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Abstract. The Italian earthquake waveform data are collected here in a dataset suited for machine learning anal-
ysis (ML) applications. The dataset consists of nearly 1.2 million three-component (3C) waveform traces from
about 50 000 earthquakes and more than 130 000 noise 3C waveform traces, for a total of about 43 000 h of data
and an average of 21 3C traces provided per event. The earthquake list is based on the Italian Seismic Bulletin
(http://terremoti.ingv.it/bsi, last access: 15 February 2020) of the Istituto Nazionale di Geofisica e Vulcanologia
between January 2005 and January 2020, and it includes events in the magnitude range between 0.0 and 6.5. The
waveform data have been recorded primarily by the Italian National Seismic Network (network code IV) and in-
clude both weak- (HH, EH channels) and strong-motion (HN channels) recordings. All the waveform traces have
a length of 120 s, are sampled at 100 Hz, and are provided both in counts and ground motion physical units after
deconvolution of the instrument transfer functions. The waveform dataset is accompanied by metadata consist-
ing of more than 100 parameters providing comprehensive information on the earthquake source, the recording
stations, the trace features, and other derived quantities. This rich set of metadata allows the users to target the
data selection for their own purposes. Much of these metadata can be used as labels in ML analysis or for other
studies. The dataset, assembled in HDF5 format, is available at http://doi.org/10.13127/instance (Michelini et al.,
2021).

1 Introduction

Important breakthroughs in the understanding of earthquake
phenomena can be achieved through the analysis of the very
large number of continuous waveform recordings stored in
the existing seismic archives. To this end, it can be impor-
tant to make available well-organized representative subsets
of the archives together with their associated metadata infor-
mation.

The recent developments of machine learning (ML) soft-
ware platforms like TensorFlow, PyTorch, Keras, Caffe (see
Abadi et al., 2016; Paszke et al., 2019; Chollet and oth-
ers, 2015; and Jia et al., 2014, respectively); the availabil-
ity of high performance computing hardware (i.e., GPUs);

and the access to thoroughly selected benchmark datasets
(e.g., STEAD, https://github.com/smousavi05/STEAD, last
access: 19 November 2021; and LEN-DB, https://doi.org/10.
5281/zenodo.3648231) offer new opportunities to apply ML
methodologies to seismological and earthquake engineering
problems. In particular, the use of sophisticated and opti-
mized ML algorithms for the analysis of large amounts of
seismic data can lead to remarkable improvements for au-
tomated tasks like seismic waveform onset picking, ground
motion prediction, and earthquake early warning; for the
detection of hidden signals currently recognized as noise;
or for novel modeling and inversion strategies (see Kong
et al., 2018; Bergen et al., 2019; and Dramsch, 2020, for
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recent reviews). Specifically, the advent of ML in the field
of seismology has highlighted the importance of reference
datasets for benchmarking the developed methodologies, and
it has fostered more thorough and statistically sound schemes
for analyzing the data, like splitting all the available data
into training, validation, and test sets. Moreover, the in-
troduction of competitions like those for predicting labora-
tory earthquakes launched on the Kaggle platform (https://
www.kaggle.com/c/LANL-Earthquake-Prediction/data, last
access: 19 November 2021) or the SeismOlympics (Fang
et al., 2017), which attracted several thousand teams, evi-
dences even more the great potential of benchmark datasets
(Johnson et al., 2021) and the general interest to tackle seis-
mology problems with ML.

The application of ML techniques to seismological wave-
form data can be quite straightforward. Indeed, large
amounts of labeled data are already available thanks to the
analyses carried out for many decades by expert analysts that
have compiled and reviewed earthquake catalogs (which in-
clude phase onset readings, earthquake location, and size es-
timates) or that have assembled ground motion parameters in
special flat files and maps of strong ground motion among the
most common tasks. Their work provides effectively meta-
data that can be associated with the recorded waveforms and
that can be used as labels when performing ML analysis.
A main bottleneck in wide-scale implementation of ML is,
however, the fast access to the waveforms and to the asso-
ciated metadata. Open-access waveform archives available
to the seismological community (e.g., EIDA, Strollo et al.,
2021; or IRIS, Ingate, 2008) were mainly designed for pre-
serving the continuous data and making them available to
the scientific community. In practice, one of the main goals
of seismological data centers has been the seamless acqui-
sition of continuous data from the networks and the preser-
vation, curation, and archiving of the entire record of con-
tinuous waveforms. In this context, the users have complete
flexibility in the selection of the data to download, but ac-
cessing large data volumes can be very time consuming.
Thus, despite the achievements attained in the last decades
with the implementation of well-tested and efficient web ser-
vices (e.g., FDSN dataselect), the accessibility of re-
mote servers still remains cumbersome (Quinteros et al.,
2021). It follows that in order to attract a broader audience of
users and developers there is a strong need to assemble and
publish benchmark datasets that can be readily used with the
existing software platforms (Mousavi et al., 2019). In practi-
cal terms, the matter consists of assembling quality-checked
data and metadata according to volume and formats ready to
be used in ML applications.

