Articles | Volume 13, issue 12
https://doi.org/10.5194/essd-13-5509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
INSTANCE – the Italian seismic dataset for machine learning
Alberto Michelini
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata, 605, 00143 Rome, Italy
Spina Cianetti
Istituto Nazionale di Geofisica e Vulcanologia, via Cesare Battisti, 53, Pisa, Italy
Sonja Gaviano
Dipartimento di Scienze della Terra, Unversità degli Studi di Firenze, Via La Pira 4, Florence, Italy
Istituto Nazionale di Geofisica e Vulcanologia, via Cesare Battisti, 53, Pisa, Italy
Carlo Giunchi
Istituto Nazionale di Geofisica e Vulcanologia, via Cesare Battisti, 53, Pisa, Italy
Dario Jozinović
Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata, 605, 00143 Rome, Italy
Dipartimento di Scienze, Unversità degli Studi Roma Tre, Largo San Leonardo Murialdo 1, Rome, Italy
Valentino Lauciani
Istituto Nazionale di Geofisica e Vulcanologia, via di Vigna Murata, 605, 00143 Rome, Italy
Related authors
Ilaria Oliveti, Licia Faenza, and Alberto Michelini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-372, https://doi.org/10.5194/essd-2020-372, 2020
Revised manuscript not accepted
Short summary
Short summary
This research makes available an updated and homogenous set of data related to Italian earthquakes for assessing parameters in terms of recording, event and station distributions as well as macroseismic intensity degrees. The work required the intersection of different sources and is expected to accelerate research progress in the field of hazard assessment, creation of near-real-time maps of ground motion and shaking intensity and calibration of relationships between earthquake parameters.
Matteo Trolese, Alessandro Tadini, Laura Pieretti, Damiano Biagini, Spina Cianetti, Simone Colucci, Matteo Cerminara, Claudia D'Oriano, Chiara Montagna, Michele D'Ambrosio, Raffaello Pegna, Giuseppe Re, Francesco Sanseverino, Carlo Giunchi, Carlo Meletti, and Tomaso Esposti Ongaro
EGUsphere, https://doi.org/10.5194/egusphere-2025-3026, https://doi.org/10.5194/egusphere-2025-3026, 2025
Short summary
Short summary
This study describes two hands-on outreach events: an interactive lesson for high-school students during European Researchers’ Night and a tsunami experiment at Lucca Comics & Games. Surveys showed both groups enjoyed the activities, boosted their grasp of geoscience ideas and grew more positive about science. The work emphasizes the effectiveness of quantitative experiment demonstrations and the need to adapt them to the audience, time available and clear educator coordination.
Giovanni Diaferia, Irene Molinari, Marco Olivieri, Fabio Di Felice, Andrea Contu, Domenico D'Urso, Luca Naticchioni, Davide Rozza, Jan Harms, Alessandro Cardini, Rosario De Rosa, Matteo Di Giovanni, Valentina Mangano, Fulvio Ricci, Lucia Trozzo, Carlo Murineddu, and Carlo Giunchi
Solid Earth, 16, 441–456, https://doi.org/10.5194/se-16-441-2025, https://doi.org/10.5194/se-16-441-2025, 2025
Short summary
Short summary
Seismic noise from wind farms can disturb nearby sensitive instruments. We examine the noise of Italy's largest wind farm, located near the proposed site for the third-generation gravitational wave detector. We find that seismic noise is considerable and can be detected up to 13 km distance. Seismic sensors placed at ∼ 250 m depth confirm an excellent level of noise suppression; however, small disturbances in the recorded spectra are detectable when the wind park operates at full capacity.
