Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5509-2021
https://doi.org/10.5194/essd-13-5509-2021
Data description paper
 | 
30 Nov 2021
Data description paper |  | 30 Nov 2021

INSTANCE – the Italian seismic dataset for machine learning

Alberto Michelini, Spina Cianetti, Sonja Gaviano, Carlo Giunchi, Dario Jozinović, and Valentino Lauciani

Related authors

Evaluating the effectiveness of quantitative descriptions of Earth Science phenomena during outreach activities
Matteo Trolese, Alessandro Tadini, Laura Pieretti, Damiano Biagini, Spina Cianetti, Simone Colucci, Matteo Cerminara, Claudia D'Oriano, Chiara Montagna, Michele D'Ambrosio, Raffaello Pegna, Giuseppe Re, Francesco Sanseverino, Carlo Giunchi, Carlo Meletti, and Tomaso Esposti Ongaro
Geosci. Commun., 8, 319–337, https://doi.org/10.5194/gc-8-319-2025,https://doi.org/10.5194/gc-8-319-2025, 2025
Short summary
Seismic noise characterization for the Buddusò–Ala dei Sardi wind park (Sardinia, Italy) and its impact on the Einstein Telescope candidate site
Giovanni Diaferia, Irene Molinari, Marco Olivieri, Fabio Di Felice, Andrea Contu, Domenico D'Urso, Luca Naticchioni, Davide Rozza, Jan Harms, Alessandro Cardini, Rosario De Rosa, Matteo Di Giovanni, Valentina Mangano, Fulvio Ricci, Lucia Trozzo, Carlo Murineddu, and Carlo Giunchi
Solid Earth, 16, 441–456, https://doi.org/10.5194/se-16-441-2025,https://doi.org/10.5194/se-16-441-2025, 2025
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv [preprint], arXiv:1603.04467, 14 March 2016. a
Alavi, A. H.: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019, 2011. a
Baig, A. M., Campillo, M., and Brenguier, F.: Denoising seismic noise cross correlations, J. Geophys. Res., 114, B08310​​​​​​​, https://doi.org/10.1029/2008JB006085, 2009. a
Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a, b
Download
Short summary
We present a dataset consisting of seismic waveforms and associated metadata to be used primarily for seismologically oriented machine-learning (ML) studies. The dataset includes about 1.3 M three-component seismograms of fixed 120 s length, sampled at 100 Hz and recorded by more than 600 stations in Italy. The dataset is subdivided into seismograms deriving from earthquakes (~ 1.2 M) and from seismic noise (~ 130 000). The ~ 54 000 earthquakes range in magnitude from 0 to 6.5 from 2005 to 2020.
Share
Altmetrics
Final-revised paper
Preprint