Recently, effort has been made to assemble and make pub-
licly available datasets consisting of waveforms and associ-
ated metadata. In detail, the dataset used in the works by Ross
et al. (2018a), Ross et al. (2018b), and Meier et al. (2019)
is downloadable from the Southern California Earthquake
Data Center at the web portal https://scedc.caltech.edu/data/

deeplearning.html (last access: 19 November 2021). This
dataset includes 4.8 million time series recorded by nearly
700 receivers from more than 270 000 earthquakes in south-
ern California. The STEAD dataset assembled by Mousavi
et al. (2019) includes 1.2 million of 3C traces compris-
ing 450 000 local earthquakes and 100 000 noise windows
recorded by more than 2600 stations at the global scale. The
LEN-DB dataset (Magrini et al., 2020) is also a global dataset
of local earthquakes and includes 1.2 million 3C waveform
traces, with half belonging to earthquakes and half to noise.
The NEIC dataset (Yeck and Patton, 2020) includes global
data and has been used by Yeck et al. (2020) to train the
1.3 million seismic-phase arrivals using three separate con-
volutional neural network models to predict arrival time on-
set, phase type, and distance.

Results attained by Ross et al. (2018b), L. Zhu et al.
(2019), W. Zhu et al. (2019), Mousavi et al. (2020), and
Mousavi and Beroza (2020) are excellent examples of suc-
cessful applications of ML which can improve substantially
the earthquake detection level with respect to most traditional
methods, leading to the location of tiny and previously unde-
tected earthquakes improving our knowledge on the hetero-
geneity of stress release on known and unknown faults. This
enhanced information is crucial to make more thorough as-
sessments of the ongoing seismotectonics and seismic haz-
ard. The ML methods are likely to become an irreplaceable
tool in seismology to extract as much information as possible
from the large amount of data already stored in the archives.
Among the indirect advantages, the enhanced detection can,
to some extent, also govern network densification with sen-
sible reductions in equipment investments and maintenance
costs.

In general, the impressive performances of ML applica-
tions have been strongly related to the availability of large
amounts of data with associated properly labeled metadata.
Large amounts of data are critical to perform proper training
and avoid data overfitting. However, the preparation of a ML
dataset is also tedious and very time consuming. These are
the main reasons that motivated the work presented in this
article. Our goal is to provide an open-access dataset consist-
ing of raw and instrument removed waveform data and asso-
ciated metadata to study earthquake occurrence in Italy. The
data collection, named INSTANCE, gathers seismic wave-
form data from weak- and strong-motion stations that have
been extracted from the Italian EIDA node (Danecek et al.,
2021; see Sect. 6 for a full list of the FDSN networks in-
cluded in the dataset). The metadata associated with the
waveforms are extracted from the INGV earthquake cata-
logue and from the waveform traces themselves. We expect
this reference dataset to be used for several different purposes
spanning from improvements of the existing configurations
of seismic monitoring in Italy to the development and test-
ing of new techniques for earthquake detection and ground
motion estimation.
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2 Earthquakes

2.1 Data preparation

The data collection was assembled following the main stages
listed below:

1. earthquake selection;

2. station selection;

3. waveform data selection and download;

4. cross-validation between phase-based station selection
and downloaded waveform data;

5. processing of the data counts waveforms;

6. application of the instrument transfer function to the
waveforms.

2.1.1 Earthquake selection

To compile the waveform dataset, we started from the Ital-
ian Seismic Bulletin (http://terremoti.ingv.it/en/bsi, last ac-
cess: 15 February 2020, INGV bulletin hereinafter) and seis-
mic stations archives (http://terremoti.ingv.it/iside, last ac-
cess: 15 February 2020). These data are public and can be
queried using the fdsnws-event (https://www.fdsn.org/
webservices/fdsnws-event-1.2.pdf, last access: 19 Novem-
ber 2021) and the fdsnws-station web services pro-
vided by INGV. The event data belong to the INGV bulletin,
which has been adopting the same velocity model and earth-
quake location software in the time period included in this
study (see Appendix B for details).