Ilaria Oliveti, Licia Faenza, and Alberto Michelini
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-372, https://doi.org/10.5194/essd-2020-372, 2020
Revised manuscript not accepted
Short summary
Short summary
This research makes available an updated and homogenous set of data related to Italian earthquakes for assessing parameters in terms of recording, event and station distributions as well as macroseismic intensity degrees. The work required the intersection of different sources and is expected to accelerate research progress in the field of hazard assessment, creation of near-real-time maps of ground motion and shaking intensity and calibration of relationships between earthquake parameters.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed
Systems, arXiv [preprint], arXiv:1603.04467, 14 March 2016. a
Alavi, A. H.: Prediction of principal ground-motion parameters using a hybrid
method coupling artificial neural networks and simulated annealing, Comput. Struct., 89, 2176–2194, https://doi.org/10.1016/j.compstruc.2011.08.019,
2011. a
Baig, A. M., Campillo, M., and Brenguier, F.: Denoising seismic noise cross
correlations, J. Geophys. Res., 114, B08310,
https://doi.org/10.1029/2008JB006085, 2009. a
Bergen, K. J., Johnson, P. A., de Hoop, M. V., and Beroza, G. C.: Machine
learning for data-driven discovery in solid Earth geoscience, Science, 363, eaau0323, https://doi.org/10.1126/science.aau0323, 2019. a
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann,
J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res.
Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010. a, b
Bono, A.: SisPick! 2.0 Sistema interattivo per l'interpretazione di segnali
sismici, Manuale utente, Tech. Rep. Rapporti tecnici, n. 59, INGV, Rome,
Italy, available at: http://editoria.rm.ingv.it/archivio_pdf/rapporti/58/pdf/rapporti_59.pdf (last access: 30 August 2021),
2008. a
Boore, D. M.: Estimating Vs(30) (or NEHRP Site Classes) from Shallow
Velocity Models (Depths < 30 m), B.
Seismol. Soc. Am., 94, 591–597, https://doi.org/10.1785/0120030105,
2004. a
Buland, R.: SEED Reference Manual, Tech. Rep., Incorporated Research
Institutions for Seismology (IRIS), available at:
http://www.fdsn.org/pdf/SEEDManual_V2.4.pdf (last access: 30 August 2021), 2006. a
Chen, Y., Zhang, M., Bai, M., and Chen, W.: Improving the Signal-to-Noise
Ratio of Seismological Datasets by Unsupervised Machine Learning,
Seismol. Res. Lett., 90, 1552–1564, https://doi.org/10.1785/0220190028,
2019. a
Chollet, F. and others: Keras [code], available at: https://keras.io (last access: 25 November 2021), 2015. a
Danecek, P., Pintore, S., Mazza, S., Mandiello, A., Fares, M., Carluccio, I.,
Della Bina, E., Franceschi, D., Moretti, M., Lauciani, V., Quintiliani, M.,
and Michelini, A.: The Italian Node of the European Integrated Data
Archive, Seismol. Res. Lett., 92, 1726–1737, https://doi.org/10.1785/0220200409, 2021. a, b, c, d, e
Del Pezzo, E., Esposito, A., Giudicepietro, F., Marinaro, M., Martini, M., and
Scarpetta, S.: Discrimination of Earthquakes and Underwater Explosions
Using Neural Networks, B. Seismol. Soc.
Am., 93, 215–223, https://doi.org/10.1785/0120020005, 2003. a
Derras, B.: Peak Ground Acceleration Prediction Using Artificial
Neural Networks Approach: Application to the Kik-Net Data,
International Journal of Earthquake Engineering and Hazard Mitigation, 2, 144–153, https://doi.org/10.15866/irehm.v2i4.7121, 2014. a
Derras, B., Bard, P., Cotton, F., and Bekkouche, A.: Adapting the Neural
Network Approach to PGA Prediction: An Example Based on the
KiK‐net Data, B. Seismol. Soc. Am., 102,
1446–1461, https://doi.org/10.1785/0120110088, 2012. a
Dramsch, J. S.: Chapter One – 70 years of machine learning in geoscience in
review, Adv. Geophys., 61, 1–55, https://doi.org/10.1016/bs.agph.2020.08.002, 2020. a
EMERSITO Working Group: Rete sismica del gruppo EMERSITO, sequenza sismica
del 2016 in Italia Centrale, Instituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/SD/7TXEGDO5X8, 2018. a
Esposito, A. M., Giudicepietro, F., Scarpetta, S., D'Auria, L., Marinaro, M.,
and Martini, M.: Automatic Discrimination among Landslide,
Explosion-Quake, and Microtremor Seismic Signals at Stromboli
Volcano Using Neural Networks, B. Seismol. Soc.
Am., 96, 1230–1240, https://doi.org/10.1785/0120050097, 2006. a
Fang, L., Wu, Z., and Song, K.: SeismOlympics, Seismol. Res.
