Data description paper 30 Nov 2021
Data description paper | 30 Nov 2021
INSTANCE – the Italian seismic dataset for machine learning
Alberto Michelini et al.
Related authors
Ilaria Oliveti, Licia Faenza, and Alberto Michelini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-372, https://doi.org/10.5194/essd-2020-372, 2020
Revised manuscript not accepted
Short summary
Short summary
This research makes available an updated and homogenous set of data related to Italian earthquakes for assessing parameters in terms of recording, event and station distributions as well as macroseismic intensity degrees. The work required the intersection of different sources and is expected to accelerate research progress in the field of hazard assessment, creation of near-real-time maps of ground motion and shaking intensity and calibration of relationships between earthquake parameters.
Alberto Michelini, Lucia Margheriti, Marco Cattaneo, Gianpaolo Cecere, Giuseppe D'Anna, Alberto Delladio, Milena Moretti, Stefano Pintore, Alessandro Amato, Alberto Basili, Andrea Bono, Paolo Casale, Peter Danecek, Martina Demartin, Licia Faenza, Valentino Lauciani, Alfonso Giovanni Mandiello, Alessandro Marchetti, Carlo Marcocci, Salvatore Mazza, Francesco Mariano Mele, Anna Nardi, Concetta Nostro, Maurizio Pignone, Matteo Quintiliani, Sandro Rao, Laura Scognamiglio, and Giulio Selvaggi
Adv. Geosci., 43, 31–38, https://doi.org/10.5194/adgeo-43-31-2016, https://doi.org/10.5194/adgeo-43-31-2016, 2016
Short summary
Short summary
The Istituto Nazionale di Geofisica e Vulcanologia runs the Italian National Seismic Network (about 400 stations, seismometers, accelerometers and GPS antennas) and other networks at national scale for monitoring earthquakes and tsunami as a part of the National Civil Protection System coordinated by the Italian Department of Civil Protection. This work summarises the acquisition and the distribution of the data and the analysis that are carried out for seismic surveillance and tsunami alert.
F. Bernardi, A. Lomax, A. Michelini, V. Lauciani, A. Piatanesi, and S. Lorito
Nat. Hazards Earth Syst. Sci., 15, 2019–2036, https://doi.org/10.5194/nhess-15-2019-2015, https://doi.org/10.5194/nhess-15-2019-2015, 2015
Ilaria Oliveti, Licia Faenza, and Alberto Michelini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-372, https://doi.org/10.5194/essd-2020-372, 2020
Revised manuscript not accepted
Short summary
Short summary
This research makes available an updated and homogenous set of data related to Italian earthquakes for assessing parameters in terms of recording, event and station distributions as well as macroseismic intensity degrees. The work required the intersection of different sources and is expected to accelerate research progress in the field of hazard assessment, creation of near-real-time maps of ground motion and shaking intensity and calibration of relationships between earthquake parameters.
Alberto Michelini, Lucia Margheriti, Marco Cattaneo, Gianpaolo Cecere, Giuseppe D'Anna, Alberto Delladio, Milena Moretti, Stefano Pintore, Alessandro Amato, Alberto Basili, Andrea Bono, Paolo Casale, Peter Danecek, Martina Demartin, Licia Faenza, Valentino Lauciani, Alfonso Giovanni Mandiello, Alessandro Marchetti, Carlo Marcocci, Salvatore Mazza, Francesco Mariano Mele, Anna Nardi, Concetta Nostro, Maurizio Pignone, Matteo Quintiliani, Sandro Rao, Laura Scognamiglio, and Giulio Selvaggi
Adv. Geosci., 43, 31–38, https://doi.org/10.5194/adgeo-43-31-2016, https://doi.org/10.5194/adgeo-43-31-2016, 2016
Short summary
Short summary
The Istituto Nazionale di Geofisica e Vulcanologia runs the Italian National Seismic Network (about 400 stations, seismometers, accelerometers and GPS antennas) and other networks at national scale for monitoring earthquakes and tsunami as a part of the National Civil Protection System coordinated by the Italian Department of Civil Protection. This work summarises the acquisition and the distribution of the data and the analysis that are carried out for seismic surveillance and tsunami alert.
A. Govoni, L. Margheriti, M. Moretti, V. Lauciani, G. Sensale, A. Bucci, and F. Criscuoli
Adv. Geosci., 41, 35–42, https://doi.org/10.5194/adgeo-41-35-2015, https://doi.org/10.5194/adgeo-41-35-2015, 2015
Short summary
Short summary
We designed, setup and tested on the field an 'easy to deploy' temporary UMTS real-time seismic network resolving or minimizing the main drawbacks: Internet security, signal and service availability, power consumption.Overall this solution has proved to be a very cost effective approach with real-time data acquisition rates usually greater than 97% and all the benefits that result from the fast integration of the temporary data in the National Network monitoring system and in the EIDA data bank.