The first step consisted of retrieving all the earthquakes
with M ≥ 0 from 1 January 2005 to 31 January 2020 in
an enlarged area within the latitude and longitude corners
(35.0, 5.0) and (49.0, 19.0). A total of 315 225 earthquakes
were found. The beginning of the query corresponds approx-
imately with the update, renovation, and increase in the num-
ber of stations of the national seismic network (Michelini
et al., 2016; Danecek et al., 2021; Margheriti et al., 2021).
Around 2005, the INGV network (FDSN code IV) under-
went a major upgrade, with the existing, predominantly ana-
log, instruments being replaced by high-quality digital seis-
mic data loggers and new, mostly broadband (and some ex-
tended short period), three-component (3C) sensors. Selected
stations were also complemented with additional 3C strong-
motion sensors. The upgrade resulted in more than a 2-fold
increase in the number of stations of IV network. In addition,
since 2005, there have been many temporary deployments of
seismic stations coinciding with earthquake sequences and
specific experiments, the data of which are also available
through the EIDA INGV node (Danecek et al., 2021). The
total number of stations also increased thanks to the con-
tribution of the networks belonging to other Italian institu-
tions (e.g., the University of Genoa, the National Institute

of Oceanography and Experimental Geophysics (OGS), and
the University of Naples, among others). This increment re-
sulted in a significant improvement of the detection of low-
magnitude earthquakes. At the regional scale of Italy, the
magnitude of completeness of the INGV bulletin is around
∼M 1.7–M 1.8, although significant differences occur de-
pending on the area. In this regard, the preferred INGV cata-
logue magnitude is the local magnitude, Ml, (Richter, 1935)
but sometimes also Mw and Md (see below for additional de-
tails).

A relevant aspect when compiling a large dataset to be
used for ML purposes consists of gathering a balanced distri-
bution of data. In seismology, when using earthquake mag-
nitude for classification, balanced representation is impossi-
ble to achieve because small-size earthquakes, following the
Gutenberg–Richter magnitude versus the number of earth-
quakes power law (Gutenberg and Richter, 1944), outnum-
ber larger earthquakes. To address this issue (or at least to
mitigate its influence), we choose to select in our target area

– the great majority of the earthquakes with M ≥ 4.0 – the
earthquakes that have been discarded (30) all (except
for 5) occurred outside the Italian country borders and
mainly in the Balkan area (the earthquakes in Italy, all
with M < 5, will be included in a future update of the
dataset);

– earthquakes with origin times differing by more than
120 s in the range 2.0≤M < 4.0; and

– an additional 20 000 earthquakes, randomly selected,
with origin times differing by more than 120 s for M <

2.0.

The resulting distribution of the earthquakes according to
their magnitude is detailed in Table 1, and they are mapped
in Fig. 1a.

2.1.2 Station selection

In order to gather high-quality earthquake signals, we based
our choice on the most accurately picked P- and S-wave on-
set phases published in the INGV bulletin. In this regard, the
manual picking of the arrival phases is routinely performed
by a group of about 20 INGV highly trained staff person-
nel who also review the hypocenter locations and magni-
tude determination before bulletin publication. These manu-
ally reviewed locations are indicated as preferred solutions
in the INGV bulletin. In practice, we have selected only
those stations that had P- and, if available, S-wave onset
picks associated with the preferred location of the INGV
bulletin. We note that the strong-motion data provided by
the national strong-motion network (Rete Accelerometrica
Nazionale) operated by the Italian Department of Civil Pro-
tection do not enter in the earthquake picking and location
performed by the INGV staff, and the same data are not avail-
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Table 1. Final data selection. “All” indicates the total number of earthquakes in the INGV bulletin in the time period between 1 January 2005
and 31 January 2020, “Selected” and “Percent kept” refer to the earthquakes, and “Nb. 3C records” refers to the waveform traces included in
the dataset.