Lett., 88, 1429–1430, https://doi.org/10.1785/0220170134, 2017. a
Geological Survey-Provincia Autonoma di Trento: Trentino Seismic Network, International Federation of Digital Seismograph Networks [data set],
https://doi.org/10.7914/SN/ST, 1981. a
Giardini, D., Wiemer, S., Faeh, D., and Deichmann, N.: Seismic Hazard
Assessment of Switzerland, 2004, Tech. Rep., Swiss Seismological Service,
ETH Zurich, available at:
http://www.seismo.ethz.ch/export/sites/sedsite/knowledge/.galleries/pdf_hazard2004/hazard_report_2004.pdf_2063069299.pdf (last access: 25 November 2021),
2004. a
Gulia, L. and Gasperini, P.: Contamination of Frequency–Magnitude Slope
(b‐Value) by Quarry Blasts: An Example for Italy, Seismol.
Res. Lett., 92, 3538–3551, https://doi.org/10.1785/0220210080, 2021. a, b
Gutenberg, B. and Richter, C. F.: Frequency of earthquakes in California,
B. Seismol. Soc. Am., 34, 185–188, 1944. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array
programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a, b
Ingate, S.: The IRIS Consortium: Community Based Facilities and Data Management for Seismology, in: Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries, NATO Science Series: IV: Earth and Environmental Sciences, edited by: Husebye, E. S., vol. 81, 121–132, Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-6815-7_8, 2008. a
INGV Seismological Data Centre: Rete Sismica Nazionale (RSN), Instituto Nazionale di Geofisica e Vulcanologia [data set],
https://doi.org/10.13127/SD/X0FXNH7QFY, 1997. a
Institute of Geosciences, Energy, Water and Environment: Albanian
Seismological Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/AC, 2002. a
Istituto Nazionale di Geofisica e Vulcanologia (INGV): INGV experiments
network, Instituto Nazionale di Geofisica e Vulcanologia [data set], available at: http://cnt.rm.ingv.it/instruments/network/TV (last access: 19 November 2021),
2008. a
Istituto Nazionale di Geofisica e Vulcanologia (INGV): Seismic Emergency
for Ischia by Sismiko (2017–2021), International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/ZM_2017/ (last access: 19 November 2021), 2017. a
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Istituto di Geologia
Ambientale e Geoingegneria (CNR-IGAG), Istituto per la Dinamica dei
Processi Ambientali (CNR-IDPA), Istituto di Metodologie per l'Analisi
Ambientale (CNR-IMAA), and Agenzia Nazionale per le nuove tecnologie,
l’energia e lo sviluppo economico sostenibile (ENEA): Rete del Centro di
Microzonazione Sismica (CentroMZ), sequenza sismica del 2016 in
Italia Centrale, Instituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/SD/KU7XM12YY9, 2018. a
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS):
North-East Italy Seismic Network, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/OX, 2016. a
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T.: Caffe: Convolutional Architecture for
Fast Feature Embedding, arXiv [preprint], arXiv:1408.5093, 20 June 2014. a
Johnson, P. A., Rouet Leduc, B., Pyrak-Nolte, L. J., Beroza, G. C., Marone,
C. J., Hulbert, C., Howard, A., Singer, P., Gordeev, D., Karaflos, D.,
Levinson, C. J., Pfeiffer, P., Puk, K. M., and Reade, W.: Laboratory
earthquake forecasting: A machine learning competition, P.
Natl. Acad. Sci. USA, 118, e2011362118,
https://doi.org/10.1073/pnas.2011362118, 2021. a
Jozinović, D., Lomax, A., Štajduhar, I., and Michelini, A.: Rapid prediction
of earthquake ground shaking intensity using raw waveform data and a
convolutional neural network, Geophys. J. Int., 222,
1379–1389, https://doi.org/10.1093/gji/ggaa233, 2020. a, b, c
Jozinović, D., Lomax, A. J., Stajduhar, I., and Michelini, A.: SSA 2021
Annual Meeting, Seismol. Res. Lett., 92, 1213–1479,
https://doi.org/10.1785/0220210025, 2021. a
Kong, Q., Trugman, D. T., Ross, Z. E., Bianco, M. J., Meade, B. J., and
Gerstoft, P.: Machine Learning in Seismology: Turning Data into
Insights, Seismol. Res. Lett., 90, 3–14,
https://doi.org/10.1785/0220180259, 2018. a
Korneev, V. A., Nadeau, R. M., and McEvilly, T. V.: Seismological Studies at
Parkfield IX: Fault-Zone Imaging Using Guided Wave
Attenuation, B. Seismol. Soc. Am., 93,
1415–1426, https://doi.org/10.1785/0120020114, 2003. a
Kriegerowski, M., Petersen, G. M., Vasyura Bathke, H., and Ohrnberger, M.: A
Deep Convolutional Neural Network for Localization of Clustered
Earthquakes Based on Multistation Full Waveforms, Seismol.