F. Bernardi, A. Lomax, A. Michelini, V. Lauciani, A. Piatanesi, and S. Lorito
Nat. Hazards Earth Syst. Sci., 15, 2019–2036, https://doi.org/10.5194/nhess-15-2019-2015, https://doi.org/10.5194/nhess-15-2019-2015, 2015
Related subject area
Geosciences – Geophysics
Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys, and historical datasets
A fine-resolution soil moisture dataset for China in 2002–2018
tTEM20AAR: a benchmark geophysical data set for unconsolidated fluvioglacial sediments
A focal mechanism catalogue of earthquakes that occurred in the southeastern Alps and surrounding areas from 1928–2019
The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers
Historical K index data collection of Soviet magnetic observatories, 1957–1992
Complementing regional moment magnitudes to GCMT: a perspective from the rebuilt International Seismological Centre Bulletin
Reassessing the lithosphere: SeisDARE, an open-access seismic data repository
Homogenization of the historical series from the Coimbra Magnetic Observatory, Portugal
Synthesis of global actual evapotranspiration from 1982 to 2019
Surface and subsurface characterisation of salt pans expressing polygonal patterns
Early Soviet satellite magnetic field measurements in the years 1964 and 1970
The INSIEME seismic network: a research infrastructure for studying induced seismicity in the High Agri Valley (southern Italy)
The ISC Bulletin as a comprehensive source of earthquake source mechanisms
Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake
The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project
Present-day surface deformation of the Alpine region inferred from geodetic techniques
Altimetry, gravimetry, GPS and viscoelastic modeling data for the joint inversion for glacial isostatic adjustment in Antarctica (ESA STSE Project REGINA)
Multibeam bathymetry and CTD measurements in two fjord systems in southeastern Greenland
Using ground-penetrating radar, topography and classification of vegetation to model the sediment and active layer thickness in a periglacial lake catchment, western Greenland
The new database of the Global Terrestrial Network for Permafrost (GTN-P)
Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010
Ulysse Lebrec, Victorien Paumard, Michael J. O'Leary, and Simon C. Lang
Earth Syst. Sci. Data, 13, 5191–5212, https://doi.org/10.5194/essd-13-5191-2021, https://doi.org/10.5194/essd-13-5191-2021, 2021
Short summary
Short summary
This paper presents an integrated workflow that builds on satellite images and 3D seismic surveys, integrated with historical depth soundings, to generate regional high-resolution digital elevation models (DEMs). The workflow was applied to the North West Shelf of Australia and led to the creation of new DEMs, with a resolution of 10 × 10 m in nearshore areas and 30 × 30 m elsewhere over an area of nearly 1 000 000 km2. This constitutes a major improvement of the pre-existing 250 × 250 m DEM.
Xiangjin Meng, Kebiao Mao, Fei Meng, Jiancheng Shi, Jiangyuan Zeng, Xinyi Shen, Yaokui Cui, Lingmei Jiang, and Zhonghua Guo
Earth Syst. Sci. Data, 13, 3239–3261, https://doi.org/10.5194/essd-13-3239-2021, https://doi.org/10.5194/essd-13-3239-2021, 2021
Short summary
Short summary
In order to improve the accuracy of China's regional agricultural drought monitoring and climate change research, we produced a long-term series of soil moisture products by constructing a time and depth correction model for three soil moisture products with the help of ground observation data. The spatial resolution is improved by building a spatial weight decomposition model, and validation indicates that the new product can meet application needs.
Alexis Neven, Pradip Kumar Maurya, Anders Vest Christiansen, and Philippe Renard
Earth Syst. Sci. Data, 13, 2743–2752, https://doi.org/10.5194/essd-13-2743-2021, https://doi.org/10.5194/essd-13-2743-2021, 2021
Short summary
Short summary
The shallow underground is constituted of sediments that present high spatial variability. This upper layer is the most extensively used for resource exploitation (groundwater, geothermal heat, construction materials, etc.). Understanding and modeling the spatial variability of these deposits is crucial. We present a high-resolution electrical resistivity dataset that covers the upper Aare Valley in Switzerland. These data can help develop methods to characterize these geological formations.
Angela Saraò, Monica Sugan, Gianni Bressan, Gianfranco Renner, and Andrea Restivo
Earth Syst. Sci. Data, 13, 2245–2258, https://doi.org/10.5194/essd-13-2245-2021, https://doi.org/10.5194/essd-13-2245-2021, 2021
Short summary
Short summary
Focal mechanisms describe the orientation of the fault on which an earthquake occurs and the slip direction. They are necessary to understand seismotectonic processes and for seismic hazard analysis. We present a focal mechanism catalogue of 772 selected earthquakes of
1.8 ≤ M ≤ 6.5 that occurred in the southeastern Alps and surrounding areas from 1928 to 2019. For each earthquake, we report focal mechanisms from the literature and newly computed solutions, and we suggest a preferred one.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Natalia Sergeyeva, Alexei Gvishiani, Anatoly Soloviev, Lyudmila Zabarinskaya, Tamara Krylova, Mikhail Nisilevich, and Roman Krasnoperov
Earth Syst. Sci. Data, 13, 1987–1999, https://doi.org/10.5194/essd-13-1987-2021, https://doi.org/10.5194/essd-13-1987-2021, 2021
Short summary
Short summary
The K index is the classical, commonly used parameter of geomagnetic activity that serves as the measure of local magnetic field variations. This paper presents a unique collection of historical K index values that was formed at the World Data Center for Solar-Terrestrial Physics in Moscow. It includes the results of the K index determination at 41 geomagnetic observatories of the former USSR for the period from July 1957 to the early 1990s.
Domenico Di Giacomo, James Harris, and Dmitry A. Storchak
Earth Syst. Sci. Data, 13, 1957–1985, https://doi.org/10.5194/essd-13-1957-2021, https://doi.org/10.5194/essd-13-1957-2021, 2021
Short summary
Short summary
We provide a comprehensive overview of the content in terms of moment magnitude (Mw) in the Bulletin of the International Seismological Centre (ISC). Mw is the preferred magnitude to characterize earthquakes in various research topics (e.g. Earth seismicity rates) and other applications (e.g. seismic hazard). We describe first the contribution of global agencies and agencies operating at a regional scale and then discuss features of Mw via different sets of comparisons.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Anna L. Morozova, Paulo Ribeiro, and M. Alexandra Pais
Earth Syst. Sci. Data, 13, 809–825, https://doi.org/10.5194/essd-13-809-2021, https://doi.org/10.5194/essd-13-809-2021, 2021
Short summary
Short summary
The Coimbra Magnetic Observatory (COI), Portugal, established in 1866, has provided nearly continuous records of the geomagnetic field for more than 150 years. However, during its long lifetime inevitable changes to the instruments and measurement procedures and even the relocation of the observatory have taken place. Such changes affect the quality of the measurements, introducing false (artificial) variations. We analyzed COI historical data to find and correct such artificial variations.