≥Mmin < Mmax All Selected Percent kept Nb. 3C records

0 1 57 746 4462 7.73 39 794
1 2 209 652 15 249 7.27 202 572
2 3 43 109 30 845 71.55 757 129
3 4 4342 3106 71.53 139 338
4 5 342 315 92.11 18 659
5 6 31 28 90.32 1593
6 7 3 3 100.0 164

0 7 315 225 54 008 17.13 1 159 249

Figure 1. Map of the earthquakes included in the dataset shown as solid circles with colors selected according to depth (a), and map of
the available moment tensors with colors assigned depending on the focal mechanism (b). Symbol size, in both maps, is proportional to
earthquake magnitude.

able through EIDA. They may be included, however, in fu-
ture releases of the dataset.

In summary, we have adopted the following criteria to
identify the waveform records to be included in the dataset
after the earthquake selection above was applied:

– all stations that feature P-wave onset phases (and S-
wave onset phases when available) used for the pre-
ferred earthquake location (no distinction is made be-
tween Pg, and Pn and no secondary phases like PmP are
picked);

– all stations with waveform data available through the
Italian EIDA node (see the dataset contributing net-
works in the pie diagram of Fig. 5b);

– P- and S-wave location residual times less than 1.0 s;

– P- and S-wave phases that contributed to the location
with a weight larger than 10 %.

This selection procedure reduced the number of P- and S-
wave phases from ∼ 1.9 to ∼ 1.2 and from ∼ 1.1 to ∼
0.7 millions, respectively.
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2.1.3 Waveform data selection and download

The selection procedure described in Sect. 2.1.2 resulted in
the compilation of a list of waveform data time windows to be
downloaded from the EIDA continuous waveform archive.
We choose a time window of 120 s in order to include both P
and S waves from stations whose distance is up to ∼ 600 km
from the hypocenter. Indeed, in these cases, the S−P time
differences are approximately 75–80 s. Adding about 20 s of
the signal before the P-wave time and about 20 s after the S
wave, we end up with a 120 s window choice providing the
most significant earthquake signals for either the most distant
stations, in the case of crustal depth earthquakes, or closer
stations, in the case of deep earthquakes of the Calabrian Arc
subduction.

More technically, the time windows set for data down-
load were defined by inserting a randomly selected buffer
time ranging between 15 and 20 s before the P-wave on-
set arrival phase and enlarging the time window to 125 s.
The adoption of 125 s long windows at the data download
stage is arbitrary since after data processing the time win-
dows have been all set to 120 s. This criterion ensured that the
great majority of the waveform traces downloaded featured
a pre-P-wave onset buffer time between 15 and 20 s. How-
ever, we found that, when dealing with such a large num-
ber of waveforms acquired by diversified instruments config-
ured differently, some discrepancies may occur. In practice,
since the data are archived in miniSEED compressed for-
mat that features different sizes of the logical records, and
since the web service extracts the full logical record con-
taining the predefined trace start time, the start time of the
trace can be earlier than the predefined minimum time of 20 s
(i.e., in this case, there is a longer time interval between the
P-arrival and the actual trace start time). In contrast, when
data are missing before the P-wave onset time (i.e., in the
15–20 s pre-P-onset buffer time), start time of the extracted
window can be delayed and a shorter time interval will sep-
arate the trace window start time from the P-wave arrival
time (i.e., < 15 s). See Fig. D1 in the Appendix for the dis-
tribution of the P- and S-wave phase arrival time samples.
The data (miniSEED format) were downloaded using the
FDSN dataselect web services provided by INGV (http:
//terremoti.ingv.it/en/webservices_and_software, last access:
19 November 2021). Using a set of 14 container-based query-
ing procedures running in parallel, this stage required about
7 d to complete the download of the ∼ 4 million waveform
traces (i.e., ∼ 1.3 million 3C traces), with a storage require-
ment of ∼ 80 GB (miniSEED STEIM1 compression).

2.1.4 Cross-validation between phases-based metadata
and downloaded waveform data

After the massive data download was concluded, a list of
all the downloaded files was generated. This list was inter-
sected with the originally selected metadata (Sect. 2.1.2) to

have a one-to-one correspondence between the miniSEED
data and the metadata (i.e., each 3C waveform record – three
miniSEED files – must correspond to a row of the metadata
file).

2.1.5 Preparation of processed waveforms in digital
units

This part of our data assembling procedure targets the prepa-
ration of the digital counts waveform traces. It includes the
following steps:

– removal of traces containing data gaps (i.e., missing
data);

– trimming the waveform trace to the nearest sample to
the start time;

– 120 s trace windowing;

– removal of mean and linear trends from the data;

– resampling at 100 Hz;

– calculation of the signal-to-noise ratio;

– extraction of the data quality metrics.