Res. Lett., 90, 510–516, https://doi.org/10.1785/0220180320, 2018. a
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C.,
and Wassermann, J.: ObsPy: a bridge for seismology into the scientific
Python ecosystem, Computational Science & Discovery, 8, 014003,
https://doi.org/10.1088/1749-4699/8/1/014003, 2015. a, b
Lanzano, G., Luzi, L., Russo, E., Felicetta, C., D'Amico, M., Sgobba, S., and
Pacor, F.: Engineering Strong Motion Database (ESM) flatfile [data
set], Tech. Rep., Istituto Nazionale di Geofisica e Vulcanologia (INGV),
https://doi.org/10.13127/esm/flatfile.1.0, 2018. a
Linville, L., Pankow, K., and Draelos, T.: Deep Learning Models Augment
Analyst Decisions for Event Discrimination, Geophys. Res.
Lett., 46, 3643–3651, https://doi.org/10.1029/2018GL081119, 2019. a
Lomax, A., Michelini, A., and Jozinović, D.: An Investigation of Rapid
Earthquake Characterization Using Single‐Station Waveforms and
a Convolutional Neural Network, Seismol. Res. Lett., 90,
517–529, https://doi.org/10.1785/0220180311, 2019. a
Magrini, F., Jozinovic, D., Cammarano, F., Michelini, A., and Boschi, L.: Local
earthquakes detection: A benchmark dataset of 3-component seismograms built
on a global scale, Artificial Intelligence in Geosciences, 1, 1–10,
https://doi.org/10.1016/j.aiig.2020.04.001, 2020. a, b
Margheriti, L., Nostro, C., Cocina, O., Castellano, M., Moretti, M., Lauciani,
V., Quintiliani, M., Bono, A., Mele, F. M., Pintore, S., Montalto, P.,
Peluso, R., Scarpato, G., Rao, S., Alparone, S., Di Prima, S., Orazi, M.,
Piersanti, A., Cecere, G., Cattaneo, M., Vicari, A., Sepe, V., Bignami, C.,
Valoroso, L., Aliotta, M., Azzarone, A., Baccheschi, P., Benincasa, A.,
Bernardi, F., Carluccio, I., Casarotti, E., Cassisi, C., Castello, B.,
Cirilli, F., D'Agostino, M., D'Ambrosio, C., Danecek, P., Cesare, W. D.,
Bina, E. D., Di Filippo, A., Di Stefano, R., Faenza, L., Falco, L., Fares,
M., Ficeli, P., Latorre, D., Lorenzino, M. C., Mandiello, A., Marchetti, A.,
Mazza, S., Michelini, A., Nardi, A., Pastori, M., Pignone, M., Prestifilippo,
M., Ricciolino, P., Sensale, G., Scognamiglio, L., Selvaggi, G., Torrisi, O.,
Zanolin, F., Amato, A., Bianco, F., Branca, S., Privitera, E., and Stramondo,
S.: Seismic Surveillance and Earthquake Monitoring in Italy,
Seismol. Res. Lett., 92, 1659–1671, https://doi.org/10.1785/0220200380, 2021. a
McKinney, W.: Data Structures for Statistical Computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: van der Walt, S. and Millman, J., pp. 56–61, https://doi.org/10.25080/Majora-92bf1922-00a,
2010. a
McNamara, D. E. and Buland, R. P.: Ambient Noise Levels in the
Continental United States, B. Seismol. Soc.