Abdelrazek Elnashar, Linjiang Wang, Bingfang Wu, Weiwei Zhu, and Hongwei Zeng
Earth Syst. Sci. Data, 13, 447–480, https://doi.org/10.5194/essd-13-447-2021, https://doi.org/10.5194/essd-13-447-2021, 2021
Short summary
Short summary
Based on a site-pixel validation and comparison of different global evapotranspiration (ET) products, this paper aims to produce a synthesized ET which has a minimum level of uncertainty over as many conditions as possible from 1982 to 2019. Through a high-quality flux eddy covariance (EC) covering the globe, PML, SSEBop, MOD16A2105, and NTSG ET products were chosen to create the new dataset. It agreed well with flux EC ET and can be used without other datasets or further assessments.
Jana Lasser, Joanna M. Nield, and Lucas Goehring
Earth Syst. Sci. Data, 12, 2881–2898, https://doi.org/10.5194/essd-12-2881-2020, https://doi.org/10.5194/essd-12-2881-2020, 2020
Short summary
Short summary
The publication presents six data sets that describe the surface and subsurface characteristics of salt deserts in southern California. The data were collected during two field studies in 2016 and 2018 and are used to investigate the origins of the eye-catching hexagonal salt ridge patterns that emerge in such deserts. It is important to understand how these salt crusts grow since these deserts and their dynamic surface structure play a major role in the emission of dust into the atmosphere.
Roman Krasnoperov, Dmitry Peregoudov, Renata Lukianova, Anatoly Soloviev, and Boris Dzeboev
Earth Syst. Sci. Data, 12, 555–561, https://doi.org/10.5194/essd-12-555-2020, https://doi.org/10.5194/essd-12-555-2020, 2020
Short summary
Short summary
The paper presents a collection of magnetic field measurements performed by early Soviet magnetic satellite missions Kosmos-49 (1964) and Kosmos-321 (1970). These data were used as initial data for analysis of the structure of the Earth’s magnetic field sources and for compilation of a series of its analytical models. The most notable model that employed Kosmos-49 data was the first generation of the International Geomagnetic Reference Field for epoch 1965.0.
Tony Alfredo Stabile, Vincenzo Serlenga, Claudio Satriano, Marco Romanelli, Erwan Gueguen, Maria Rosaria Gallipoli, Ermann Ripepi, Jean-Marie Saurel, Serena Panebianco, Jessica Bellanova, and Enrico Priolo
Earth Syst. Sci. Data, 12, 519–538, https://doi.org/10.5194/essd-12-519-2020, https://doi.org/10.5194/essd-12-519-2020, 2020
Short summary
Short summary
This paper presents data collected by a seismic network developed in the framework of the INSIEME project aimed to study induced seismicity processes. The network is composed of eight stations deployed around two clusters of induced microearthquakes in the High Agri Valley (southern Italy). The solutions for reducing the background noise level are presented and the quality of acquired data is discussed. Such open-access data can be used by the scientific community for different applications.
Konstantinos Lentas, Domenico Di Giacomo, James Harris, and Dmitry A. Storchak
Earth Syst. Sci. Data, 11, 565–578, https://doi.org/10.5194/essd-11-565-2019, https://doi.org/10.5194/essd-11-565-2019, 2019
Short summary
Short summary
In this article we try to make the broad geoscience community and especially the seismological community aware of the availability of earthquake source mechanisms in the Bulletin of the International Seismological Centre (ISC) and encourage researchers to make use of this data set in future research. Moreover, we acknowledge the data providers, and we encourage others to routinely submit their source mechanism solutions to the ISC.
Xuanmei Fan, Gianvito Scaringi, Guillem Domènech, Fan Yang, Xiaojun Guo, Lanxin Dai, Chaoyang He, Qiang Xu, and Runqiu Huang
Earth Syst. Sci. Data, 11, 35–55, https://doi.org/10.5194/essd-11-35-2019, https://doi.org/10.5194/essd-11-35-2019, 2019
Short summary
Short summary
Large earthquakes cause major disturbances to mountain landscapes. They trigger many landslides that can form deposits of debris on steep slopes and channels. Rainfall can remobilise these deposits and generate large and destructive flow-like landslides and floods. We release two datasets that track a decade of landsliding following the 2008 7.9 magnitude Wenchuan earthquake in China. These data are useful for quantifying the role of major earthquakes in shaping mountain landscapes.
Domenico Di Giacomo, E. Robert Engdahl, and Dmitry A. Storchak
Earth Syst. Sci. Data, 10, 1877–1899, https://doi.org/10.5194/essd-10-1877-2018, https://doi.org/10.5194/essd-10-1877-2018, 2018
Short summary
Short summary
We outline work done to improve and extend the new reference catalogue of global earthquakes instrumentally recorded since 1904, the ISC-GEM Catalogue. We have added thousands of earthquakes between 1904 and 1959 and in recent years compared to the 2013 release. As earthquake catalogues are widely used for different aspects of research, we believe that this dataset will be instrumental for years to come for researchers involved in studies on seismic hazard and patterns of the Earth's seismicity.