No rotation of the horizontal component along the N–S and
E–W directions was required since all sensors used are ori-
ented accordingly. For each waveform trace (i.e., each com-
ponent), the maximum value of signal-to-noise ratio (SNR)
was extracted and kept as metadata. The SNR was calculated
as

SNR= 20log10
|S95|

|N95|
, (1)

where |S95| and |N95| are the 95th percentile of the data ab-
solute values in a 5 s window immediately after the S-wave
onset and right before the P-wave arrival time. If the S-wave
onset were not available, the S-wave window was determined
after calculation of the predicted S-wave arrival using an av-
erage velocity of 3.0 km s−1 and the hypocentral distance.

During this stage of the data preparation, we have also
calculated some quality parameters extracted from the wave-
form traces for the purpose of a later inclusion in the meta-
data information. These additional parameters, providing the
distribution of the trace values, have been computed using
the MSEEDMetadata class of the ObsPy python software
(Beyreuther et al., 2010; Megies et al., 2011; Krischer et al.,
2015). For the same purpose, we have determined the num-
ber of spikes using a Hampel filter on a 161-sample sliding
window to find outliers in the traces.

The final dataset consists of a total of 1 159 249 3C wave-
form data records from 54 008 earthquakes in count units as-
sembled within an HDF5 format file. Table 1 provides the
number of traces within each magnitude interval of the final
assembled dataset.
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2.1.6 Application of the instrument transfer function to
the waveforms

To make the dataset of more general use, we have also
generated a dataset in units of physical ground motion af-
ter deconvolving the instrument response. To this end, we
have downloaded the station response files for all the sta-
tions used and applied the transfer functions to the individ-
ual traces with frequency filtering corners 0.01, 0.04, 25,
and 40 Hz using a cosine flank frequency domain taper (see
cosine_sac_taper in ObsPy) and applying a 5 % co-
sine tapering at both ends of the trace signal. After remov-
ing the instrument response, we extracted the intensity mea-
sures (IMs, i.e., peak ground acceleration, PGA; peak ground
velocity, PGV; and the spectral accelerations at a 0.3, 1.0,
and 3.0 s period) on each component so that they could be
included among the metadata parameters. Peak ground dis-
placements are not included since they are from single or
double integration of velocity and acceleration records, re-
spectively, and their determination can be inaccurate when
performed automatically.

2.2 Metadata description

The 115 metadata associated with each 3C waveform trace
of our collection are listed in Table 2. They provide different
kind of information that can be subdivided into four main
types – source, station, trace, and path metadata. The unit of
each metadata is provided in its denomination.

The source metadata provide information on the earth-
quake with description of the source origin time; location;
size; and, when available, the focal mechanism, the moment
tensor, and the finite fault.

The station metadata provide information on the char-
acteristics of the recording station, which include the sta-
tion, channel, network, and location (SCNL) (cf. http://www.
fdsn.org/seed_manual/SEEDManual_V2.4.pdf, last access:
19 November 2021); the geographical coordinates; and the
average shear-wave velocity of the top 30 m of the Earth,
VS,30, which is an important parameter for classifying sites
in seismic engineering applications (e.g., Boore, 2004) and
is extracted from the map used in the INGV implementation
of the USGS ShakeMap software in Italy (Michelini et al.,
2019).

The trace metadata consists of parameters that are ex-
tracted from the waveform traces like maximum and min-
imum amplitudes, root mean squared values of the traces,
and, after application of the transfer function, intensity mea-
sures (IMs) of the ground motion. In this class of metadata,
we include the P (and S wave) provided by the INGV bul-
letin and, in addition, the number of P and S picks obtained
by processing the waveforms with two deep-learning, phase-
picking and event-detection algorithms (GPD and EQTrans-
former; Ross et al., 2018a; Mousavi et al., 2020) to make the

user aware that the waveform trace being used may include
more than a single earthquake (see discussion further below).

The path metadata follow from the calculation of param-
eters that link the types of metadata above (e.g., traveltimes,
hypocentral, and epicentral distances).

The rationale of our metadata selection reflects our inten-
tion of providing the users with comprehensive information
about the data. This appears to be an important issue since
the data, being recorded automatically, can suffer from many
diverse problems deriving from malfunctioning of the data
loggers and of the sensors or from poor data transmission.
Since we seek to assemble a dataset that can be used also
for analyzing real-time data streams using ML, we note that
the automatic processing summarized above does not differ
significantly from that routinely applied to the streamed data.