Am., 94, 1517–1527, https://doi.org/10.1785/012003001, 2004. a
MedNet Project Partner Institutions: Mediterranean Very Broadband
Seismographic Network (MedNet), Instituto Nazionale di Geofisica e Vulcanologia [data set], https://doi.org/10.13127/SD/FBBBTDTD6Q, 1988. a
Megies, T., Beyreuther, M., Barsch, R., Krischer, L., and Wassermann, J.:
ObsPy – What can it do for data centers and observatories?, Ann. Geophys.-Italy, 54, 47–58, https://doi.org/10.4401/ag-4838, 2011. a, b
Meier, M.-A., Ross, Z. E., Ramachandran, A., Balakrishna, A., Nair, S.,
Kundzicz, P., Li, Z., Andrews, J., Hauksson, E., and Yue, Y.: Reliable
Real-Time Seismic Signal/Noise Discrimination With Machine
Learning, J. Geophys. Res.-Sol. Ea., 124, 788–800,
https://doi.org/10.1029/2018JB016661, 2019. a
Mele, F., Arcoraci, L., Battelli, P., Berardi, M., Castellano, C., Lozzi, G.,
Marchetti, A., Nardi, A., Pirro, M., and Rossi, A.: Bollettino Sismico
Italiano 2008 (Italian Seismic Bulletin 2008), Quaderni di geofisica, p. 45, available at:
https://istituto.ingv.it/images/collane-editoriali/quaderni-di-geofisica/quaderni-di-geofisica-2010/quaderno85.pdf (last access: 19 November 2021),
2010. a, b, c
Michelini, A., Margheriti, L., Cattaneo, M., Cecere, G., D'Anna, G., Delladio, A., Moretti, M., Pintore, S., Amato, A., Basili, A., Bono, A., Casale, P., Danecek, P., Demartin, M., Faenza, L., Lauciani, V., Mandiello, A. G., Marchetti, A., Marcocci, C., Mazza, S., Mele, F. M., Nardi, A., Nostro, C., Pignone, M., Quintiliani, M., Rao, S., Scognamiglio, L., and Selvaggi, G.: The Italian National Seismic Network and the earthquake and tsunami monitoring and surveillance systems, Adv. Geosci., 43, 31–38, https://doi.org/10.5194/adgeo-43-31-2016, 2016. a, b
Michelini, A., Faenza, L., Lanzano, G., Lauciani, V., Jozinović, D., Puglia,
R., and Luzi, L.: The New ShakeMap in Italy: Progress and Advances
in the Last 10 Yr, Seismol. Res. Lett., 91, 317–333,
https://doi.org/10.1785/0220190130, 2019. a
Michelini, A., Cianetti, S., Gaviano, S., Giunchi, C., Jozinović, D., and
Lauciani, V.: INSTANCE The Italian Seismic Dataset For Machine
Learning, INGV [data set], https://doi.org/10.13127/instance, 2021. a, b
Moretti, M., De Gori, P., Govoni, A., Margheriti, L., Piccinini, D., Pintore,
S., and Valoroso, L.: Seismic Data acquired by the SISMIKO Emergency
Group – Molise-Italy 2018 – T14, EIDA [data set], https://doi.org/10.13127/SD/FIR72CHYWU, 2018. a
Mousavi, S. M. and Beroza, G. C.: A Machine‐Learning Approach for
Earthquake Magnitude Estimation, Geophys. Res. Lett., 47,
e2019GL085976, https://doi.org/10.1029/2019GL085976, 2020. a, b
Münchmeyer, J., Bindi, D., Leser, U., and Tilmann, F.: The transformer
earthquake alerting model: A new versatile approach to earthquake early
warning, Geophys. J. Int., 225, 646–656, https://doi.org/10.1093/gji/ggaa609, 2020. a
Münchmeyer, J., Bindi, D., Leser, U., and Tilmann, F.: Earthquake magnitude
and location estimation from real time seismic waveforms with a transformer
network, Geophys. J. Int., 226, 1086–1104, https://doi.org/10.1093/gji/ggab139, 2021. a
National Observatory of Athens, Institute of Geodynamics, Athens: National
Observatory of Athens Seismic Network, International Federation of Digitial Seismograph Networks [data set], https://doi.org/10.7914/SN/HL, 1997. a
OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) and
University of Trieste: North-East Italy Broadband Network, International Federation of Digitial Seismograph Networks [data set],
https://doi.org/10.7914/SN/NI, 2002. a
Otović, E., Njirjak, M., Jozinović, D., Mauša, G., Michelini, A., and Štajduhar, I.: Intra-domain and cross-domain transfer learning for time series, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12142, https://doi.org/10.5194/egusphere-egu21-12142, 2021. a
Parolai, S.: Denoising of Seismograms Using the S Transform, B. Seismol. Soc. Am., 99, 226–234,
https://doi.org/10.1785/0120080001, 2009. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S.: PyTorch: An Imperative Style,
High-Performance Deep Learning Library, in: Advances in Neural
Information Processing Systems 32, edited by: Wallach, H., Larochelle,
H., Beygelzimer, A., Alché-Buc, F. d., Fox, E., and Garnett, R., Curran Associates, Inc., 8024–8035, available at:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (last access: 19 November 2021),
2019. a
Perol, T., Gharbi, M., and Denolle, M.: Convolutional neural network for
earthquake detection and location, Sci. Adv., 4, e1700578,
https://doi.org/10.1126/sciadv.1700578, 2018. a
Quinteros, J., Carter, J. A., Schaeffer, J., Trabant, C., and Pedersen, H. A.:
Exploring Approaches for Large Data in Seismology: User and Data
Repository Perspectives, Seismol. Res. Lett., 92, 1531–1540,
https://doi.org/10.1785/0220200390, 2021. a
The pandas development team: pandas-dev/pandas: Pandas 1.1.4 (v1.1.4), Zenodo [code], https://doi.org/10.5281/zenodo.4161697, 2020. a
Ross, Z. E., Meier, M.-A., and Hauksson, E.: P Wave Arrival Picking and
First-Motion Polarity Determination With Deep Learning, J. Geophys. Res.-Sol. Ea., 123, 5120–5129,
https://doi.org/10.1029/2017JB015251,
2018b. a, b, c, d
Scognamiglio, L., Tinti, E., and Michelini, A.: Real-Time Determination of
Seismic Moment Tensor for the Italian Region, B.
Seismol. Soc. Am., 99, 2223–2242, https://doi.org/10.1785/0120080104,
2009. a
Seydoux, L., Balestriero, R., Poli, P., de Hoop, M., Campillo, M., and
Baraniuk, R.: Clustering earthquake signals and background noises in
continuous seismic data with unsupervised deep learning, Nat.
Commun., 11, 3972, https://doi.org/10.1038/s41467-020-17841-x, 2020. a
Shearer, P. M.: Imaging global body wave phases by stacking long-period
seismograms, J. Geophys. Res.-Sol. Ea., 96,
20353–20364, https://doi.org/10.1029/91JB00421, 1991. a
Strollo, A., Cambaz, D., Clinton, J., Danecek, P., Evangelidis, C. P.,
Marmureanu, A., Ottemöller, L., Pedersen, H., Sleeman, R., Stammler, K.,
Armbruster, D., Bienkowski, J., Boukouras, K., Evans, P. L., Fares, M.,
Neagoe, C., Heimers, S., Heinloo, A., Hoffmann, M., Kaestli, P., Lauciani,
V., Michalek, J., Odon Muhire, E., Ozer, M., Palangeanu, L., Pardo, C.,
Quinteros, J., Quintiliani, M., Antonio Jara-Salvador, J., Schaeffer, J.,
Schloemer, A., and Triantafyllis, N.: EIDA: The European Integrated
Data Archive and Service Infrastructure within ORFEUS,
Seismol. Res. Lett., 92, 1788–1795, https://doi.org/10.1785/0220200413, 2021. a
Trugman, D. T. and Shearer, P. M.: Strong Correlation between Stress Drop
and Peak Ground Acceleration for Recent M 1–4 Earthquakes in
the San Francisco Bay Area, B. Seismol. Soc.