Laura Sánchez, Christof Völksen, Alexandr Sokolov, Herbert Arenz, and Florian Seitz
Earth Syst. Sci. Data, 10, 1503–1526, https://doi.org/10.5194/essd-10-1503-2018, https://doi.org/10.5194/essd-10-1503-2018, 2018
Short summary
Short summary
We provide a surface-kinematics model for the Alpine region based on high-level data analysis of 300 geodetic stations continuously operating over 12.4 years. This model includes a deformation model, a continuous velocity field, and a strain field consistently assessed for the entire Alpine mountain belt. Horizontal and vertical motion patterns are clearly identified and supported by uncertainties better than ±0.2 mm a−1 and ±0.3 mm a−1 in the horizontal and vertical components, respectively.
Ingo Sasgen, Alba Martín-Español, Alexander Horvath, Volker Klemann, Elizabeth J. Petrie, Bert Wouters, Martin Horwath, Roland Pail, Jonathan L. Bamber, Peter J. Clarke, Hannes Konrad, Terry Wilson, and Mark R. Drinkwater
Earth Syst. Sci. Data, 10, 493–523, https://doi.org/10.5194/essd-10-493-2018, https://doi.org/10.5194/essd-10-493-2018, 2018
Short summary
Short summary
We present a collection of data sets, consisting of surface-elevation rates for Antarctic ice sheet from a combination of Envisat and ICESat, bedrock uplift rates for 118 GPS sites in Antarctica, and optimally filtered GRACE gravity field rates. We provide viscoelastic response functions to a disc load forcing for Earth structures present in East and West Antarctica. This data collection enables a joint inversion for present-day ice-mass changes and glacial isostatic adjustment in Antarctica.
Kristian Kjellerup Kjeldsen, Reimer Wilhelm Weinrebe, Jørgen Bendtsen, Anders Anker Bjørk, and Kurt Henrik Kjær
Earth Syst. Sci. Data, 9, 589–600, https://doi.org/10.5194/essd-9-589-2017, https://doi.org/10.5194/essd-9-589-2017, 2017
Short summary
Short summary
Here we present bathymetric and hydrographic measurements from two fjords in southeastern Greenland surveyed in 2014, leading to improved knowledge of the fjord morphology and an assessment of the variability in water masses in the fjords systems. Data were collected as part of a larger field campaign in which we targeted marine and terrestrial observations to assess the long-term behavior of the Greenland ice sheet and provide linkages to modern observations.
Johannes Petrone, Gustav Sohlenius, Emma Johansson, Tobias Lindborg, Jens-Ove Näslund, Mårten Strömgren, and Lars Brydsten
Earth Syst. Sci. Data, 8, 663–677, https://doi.org/10.5194/essd-8-663-2016, https://doi.org/10.5194/essd-8-663-2016, 2016
Short summary
Short summary
This paper presents data and resulting models of spatial distributions of maximum active layer thickness and sediment thickness and their connection to surface vegetation and topography from the Kangerlussuaq region, western Greenland. The data set constitutes geometrical information and will be used in coupled hydrological and biogeochemical modeling together with previous published hydrological data (doi:10.5194/essd-7-93-2015, 2015) and biogeochemical data (doi:10.5194/essd-8-439-2016, 2016).
B. K. Biskaborn, J.-P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky
Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, https://doi.org/10.5194/essd-7-245-2015, 2015
Short summary
Short summary
This paper introduces the new database of the Global Terrestrial Network for Permafrost (GTN-P) on permafrost temperature and active layer thickness data. It describes the operability of the Data Management System and the data quality. By applying statistics on GTN-P metadata, we analyze the spatial sample representation of permafrost monitoring sites. Comparison with environmental variables and climate projection data enable identification of potential future research locations.
P. Arason, G. N. Petersen, and H. Bjornsson
Earth Syst. Sci. Data, 3, 9–17, https://doi.org/10.5194/essd-3-9-2011, https://doi.org/10.5194/essd-3-9-2011, 2011
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv [preprint], arXiv:1603.04467, 14 March 2016. a
Alavi, A. H.: Prediction of principal ground-motion parameters using a hybrid
method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019,
2011. a
Baig, A. M., Campillo, M., and Brenguier, F.: Denoising seismic noise cross
correlations, J. Geophys. Res., 114, B08310,
https://doi.org/10.1029/2008JB006085, 2009. a
Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine
learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann,
J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res.
Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a, b
Bono, A.: SisPick! 2.0 Sistema interattivo per l'interpretazione di segnali
sismici, Manuale utente, Tech. Rep. Rapporti tecnici, n. 59, INGV, Rome,
Italy, available at: http://editoria.rm.ingv.it/archivio_pdf/rapporti/58/pdf/rapporti_59.pdf (last access: 30 August 2021),
2008. a
Boore, D. M.: Estimating Vs(30) (or NEHRP Site Classes) from Shallow
Velocity Models (Depths < 30 m), B.