One alternative to our metadata comprehensive approach
would have consisted of “cleaning” the dataset by removing
the faulty traces from the dataset altogether. We do not think
this approach is appropriate since in this case the dataset
would not be representative of the “true” data that are col-
lected in real time by the monitoring networks. Thus, the ba-
sic idea behind our criterion is that we would like to enable
the users to make their own choices using opportune filters
to exploit the data for their own purposes. For example, if
a user looks for the cleanest data, this can be achieved by
filtering the metadata accordingly (e.g., saturated velocimet-
ric data acquired by broadband sensors equipped with 24 bit
data loggers could be removed in a conservative fashion just
by selecting only those traces with counts within±0.8×223).
In contrast, the user could also opt to leave the ML model to
learn the data problems so that they can be detected when
using real data. An approach of this kind has been used by
Jozinović et al. (2020) for missing data. In Jozinović et al.
(2020), the dataset used for ML consists of a fixed number of
stations, and when data from one or more stations are miss-
ing (either the whole trace or parts of it), the signal trace is set
to be an array of zeros. The ML model used there was found
to detect and learn the problematic values, and compensate
for them, having a similar prediction accuracy on those sta-
tions as the accuracy on the stations which had the input data
available. In practice, the provision of a rich set of waveform
descriptive metadata is important not only to make use of an
enlarged suite of labels that can be used for diverse purposes
but also to identify problems with the waveform data and in-
clude or filter them out.

Our metadata include P- and S-wave onsets manually
picked by INGV analysts as provided in the INGV bul-
letin. Recall that the traces were selected to include just one
P-wave arrival time and possibly one S-wave arrival time
since we sought to assemble one earthquake per window
trace. This criterion was chosen for the purpose of facilitating
the training of ML models using traces containing just one
earthquake (for phase picking, peak ground motions, etc.).
However, even though we have made considerable efforts
to isolate only one earthquake per time window, more than
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one can be present effectively within the same time window
(e.g., the analyst did not see or just disregarded other events
with smaller amplitudes). Because the presence of additional,
unidentified earthquakes adds complexities to the ML train-
ing phase, we followed the same approach taken by Mousavi
et al. (2019) to run automatic picking algorithms upon the
waveform dataset and include as metadata also the number
of P- and S-wave phases picked automatically by the gen-
eralized phase detection, GPD, technique proposed by Ross
et al. (2018a) and the EQTransformer technique by Mousavi
et al. (2020). In the analysis we have used as detection thresh-
old 0.99 for P- and S-phase detection for GPD and 0.2, 0.1
and 0.1 for earthquakes, P-phase detection, and S-phase de-
tection, respectively, for EQTransformer. Both GPD and EQ-
Transformer have been run only on the high-gain channels
(i.e., HH, EH).

As presented above, metadata are important constituents
of data collections. They can be used for identifying the data
to be analyzed, and they can be used as labels in ML ap-
plications. In addition to the fact that not all the metadata
information in INSTANCE is always available (e.g., moment
tensors are generally available only for events with magni-
tudes∼M ≥ 3.5 or the S-wave onset pick retrieved from the
INGV bulletin may not be present), we have found that the
automatically processed ground motion trace data may suffer
from errors because the original traces contained already un-
detected malfunctioning problems (e.g., spikes, anomalous
trends) which, after application of the instrument transfer
function, are mapped into erroneous ground motion traces
and IM values. Similarly, it may have also occurred that in
isolated cases the coefficients of the instrument transfer func-
tions were incorrect, producing also in this case incorrect
traces and IM values. To address these problems, we have op-
erated in two ways. First, we have chosen to detect the traces’
maximum and minimum values lying outside the acceptable
physical range and to replace them with NumPy nan in the
metadata file. This acceptable range was based on the IMs
reported in the “flat” file of the ESM DB (https://esm-db.eu/,
last access: 19 November 2021, Lanzano et al., 2018), which
includes all the IMs (obtained from analyst processing) of
all the recordings available of earthquakes with M ≥ 4.0 in
Europe. Secondly, we have verified our instrument transfer
function processing procedure by cross-validating all our IM
values with those reported in the ESM DB flat file. In this re-
gard, we found a very good correspondence between the IMs
obtained using the two methodologies, giving us confidence
in the quality of the applied data processing and of the IM
metadata being provided.