Am., 108, 929–945, https://doi.org/10.1785/0120170245, 2018. a
Universita della Basilicata: UniBAS, International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/BA/ (last access: 19 November 2021), 2005. a
Universita Federico II Napoli: Irpinia Seismic Network, International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/IX/ (last access: 19 November 2021), 2005. a
University of Bari “Aldo Moro”: OTRIONS, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/OT, 2013. a
University of Genoa: Regional Seismic Network of North Western
Italy, International Federation of Digital Seismograph Networks [data set], https://doi.org/10.7914/SN/GU, 1967. a
University of Trieste: Friuli Venezia Giulia Accelerometric Network, International Federation of Digital Seismograph Networks [data set],
https://doi.org/10.7914/SN/RF, 1993. a
Vallée, M., Ampuero, J. P., Juhel, K., Bernard, P., Montagner, J.-P., and
Barsuglia, M.: Observations and modeling of the elastogravity signals
preceding direct seismic waves, Science, 358, 1164–1168,
https://doi.org/10.1126/science.aao0746, 2017. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Walter, J. I., Ogwari, P., Thiel, A., Ferrer, F., and Woelfel, I.: easyQuake:
Putting Machine Learning to Work for Your Regional Seismic
Network or Local Earthquake Study, Seismol. Res. Lett.,
92, 555–563, https://doi.org/10.1785/0220200226, 2020. a
Waskom, M. L.: seaborn: statistical data visualization, Journal of Open Source
Software, 6, 3021, https://doi.org/10.21105/joss.03021, 2021. a
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J., and Soto, H.: SeisBench – A Toolbox for Machine Learning in Seismology, arXiv [preprint], arXiv:2111.00786, 1 November 2021. a
Yeck, W. L. and Patton, J.: Waveform Data and Metadata used to National
Earthquake Information Center Deep-Learning Models, USGS [data set],
https://doi.org/10.5066/P9OHF4WL, 2020. a
Yeck, W. L., Patton, J. M., Ross, Z. E., Hayes, G. P., Guy, M. R., Ambruz,
N. B., Shelly, D. R., Benz, H. M., and Earle, P. S.: Leveraging Deep
Learning in Global 24/7 Real-Time Earthquake Monitoring at the
National Earthquake Information Center, Seismol. Res.
Lett., 92, 469–480, https://doi.org/10.1785/0220200178, 2020. a, b
Zentralanstalt fur Meterologie und Geodynamik (ZAMG): Province Sudtirol, International Federation of Digital Seismograph Networks [data set], available at:
https://www.fdsn.org/networks/detail/SI/ (last access: 19 November 2021), 2006. a
Zhang, J. and Chen, J.: Joint seismic traveltime and waveform inversion for
near surface imaging, in: SEG Technical Program Expanded Abstracts
2014, Society of Exploration Geophysicists, Denver, Colorado, pp. 934–937,
https://doi.org/10.1190/segam2014-1501.1, 2014. a
Zhang, X., Zhang, J., Yuan, C., Liu, S., Chen, Z., and Li, W.: Locating induced
earthquakes with a network of seismic stations in Oklahoma via a deep
learning method, Scientific Reports, 10, 1941,
https://doi.org/10.1038/s41598-020-58908-5, 2020. a
Zhu, L., Peng, Z., McClellan, J., Li, C., Yao, D., Li, Z., and Fang, L.: Deep
learning for seismic phase detection and picking in the aftershock zone of
2008 Mw 7.9 Wenchuan Earthquake, Phys. Earth Planet.
In., 293, 106261, https://doi.org/10.1016/j.pepi.2019.05.004,
2019.
a, b
Zhu, W., Mousavi, S. M., and Beroza, G. C.: Seismic Signal Denoising and
Decomposition Using Deep Neural Networks, IEEE T.
Geosci. Remote, 57, 9476–9488,
https://doi.org/10.1109/TGRS.2019.2926772, 2019. a, b, c
Short summary
We present a dataset consisting of seismic waveforms and associated metadata to be used primarily for seismologically oriented machine-learning (ML) studies. The dataset includes about 1.3 M three-component seismograms of fixed 120 s length, sampled at 100 Hz and recorded by more than 600 stations in Italy. The dataset is subdivided into seismograms deriving from earthquakes (~ 1.2 M) and from seismic noise (~ 130 000). The ~ 54 000 earthquakes range in magnitude from 0 to 6.5 from 2005 to 2020.
We present a dataset consisting of seismic waveforms and associated metadata to be used...
Altmetrics
Final-revised paper
Preprint