Seismol. Soc. Am., 94, 591–597, https://doi.org/10.1785/0120030105,
2004. a
Buland, R.: SEED Reference Manual, Tech. Rep., Incorporated Research
Institutions for Seismology (IRIS), available at:
http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf (last access: 30 August 2021), 2006. a
Chen, Y., Zhang, M., Bai, M., and Chen, W.: Improving the Signal-to-Noise
Ratio of Seismological Datasets by Unsupervised Machine Learning,
Seismol. Res. Lett., 90, 1552–1564, https://doi.org/10.1785/0220190028,
2019. a
Chollet, F. and others: Keras [code], available at: https://keras.io (last access: 25 November 2021), 2015. a
Danecek, P., Pintore, S., Mazza, S., Mandiello, A., Fares, M., Carluccio, I.,
Della Bina, E., Franceschi, D., Moretti, M., Lauciani, V., Quintiliani, M.,
and Michelini, A.: The Italian Node of the European Integrated Data
Archive, Seismol. Res. Lett., 92, 1726–1737, https://doi.org/10.1785/0220200409, 2021. a, b, c, d, e
Del Pezzo, E., Esposito, A., Giudicepietro, F., Marinaro, M., Martini, M., and
Scarpetta, S.: Discrimination of Earthquakes and Underwater Explosions
Using Neural Networks, B. Seismol. Soc.
Am., 93, 215–223, https://doi.org/10.1785/0120020005, 2003. a
Derras, B.: Peak Ground Acceleration Prediction Using Artificial
Neural Networks Approach: Application to the Kik-Net Data,
International Journal of Earthquake Engineering and Hazard Mitigation, 2, 144–153, https://doi.org/10.15866/irehm.v2i4.7121, 2014. a
Derras, B., Bard, P., Cotton, F., and Bekkouche, A.: Adapting the Neural
Network Approach to PGA Prediction: An Example Based on the
KiK‐net Data, B. Seismol. Soc. Am., 102,
1446–1461, https://doi.org/10.1785/0120110088, 2012. a
Dramsch, J. S.: Chapter One – 70 years of machine learning in geoscience in
review, Adv. Geophys., 61, 1–55, https://doi.org/10.1016/bs.agph.2020.08.002, 2020. a
EMERSITO Working Group: Rete sismica del gruppo EMERSITO, sequenza sismica
del 2016 in Italia Centrale, Instituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/SD/7TXEGDO5X8, 2018. a
Esposito, A. M., Giudicepietro, F., Scarpetta, S., D'Auria, L., Marinaro, M.,
and Martini, M.: Automatic Discrimination among Landslide,
Explosion-Quake, and Microtremor Seismic Signals at Stromboli
Volcano Using Neural Networks, B. Seismol. Soc.
Am., 96, 1230–1240, https://doi.org/10.1785/0120050097, 2006. a
Fang, L., Wu, Z., and Song, K.: SeismOlympics, Seismol. Res.
Lett., 88, 1429–1430, https://doi.org/10.1785/0220170134, 2017. a
Geological Survey-Provincia Autonoma di Trento: Trentino Seismic Network, International Federation of Digital Seismograph Networks [data set],
https://doi.org/10.7914/SN/ST, 1981. a
Giardini, D., Wiemer, S., Faeh, D., and Deichmann, N.: Seismic Hazard
Assessment of Switzerland, 2004, Tech. Rep., Swiss Seismological Service,
ETH Zurich, available at:
http://www.seismo.ethz.ch/export/sites/sedsite/knowledge/.galleries/pdf_hazard2004/hazard_report_2004.pdf_2063069299.pdf (last access: 25 November 2021),
2004. a
Gulia, L. and Gasperini, P.: Contamination of Frequency–Magnitude Slope
(b‐Value) by Quarry Blasts: An Example for Italy, Seismol.
Res. Lett., 92, 3538–3551, https://doi.org/10.1785/0220210080, 2021. a, b
Gutenberg, B. and Richter, C. F.: Frequency of earthquakes in California,
B. Seismol. Soc. Am., 34, 185–188, 1944. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array
programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a, b
Ingate, S.: The IRIS Consortium: Community Based Facilities and Data Management for Seismology, in: Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries, NATO Science Series: IV: Earth and Environmental Sciences, edited by: Husebye, E. S., vol. 81, 121–132, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-6815-7_8, 2008. a
INGV Seismological Data Centre: Rete Sismica Nazionale (RSN), Instituto Nazionale di Geofisica e Vulcanologia [data set],
https://doi.org/10.13127/SD/X0FXNH7QFY, 1997. a
Institute of Geosciences, Energy, Water and Environment: Albanian
Seismological Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/AC, 2002. a
Istituto Nazionale di Geofisica e Vulcanologia (INGV): INGV experiments
network, Instituto Nazionale di Geofisica e Vulcanologia [data set], available at: http://cnt.rm.ingv.it/instruments/network/TV (last access: 19 November 2021),
2008. a
Istituto Nazionale di Geofisica e Vulcanologia (INGV): Seismic Emergency
for Ischia by Sismiko (2017–2021), International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/ZM_2017/ (last access: 19 November 2021), 2017. a
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Istituto di Geologia
Ambientale e Geoingegneria (CNR-IGAG), Istituto per la Dinamica dei
Processi Ambientali (CNR-IDPA), Istituto di Metodologie per l'Analisi
Ambientale (CNR-IMAA), and Agenzia Nazionale per le nuove tecnologie,
l’energia e lo sviluppo economico sostenibile (ENEA): Rete del Centro di
Microzonazione Sismica (CentroMZ), sequenza sismica del 2016 in
Italia Centrale, Instituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/SD/KU7XM12YY9, 2018. a
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS):
North-East Italy Seismic Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/OX, 2016. a
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T.: Caffe: Convolutional Architecture for
Fast Feature Embedding, arXiv [preprint], arXiv:1408.5093, 20 June 2014. a
Johnson, P. A., Rouet Leduc, B., Pyrak-Nolte, L. J., Beroza, G. C., Marone,
C. J., Hulbert, C., Howard, A., Singer, P., Gordeev, D., Karaflos, D.,
Levinson, C. J., Pfeiffer, P., Puk, K. M., and Reade, W.: Laboratory
earthquake forecasting: A machine learning competition, P.