2.3 Dataset description

Figure 1a shows the earthquakes included in the dataset. The
symbol size is proportional to the earthquake magnitude. We
observe that the 54 008 selected earthquakes composing the
dataset can be considered a representative subset of the en-

tire seismicity in Italy and, for the larger events, also for those
earthquakes occurring in the near vicinity of the Italian na-
tional borders. During the time span of our data selection
three important sequences occurred in Italy after the main
shocks of the 2009 L’Aquila M 6.0 earthquake, the 2012
Emilia M 5.9 earthquake, and the 2016 central Italy extended
sequence which featured three main earthquakes with mag-
nitudes M 6.0, M 5.9, and M 6.5.

In Fig. 1b we plot the 527 moment tensors included
in the metadata. The size of the moment tensor symbol
is proportional to source_magnitude, while the col-
ors are defined according to the prevalent strain regime:
indigo, lavender, and dark orange for strike slip, normal,
and thrust faults, respectively. The prevalent strain regime
is determined according to the fault’s rake as derived from
source_mechanisms_strike_dip_rake: strike slip
for −45◦ < rake < 45◦ and 135◦ < rake < 225◦, normal for
225◦ ≤ rake≤ 315◦, and thrust for 45◦ ≤ rake≤ 135◦.

In Fig. 2 we show the maps of the stations included in the
events and noise datasets, respectively. The symbol size in
panel a is proportional to the number of reported phase ar-
rivals by each station, while in panel b it is proportional to
the number of waveforms included in the dataset for each
station. Figure 2a demonstrates that quite a different num-
ber of phases have been reported by the stations included in
the event dataset. These differences depend on several fac-
tors like whether the stations are permanent or temporary, the
time length of the acquisition, the noise level, and the level
of seismicity of the area where the stations have been de-
ployed. For example, it is evident that many stations in cen-
tral Italy display many phases (and associated trace record-
ings) mainly because the area was struck by the 2009 and
2016 earthquake sequences. In contrast, stations that are lo-
cated in the Po Plain generally feature a small number of
phases mainly because the noise level is high, making the
phase picking difficult. The same diversification in the num-
ber of available traces is not observable for the noise dataset
shown in Fig. 2b. This occurs because it was an intentional
choice to select a more or less even number of traces for all
the station channels.

In Fig. 3, we show the distribution according to magnitude,
earthquake to station epicentral distance, earthquake depth,
and back azimuth of the 3C record traces composing the
dataset. The panels show the histograms using the log10 scale
to provide a complete representation of the distribution of the
dataset. We adopt the linear scale, however, to emphasize the
distribution of the back azimuth in Fig. 3d. Despite the at-
tempt to balance the distribution of earthquakes according
to magnitude (Sect. 2.1.1), Fig. 3a shows that our selection
still reflects (inevitably) the Gutenberg–Richter increase in
the number of earthquakes at smaller magnitudes. The largest
amount of trace records in the dataset belongs to earthquakes
in the magnitude range 2≤M < 3. The significant decrease
in the number of traces for M < 2 follows from our choice to
balance the dataset at small magnitudes by taking only about
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Table 2. List of the metadata for the events and noise waveform traces. The units are given in parenthesis in the “Description” column. Only
a subset of metadata can be associated with the noise traces (star in the “Noise” column).

Metadata parameter name Noise Description

source_id ? Earthquake and noise ID (INGV and UTC time, respectively)
source_origin_time Location preferred origin time (YYYY-MM-DDTHH:MM:SS.SSZ)
source_latitude_deg Location preferred latitude (◦)
source_longitude_deg Location preferred longitude (◦)
source_depth_km Location preferred depth (km)
source_origin_uncertainty_s Location preferred origin time uncertainty (s)
source_latitude_uncertainty_deg Location preferred latitude uncertainty (◦)
source_longitude_uncertainty_deg Location preferred longitude uncertainty (◦)
source_depth_uncertainty_km Location preferred depth uncertainty (km)
source_stderror_s Preferred earthquake location standard deviation (s)
source_gap_deg Location preferred location gap (◦)
source_horizontal_uncertainty_km Location preferred horizontal uncertainty (km)
source_magnitude Preferred magnitude
source_magnitude_type Preferred magnitude type
source_mt_eval_mode Moment tensor evaluation mode (e.g., manual)
source_mt_status Status of the evaluation (“reviewed” or “final”)
source_mt_scalar_moment_Nm Scalar moment (N m)
source_mechanism_strike_dip_rake Strike, dip, rake of the two planes (two tuples)
source_mechanism_moment_tensor Six components of the moment tensor (m_rr, m_tt, m_pp, m_rt, m_rp, m_tp)
source_type Earthquake or other sources (quarry_blast, controlled explosion, experimental explosion, etc.)

