Articles | Volume 13, issue 12
Earth Syst. Sci. Data, 13, 5509–5544, 2021
https://doi.org/10.5194/essd-13-5509-2021
Earth Syst. Sci. Data, 13, 5509–5544, 2021
https://doi.org/10.5194/essd-13-5509-2021

Data description paper 30 Nov 2021

Data description paper | 30 Nov 2021

INSTANCE – the Italian seismic dataset for machine learning

Alberto Michelini et al.

Related authors

INGe: Intensity-ground motion dataset for Italy
Ilaria Oliveti, Licia Faenza, and Alberto Michelini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-372,https://doi.org/10.5194/essd-2020-372, 2020
Revised manuscript not accepted
Short summary
The Italian National Seismic Network and the earthquake and tsunami monitoring and surveillance systems
Alberto Michelini, Lucia Margheriti, Marco Cattaneo, Gianpaolo Cecere, Giuseppe D'Anna, Alberto Delladio, Milena Moretti, Stefano Pintore, Alessandro Amato, Alberto Basili, Andrea Bono, Paolo Casale, Peter Danecek, Martina Demartin, Licia Faenza, Valentino Lauciani, Alfonso Giovanni Mandiello, Alessandro Marchetti, Carlo Marcocci, Salvatore Mazza, Francesco Mariano Mele, Anna Nardi, Concetta Nostro, Maurizio Pignone, Matteo Quintiliani, Sandro Rao, Laura Scognamiglio, and Giulio Selvaggi
Adv. Geosci., 43, 31–38, https://doi.org/10.5194/adgeo-43-31-2016,https://doi.org/10.5194/adgeo-43-31-2016, 2016
Short summary
Appraising the Early-est earthquake monitoring system for tsunami alerting at the Italian Candidate Tsunami Service Provider
F. Bernardi, A. Lomax, A. Michelini, V. Lauciani, A. Piatanesi, and S. Lorito
Nat. Hazards Earth Syst. Sci., 15, 2019–2036, https://doi.org/10.5194/nhess-15-2019-2015,https://doi.org/10.5194/nhess-15-2019-2015, 2015

Related subject area

Geosciences – Geophysics
Towards a regional high-resolution bathymetry of the North West Shelf of Australia based on Sentinel-2 satellite images, 3D seismic surveys, and historical datasets
Ulysse Lebrec, Victorien Paumard, Michael J. O'Leary, and Simon C. Lang
Earth Syst. Sci. Data, 13, 5191–5212, https://doi.org/10.5194/essd-13-5191-2021,https://doi.org/10.5194/essd-13-5191-2021, 2021
Short summary
A fine-resolution soil moisture dataset for China in 2002–2018
Xiangjin Meng, Kebiao Mao, Fei Meng, Jiancheng Shi, Jiangyuan Zeng, Xinyi Shen, Yaokui Cui, Lingmei Jiang, and Zhonghua Guo
Earth Syst. Sci. Data, 13, 3239–3261, https://doi.org/10.5194/essd-13-3239-2021,https://doi.org/10.5194/essd-13-3239-2021, 2021
Short summary
tTEM20AAR: a benchmark geophysical data set for unconsolidated fluvioglacial sediments
Alexis Neven, Pradip Kumar Maurya, Anders Vest Christiansen, and Philippe Renard
Earth Syst. Sci. Data, 13, 2743–2752, https://doi.org/10.5194/essd-13-2743-2021,https://doi.org/10.5194/essd-13-2743-2021, 2021
Short summary
A focal mechanism catalogue of earthquakes that occurred in the southeastern Alps and surrounding areas from 1928–2019
Angela Saraò, Monica Sugan, Gianni Bressan, Gianfranco Renner, and Andrea Restivo
Earth Syst. Sci. Data, 13, 2245–2258, https://doi.org/10.5194/essd-13-2245-2021,https://doi.org/10.5194/essd-13-2245-2021, 2021
Short summary
The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021,https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], arXiv:1603.04467, 14 March 2016. a
Alavi, A. H.: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019, 2011. a
Baig, A. M., Campillo, M., and Brenguier, F.: Denoising seismic noise cross correlations, J. Geophys. Res., 114, B08310​​​​​​​, https://doi.org/10.1029/2008JB006085, 2009. a
Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a, b
Download
Short summary
We present a dataset consisting of seismic waveforms and associated metadata to be used primarily for seismologically oriented machine-learning (ML) studies. The dataset includes about 1.3 M three-component seismograms of fixed 120 s length, sampled at 100 Hz and recorded by more than 600 stations in Italy. The dataset is subdivided into seismograms deriving from earthquakes (~ 1.2 M) and from seismic noise (~ 130 000). The ~ 54 000 earthquakes range in magnitude from 0 to 6.5 from 2005 to 2020.