Natl. Acad. Sci. USA, 118, e2011362118,
https://doi.org/10.1073/pnas.2011362118, 2021. a
Jozinović, D., Lomax, A., Štajduhar, I., and Michelini, A.: Rapid prediction
of earthquake ground shaking intensity using raw waveform data and a
convolutional neural network, Geophys. J. Int., 222,
1379–1389, https://doi.org/10.1093/gji/ggaa233, 2020. a, b, c
Jozinović, D., Lomax, A. J., Stajduhar, I., and Michelini, A.: SSA 2021
Annual Meeting, Seismol. Res. Lett., 92, 1213–1479,
https://doi.org/10.1785/0220210025, 2021. a
Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., and
Gerstoft, P.: Machine Learning in Seismology: Turning Data into
Insights, Seismol. Res. Lett., 90, 3–14,
https://doi.org/10.1785/0220180259, 2018. a
Korneev, V. A., Nadeau, R. M., and McEvilly, T. V.: Seismological Studies at
Parkfield IX: Fault-Zone Imaging Using Guided Wave
Attenuation, B. Seismol. Soc. Am., 93,
1415–1426, https://doi.org/10.1785/0120020114, 2003. a
Kriegerowski, M., Petersen, G. M., Vasyura Bathke, H., and Ohrnberger, M.: A
Deep Convolutional Neural Network for Localization of Clustered
Earthquakes Based on Multistation Full Waveforms, Seismol.
Res. Lett., 90, 510–516, https://doi.org/10.1785/0220180320, 2018. a
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C.,
and Wassermann, J.: ObsPy: a bridge for seismology into the scientific
Python ecosystem, Computational Science & Discovery, 8, 014003,
https://doi.org/10.1088/1749-4699/8/1/014003, 2015. a, b
Lanzano, G., Luzi, L., Russo, E., Felicetta, C., D'Amico, M., Sgobba, S., and
Pacor, F.: Engineering Strong Motion Database (ESM) flatfile [data
set], Tech. Rep., Istituto Nazionale di Geofisica e Vulcanologia (INGV),
https://doi.org/10.13127/esm/flatfile.1.0, 2018. a
Linville, L., Pankow, K., and Draelos, T.: Deep Learning Models Augment
Analyst Decisions for Event Discrimination, Geophys. Res.
Lett., 46, 3643–3651, https://doi.org/10.1029/2018GL081119, 2019. a
Lomax, A., Michelini, A., and Jozinović, D.: An Investigation of Rapid
Earthquake Characterization Using Single‐Station Waveforms and
a Convolutional Neural Network, Seismol. Res. Lett., 90,
517–529, https://doi.org/10.1785/0220180311, 2019. a
Magrini, F., Jozinovic, D., Cammarano, F., Michelini, A., and Boschi, L.: Local
earthquakes detection: A benchmark dataset of 3-component seismograms built
on a global scale, Artificial Intelligence in Geosciences, 1, 1–10,
https://doi.org/10.1016/j.aiig.2020.04.001, 2020. a, b
Margheriti, L., Nostro, C., Cocina, O., Castellano, M., Moretti, M., Lauciani,
V., Quintiliani, M., Bono, A., Mele, F. M., Pintore, S., Montalto, P.,
Peluso, R., Scarpato, G., Rao, S., Alparone, S., Di Prima, S., Orazi, M.,
Piersanti, A., Cecere, G., Cattaneo, M., Vicari, A., Sepe, V., Bignami, C.,
Valoroso, L., Aliotta, M., Azzarone, A., Baccheschi, P., Benincasa, A.,
Bernardi, F., Carluccio, I., Casarotti, E., Cassisi, C., Castello, B.,
Cirilli, F., D'Agostino, M., D'Ambrosio, C., Danecek, P., Cesare, W. D.,
Bina, E. D., Di Filippo, A., Di Stefano, R., Faenza, L., Falco, L., Fares,
M., Ficeli, P., Latorre, D., Lorenzino, M. C., Mandiello, A., Marchetti, A.,
Mazza, S., Michelini, A., Nardi, A., Pastori, M., Pignone, M., Prestifilippo,
M., Ricciolino, P., Sensale, G., Scognamiglio, L., Selvaggi, G., Torrisi, O.,
Zanolin, F., Amato, A., Bianco, F., Branca, S., Privitera, E., and Stramondo,
S.: Seismic Surveillance and Earthquake Monitoring in Italy,
Seismol. Res. Lett., 92, 1659–1671, https://doi.org/10.1785/0220200380, 2021. a
McKinney, W.: Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: van der Walt, S. and Millman, J., pp. 56–61, https://doi.org/10.25080/Majora-92bf1922-00a,
2010. a
McNamara, D. E. and Buland, R. P.: Ambient Noise Levels in the
Continental United States, B. Seismol. Soc.
