Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5509-2021
https://doi.org/10.5194/essd-13-5509-2021
Data description paper
 | 
30 Nov 2021
Data description paper |  | 30 Nov 2021

INSTANCE – the Italian seismic dataset for machine learning

Alberto Michelini, Spina Cianetti, Sonja Gaviano, Carlo Giunchi, Dario Jozinović, and Valentino Lauciani

Related authors

INGe: Intensity-ground motion dataset for Italy
Ilaria Oliveti, Licia Faenza, and Alberto Michelini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-372,https://doi.org/10.5194/essd-2020-372, 2020
Revised manuscript not accepted
Short summary
The Italian National Seismic Network and the earthquake and tsunami monitoring and surveillance systems
Alberto Michelini, Lucia Margheriti, Marco Cattaneo, Gianpaolo Cecere, Giuseppe D'Anna, Alberto Delladio, Milena Moretti, Stefano Pintore, Alessandro Amato, Alberto Basili, Andrea Bono, Paolo Casale, Peter Danecek, Martina Demartin, Licia Faenza, Valentino Lauciani, Alfonso Giovanni Mandiello, Alessandro Marchetti, Carlo Marcocci, Salvatore Mazza, Francesco Mariano Mele, Anna Nardi, Concetta Nostro, Maurizio Pignone, Matteo Quintiliani, Sandro Rao, Laura Scognamiglio, and Giulio Selvaggi
Adv. Geosci., 43, 31–38, https://doi.org/10.5194/adgeo-43-31-2016,https://doi.org/10.5194/adgeo-43-31-2016, 2016
Short summary
Appraising the Early-est earthquake monitoring system for tsunami alerting at the Italian Candidate Tsunami Service Provider
F. Bernardi, A. Lomax, A. Michelini, V. Lauciani, A. Piatanesi, and S. Lorito
Nat. Hazards Earth Syst. Sci., 15, 2019–2036, https://doi.org/10.5194/nhess-15-2019-2015,https://doi.org/10.5194/nhess-15-2019-2015, 2015

Related subject area

Geophysics and geodesy
HUST-Grace2024: a new GRACE-only gravity field time series based on more than 20 years of satellite geodesy data and a hybrid processing chain
Hao Zhou, Lijun Zheng, Yaozong Li, Xiang Guo, Zebing Zhou, and Zhicai Luo
Earth Syst. Sci. Data, 16, 3261–3281, https://doi.org/10.5194/essd-16-3261-2024,https://doi.org/10.5194/essd-16-3261-2024, 2024
Short summary
A new repository of electrical resistivity tomography and ground-penetrating radar data from summer 2022 near Ny-Ålesund, Svalbard
Francesca Pace, Andrea Vergnano, Alberto Godio, Gerardo Romano, Luigi Capozzoli, Ilaria Baneschi, Marco Doveri, and Alessandro Santilano
Earth Syst. Sci. Data, 16, 3171–3192, https://doi.org/10.5194/essd-16-3171-2024,https://doi.org/10.5194/essd-16-3171-2024, 2024
Short summary
Enriching the GEOFON seismic catalog with automatic energy magnitude estimations
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024,https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024,https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
GPS displacement dataset for the study of elastic surface mass variations
Athina Peidou, Donald F. Argus, Felix W. Landerer, David N. Wiese, and Matthias Ellmer
Earth Syst. Sci. Data, 16, 1317–1332, https://doi.org/10.5194/essd-16-1317-2024,https://doi.org/10.5194/essd-16-1317-2024, 2024
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], arXiv:1603.04467, 14 March 2016. a
Alavi, A. H.: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019, 2011. a
Baig, A. M., Campillo, M., and Brenguier, F.: Denoising seismic noise cross correlations, J. Geophys. Res., 114, B08310​​​​​​​, https://doi.org/10.1029/2008JB006085, 2009. a
Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a, b
Download
Short summary
We present a dataset consisting of seismic waveforms and associated metadata to be used primarily for seismologically oriented machine-learning (ML) studies. The dataset includes about 1.3 M three-component seismograms of fixed 120 s length, sampled at 100 Hz and recorded by more than 600 stations in Italy. The dataset is subdivided into seismograms deriving from earthquakes (~ 1.2 M) and from seismic noise (~ 130 000). The ~ 54 000 earthquakes range in magnitude from 0 to 6.5 from 2005 to 2020.
Altmetrics
Final-revised paper
Preprint