks in the Gulf of Guinea between
2002 and 2012, Zenodo, https://doi.org/10.5281/ZENODO.6470470, 2022b.
Najoui, Z., Riazanoff, S., Deffontaines, B., and Xavier, J.-P.: A
Statistical Approach to Preprocess and Enhance C-Band SAR Images in Order to
Detect Automatically Marine Oil Slicks, IEEE T. Geosci. Remote,
56, 2554–2564, https://doi.org/10.1109/TGRS.2017.2760516, 2018a.
Najoui, Z., Riazanoff, S., Deffontaines, B., and Xavier, J.-P.: Estimated
location of the seafloor sources of marine natural oil seeps from sea
surface outbreaks: A new “source path procedure” applied to the northern
Gulf of Mexico, Mar. Petrol. Geol., 91, 190–201,
https://doi.org/10.1016/j.marpetgeo.2017.12.035, 2018b.
Ngodi, E.: Gestion des ressources pétrolières et développement en Afrique, Présentation à la 11ème Assemblée générale du CODESRIA (6–10 December 2005), Maputo, Mozambique, 2005.
Okafor-Yarwood, I.: The effects of oil pollution on the marine environment
in the Gulf of Guinea–the Bonga Oil Field example, Transnatl. Leg. Theory,
9, 254–271, https://doi.org/10.1080/20414005.2018.1562287, 2018.
Ovadia, J. S.: The petro-developmental state in Africa: making oil work in
Angola, Nigeria and the Gulf of Guinea, Hurst & Company, London, 246 pp.,
https://doi.org/10.1017/S0022278X16000926, 2016.
Pinkston, F. W. M. and Flemings, P. B.: Overpressure at the Macondo Well and
its impact on the Deepwater Horizon blowout, Sci. Rep., 9, 7047,
https://doi.org/10.1038/s41598-019-42496-0, 2019.
Reuscher, M. G., Baguley, J. G., and Montagna, P. A.: The expanded footprint
of the Deepwater Horizon oil spill in the Gulf of Mexico deep-sea benthos,
PLOS ONE, 15, e0235167, https://doi.org/10.1371/journal.pone.0235167, 2020.
Scheren, P. A., Ibe, A. C., Janssen, F. J., and Lemmens, A. M.:
Environmental pollution in the Gulf of Guinea – a regional approach, Mar.
Pollut. Bull., 44, 633–641, https://doi.org/10.1016/S0025-326X(01)00305-8,
2002.
Shu, Y., Li, J., Yousif, H., and Gomes, G.: Dark-spot detection from SAR
intensity imagery with spatial density thresholding for oil-spill
monitoring, Remote Sens. Environ., 114, 2026–2035,
https://doi.org/10.1016/j.rse.2010.04.009, 2010.
Solberg, A. H. S., Storvik, G., Solberg, R., and Volden, E.: Automatic
detection of oil spills in ERS SAR images, IEEE T. Geosci. Remote,
37, 1916–1924, https://doi.org/10.1109/36.774704, 1999.
Suresh, G., Melsheimer, C., Korber, J.-H., and Bohrmann, G.: Automatic
Estimation of Oil Seep Locations in Synthetic Aperture Radar Images, IEEE T. Geosci. Remote, 53, 4218–4230,
https://doi.org/10.1109/TGRS.2015.2393375, 2015.
Trivero, P. and Biamino, W.: Observing Marine Pollution with Synthetic
Aperture Radar, in: Geoscience and Remote Sensing New Achievements, edited
by: Imperatore, P. and Riccio, D., InTech, https://doi.org/10.5772/9106,
2010.
Tull, D. M.: Oil and Politics in the Gulf of Guinea by Ricardo Soares de Oliveira London: Hurst & Co/New York, Columbia University Press, 2007, 46, 692–694, https://doi.org/10.1017/S0022278X08003558, 2008.
Xu, L., Shafiee, M. J., Wong, A., Li, F., Wang, L., and Clausi, D.: Oil
spill candidate detection from SAR imagery using a thresholding-guided
stochastic fully-connected conditional random field model, in: 2015 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Boston, MA, USA, 79–86, https://doi.org/10.1109/CVPRW.2015.7301386, 2015.
Yaghmour, F., Els, J., Maio, E., Whittington-Jones, B., Samara, F., El
Sayed, Y., Ploeg, R., Alzaabi, A., Philip, S., Budd, J., and Mupandawana,
M.: Oil spill causes mass mortality of sea snakes in the Gulf of Oman, Sci.
Total Environ., 825, 154072,
https://doi.org/10.1016/j.scitotenv.2022.154072, 2022.
Zhang, Y., Li, Y., and Lin, H.: Oil-Spill Pollution Remote Sensing by
Synthetic Aperture Radar, in: Advanced Geoscience Remote Sensing, edited by:
Marghany, M., InTech, https://doi.org/10.5772/57477, 2014.
Short summary
Oil spills could have serious repercussions for both the marine environment and ecosystem. The Gulf of Guinea is a very active area with respect to maritime traffic as well as oil and gas exploitation (platforms). As a result, the region is subject to a large number of oil pollution events. This study aims to detect oil slicks in the Gulf of Guinea and analyse their spatial and temporal distribution using satellite data.
Oil spills could have serious repercussions for both the marine environment and ecosystem. The...
Altmetrics
Final-revised paper
Preprint