Am., 94, 1517–1527, https://doi.org/10.1785/012003001, 2004. a
MedNet Project Partner Institutions: Mediterranean Very Broadband
Seismographic Network (MedNet), Instituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/SD/FBBBTDTD6Q, 1988. a
Megies, T., Beyreuther, M., Barsch, R., Krischer, L., and Wassermann, J.:
ObsPy – What can it do for data centers and observatories?, Ann. Geophys.-Italy, 54, 47–58, https://doi.org/10.4401/ag-4838, 2011. a, b
Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S.,
Kundzicz, P., Li, Z., Andrews, J., Hauksson, E., and Yue, Y.: Reliable
Real-Time Seismic Signal/Noise Discrimination With Machine
Learning, J. Geophys. Res.-Sol. Ea., 124, 788–800,
https://doi.org/10.1029/2018JB016661, 2019. a
Mele, F., Arcoraci, L., Battelli, P., Berardi, M., Castellano, C., Lozzi, G.,
Marchetti, A., Nardi, A., Pirro, M., and Rossi, A.: Bollettino Sismico
Italiano 2008 (Italian Seismic Bulletin 2008), Quaderni di geofisica, p. 45, available at:
https://istituto.ingv.it/images/collane-editoriali/quaderni-di-geofisica/quaderni-di-geofisica-2010/quaderno85.pdf (last access: 19 November 2021),
2010. a, b, c
Michelini, A., Margheriti, L., Cattaneo, M., Cecere, G., D'Anna, G., Delladio, A., Moretti, M., Pintore, S., Amato, A., Basili, A., Bono, A., Casale, P., Danecek, P., Demartin, M., Faenza, L., Lauciani, V., Mandiello, A. G., Marchetti, A., Marcocci, C., Mazza, S., Mele, F. M., Nardi, A., Nostro, C., Pignone, M., Quintiliani, M., Rao, S., Scognamiglio, L., and Selvaggi, G.: The Italian National Seismic Network and the earthquake and tsunami monitoring and surveillance systems, Adv. Geosci., 43, 31–38, https://doi.org/10.5194/adgeo-43-31-2016, 2016. a, b
Michelini, A., Faenza, L., Lanzano, G., Lauciani, V., Jozinović, D., Puglia,
R., and Luzi, L.: The New ShakeMap in Italy: Progress and Advances
in the Last 10 Yr, Seismol. Res. Lett., 91, 317–333,
https://doi.org/10.1785/0220190130, 2019. a
Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., and
Lauciani, V.: INSTANCE The Italian Seismic Dataset For Machine
Learning, INGV [data set], https://doi.org/10.13127/instance, 2021. a, b
Moretti, M., De Gori, P., Govoni, A., Margheriti, L., Piccinini, D., Pintore,
S., and Valoroso, L.: Seismic Data acquired by the SISMIKO Emergency
Group – Molise-Italy 2018 – T14, EIDA [data set], https://doi.org/10.13127/SD/FIR72CHYWU, 2018. a
Mousavi, S. M. and Beroza, G. C.: A Machine‐Learning Approach for
Earthquake Magnitude Estimation, Geophys. Res. Lett., 47,
e2019GL085976, https://doi.org/10.1029/2019GL085976, 2020. a, b
Münchmeyer, J., Bindi, D., Leser, U., and Tilmann, F.: The transformer
earthquake alerting model: A new versatile approach to earthquake early
warning, Geophys. J. Int., 225, 646–656, https://doi.org/10.1093/gji/ggaa609, 2020. a
Münchmeyer, J., Bindi, D., Leser, U., and Tilmann, F.: Earthquake magnitude
and location estimation from real time seismic waveforms with a transformer
network, Geophys. J. Int., 226, 1086–1104, https://doi.org/10.1093/gji/ggab139, 2021. a
National Observatory of Athens, Institute of Geodynamics, Athens: National
Observatory of Athens Seismic Network, International Federation of Digitial Seismograph Networks [data set], https://doi.org/10.7914/SN/HL, 1997. a
OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and
University of Trieste: North-East Italy Broadband Network, International Federation of Digitial Seismograph Networks [data set],
https://doi.org/10.7914/SN/NI, 2002. a
Otović, E., Njirjak, M., Jozinović, D., Mauša, G., Michelini, A., and Štajduhar, I.: Intra-domain and cross-domain transfer learning for time series, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12142, https://doi.org/10.5194/egusphere-egu21-12142, 2021. a
Parolai, S.: Denoising of Seismograms Using the S Transform, B. Seismol. Soc. Am., 99, 226–234,
https://doi.org/10.1785/0120080001, 2009. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S.: PyTorch: An Imperative Style,
High-Performance Deep Learning Library, in: Advances in Neural
Information Processing Systems 32, edited by: Wallach, H., Larochelle,
H., Beygelzimer, A., Alché-Buc, F. d., Fox, E., and Garnett, R., Curran Associates, Inc., 8024–8035, available at:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (last access: 19 November 2021),
2019. a
Perol, T., Gharbi, M., and Denolle, M.: Convolutional neural network for
earthquake detection and location, Sci. Adv., 4, e1700578,
https://doi.org/10.1126/sciadv.1700578, 2018. a
Quinteros, J., Carter, J. A., Schaeffer, J., Trabant, C., and Pedersen, H. A.:
Exploring Approaches for Large Data in Seismology: User and Data
Repository Perspectives, Seismol. Res. Lett., 92, 1531–1540,
https://doi.org/10.1785/0220200390, 2021. a
The pandas development team: pandas-dev/pandas: Pandas 1.1.4 (v1.1.4), Zenodo [code], https://doi.org/10.5281/zenodo.4161697, 2020. a
Ross, Z. E., Meier, M.-A., and Hauksson, E.: P Wave Arrival Picking and
First-Motion Polarity Determination With Deep Learning, J. Geophys. Res.-Sol. Ea., 123, 5120–5129,
https://doi.org/10.1029/2017JB015251,
2018b. a, b, c, d
Scognamiglio, L., Tinti, E., and Michelini, A.: Real-Time Determination of
Seismic Moment Tensor for the Italian Region, B.
Seismol. Soc. Am., 99, 2223–2242, https://doi.org/10.1785/0120080104,
2009. a
Seydoux, L., Balestriero, R., Poli, P., de Hoop, M., Campillo, M., and
Baraniuk, R.: Clustering earthquake signals and background noises in
continuous seismic data with unsupervised deep learning, Nat.
Commun., 11, 3972, https://doi.org/10.1038/s41467-020-17841-x, 2020. a
Shearer, P. M.: Imaging global body wave phases by stacking long-period
seismograms, J. Geophys. Res.-Sol. Ea., 96,
20353–20364, https://doi.org/10.1029/91JB00421, 1991. a
Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P.,
Marmureanu, A., Ottemöller, L., Pedersen, H., Sleeman, R., Stammler, K.,
Armbruster, D., Bienkowski, J., Boukouras, K., Evans, P. L., Fares, M.,
Neagoe, C., Heimers, S., Heinloo, A., Hoffmann, M., Kaestli, P., Lauciani,
V., Michalek, J., Odon Muhire, E., Ozer, M., Palangeanu, L., Pardo, C.,
Quinteros, J., Quintiliani, M., Antonio Jara-Salvador, J., Schaeffer, J.,
Schloemer, A., and Triantafyllis, N.: EIDA: The European Integrated
Data Archive and Service Infrastructure within ORFEUS,
Seismol. Res. Lett., 92, 1788–1795, https://doi.org/10.1785/0220200413, 2021. a
Trugman, D. T. and Shearer, P. M.: Strong Correlation between Stress Drop
and Peak Ground Acceleration for Recent M 1–4 Earthquakes in
the San Francisco Bay Area, B. Seismol. Soc.
Am., 108, 929–945, https://doi.org/10.1785/0120170245, 2018. a
Universita della Basilicata: UniBAS, International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/BA/ (last access: 19 November 2021), 2005. a
Universita Federico II Napoli: Irpinia Seismic Network, International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/IX/ (last access: 19 November 2021), 2005. a
University of Bari “Aldo Moro”: OTRIONS, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/OT, 2013. a
University of Genoa: Regional Seismic Network of North Western
Italy, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/GU, 1967. a
University of Trieste: Friuli Venezia Giulia Accelerometric Network, International Federation of Digital Seismograph Networks [data set],
https://doi.org/10.7914/SN/RF, 1993. a
Vallée, M., Ampuero, J. P., Juhel, K., Bernard, P., Montagner, J.-P., and
Barsuglia, M.: Observations and modeling of the elastogravity signals
preceding direct seismic waves, Science, 358, 1164–1168,
https://doi.org/10.1126/science.aao0746, 2017. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Walter, J. I., Ogwari, P., Thiel, A., Ferrer, F., and Woelfel, I.: easyQuake:
Putting Machine Learning to Work for Your Regional Seismic
Network or Local Earthquake Study, Seismol. Res. Lett.,
92, 555–563, https://doi.org/10.1785/0220200226, 2020. a
Waskom, M. L.: seaborn: statistical data visualization, Journal of Open Source
Software, 6, 3021, https://doi.org/10.21105/joss.03021, 2021. a
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., and Soto, H.: SeisBench – A Toolbox for Machine Learning in Seismology, arXiv [preprint], arXiv:2111.00786, 1 November 2021. a
Yeck, W. L. and Patton, J.: Waveform Data and Metadata used to National
Earthquake Information Center Deep-Learning Models, USGS [data set],
https://doi.org/10.5066/P9OHF4WL, 2020. a
Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz,
N. B., Shelly, D. R., Benz, H. M., and Earle, P. S.: Leveraging Deep
Learning in Global 24/7 Real-Time Earthquake Monitoring at the
National Earthquake Information Center, Seismol. Res.
Lett., 92, 469–480, https://doi.org/10.1785/0220200178, 2020. a, b
Zentralanstalt fur Meterologie und Geodynamik (ZAMG): Province Sudtirol, International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/SI/ (last access: 19 November 2021), 2006. a
Zhang, J. and Chen, J.: Joint seismic traveltime and waveform inversion for
near surface imaging, in: SEG Technical Program Expanded Abstracts
2014, Society of Exploration Geophysicists, Denver, Colorado, pp. 934–937,
https://doi.org/10.1190/segam2014-1501.1, 2014. a
Zhang, X., Zhang, J., Yuan, C., Liu, S., Chen, Z., and Li, W.: Locating induced
earthquakes with a network of seismic stations in Oklahoma via a deep
learning method, Scientific Reports, 10, 1941,
https://doi.org/10.1038/s41598-020-58908-5, 2020. a
Zhu, L., Peng, Z., McClellan, J., Li, C., Yao, D., Li, Z., and Fang, L.: Deep
learning for seismic phase detection and picking in the aftershock zone of
2008 Mw 7.9 Wenchuan Earthquake, Phys. Earth Planet.
In., 293, 106261, https://doi.org/10.1016/j.pepi.2019.05.004,
2019.
a, b
Zhu, W., Mousavi, S. M., and Beroza, G. C.: Seismic Signal Denoising and
Decomposition Using Deep Neural Networks, IEEE T.
Geosci. Remote, 57, 9476–9488,
https://doi.org/10.1109/TGRS.2019.2926772, 2019. a, b, c
Short summary
We present a dataset consisting of seismic waveforms and associated metadata to be used primarily for seismologically oriented machine-learning (ML) studies. The dataset includes about 1.3 M three-component seismograms of fixed 120 s length, sampled at 100 Hz and recorded by more than 600 stations in Italy. The dataset is subdivided into seismograms deriving from earthquakes (~ 1.2 M) and from seismic noise (~ 130 000). The ~ 54 000 earthquakes range in magnitude from 0 to 6.5 from 2005 to 2020.
We present a dataset consisting of seismic waveforms and associated metadata to be used...