station_network_code ? Two characters FDSN network code (e.g., IV)
station_code ? Station name (International Registry of Seismograph Stations, IR)
station_location_code ? Location name identifier (Buland, 2006)
station_channels ? Two characters identifying the sampling and the instrument gain (HN, HH, EH, etc.)
station_latitude_deg ? Station latitude (◦)
station_longitude_deg ? Station longitude (◦)
station_elevation_m ? Station elevation (m)
station_vs30_mps ? VS,30 (m s−1)
station_vs30_detail ? VS,30 information

path_ep_distance_km Epicentral distance
path_hyp_distance_km Hypocentral distance
path_azimuth_deg Direction from event location to station (◦)
path_backazimuth_deg Direction from station location to event epicenter (◦)
path_residual_[P,S]_s P- or S-arrival time residual between picked arrival time and traveltime using preferred location (s)
path_weight_phase_location_[P,S] P- or S-phase location weight resulting from preferred location (range 0–100)
path_travel_time_[P,S]_s P- or S-wave traveltime (s)

7 % of the whole dataset. For what concerns the epicentral
distances of the stations (Fig. 3b), the great majority of the
traces have been recorded within 200 km. A better apprecia-
tion of the selected traces can be obtained from the observa-
tion of Fig. 4, where we show the magnitude versus hypocen-
tral distance distribution of the dataset traces represented as
density plots using hexagon binning (hexbin, Hunter, 2007).
The earthquake depth distribution (Fig. 3c) shows that the
great majority of the traces belong to shallow crustal earth-
quakes, although a few thousand occur in the depth range 100
to 300 km. At greater depths, the number of traces decreases
sharply, and only a few hundred or fewer recordings are in-
cluded in the depth range 400 to 550 km. Figure 3d shows
that the great majority of the P- and S-wave onsets belong
to paths more frequent along the NW–SE direction, in agree-
ment with the geographical trend of the Apennines and of
peninsular Italy overall.

Figure 5a shows the distribution of the trace channels
of the dataset (station_channels). The weak-motion,
high-gain channels represent more than 70 % of the total

number of traces. These are subdivided into HH channels as-
sociated with the broadband high-gain velocimeters (51 %)
of the total, whereas the extended-short-period channel (EH)
traces account for 20 %. The low-gain accelerometric chan-
nels form the remaining part of the dataset. In Fig. 5b, we
show the distribution of the records subdivided according to
the different networks (station_network_code) oper-
ating in Italy and in neighboring countries that have been
included in the dataset. The dominant portion of the data
(∼ 96 %) have been acquired by the Italian National Seis-
mic Network (IV code) and by the MedNet (MN code), both
operated by INGV (Michelini et al., 2016; Danecek et al.,
2021). The full list of the contributing networks is provided
in the caption.

The polarities associated with the P-wave onsets
(trace_polarity) are shown in Fig. 5c and have been
reported in only 20 % of the total number of traces. Although
this represents only a fraction of the dataset, we are confi-
dent that its number (∼ 235000) is likely large enough to be
used in a ML dedicated model (e.g., Ross et al., 2018b) for
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Table 2. Continued.

Metadata parameter name Noise Description

trace_name ? Waveform name within the HDF5 file
trace_start_time ? Waveform trace UTC start time (YYYY-MM-DDTHH:MM:SS.SSZ)
trace_dt_s ? Sampling interval (s)
trace_npts ? Number of samples in waveform trace (integer)
trace_[P,S]_uncertainty_s Assigned P- or S-onset arrival time uncertainty (s)
trace_eval_[P,S] P- or S-type of picking (currently only “manual”)
trace_[P,S]_arrival_time P- or S-arrival UTC start time (YYYY-MM-DDTHH:MM:SS.SSZ)
trace_polarity P onset polarity (“negative”, “positive”, “undecidable”)
trace_[P,S]_arrival_sample P- and S-onset sample number on waveform trace (integer)
trace_[E,N,Z]_median_counts ? E-, N -, or Z-component sample median (counts, integer)
trace_[E,N,Z]_mean_counts ? E-, N -, or Z-component sample mean (counts, integer)
trace_[E,N,Z]_min_counts ? E-, N -, or Z-component sample minimum (counts, integer)
trace_[E,N,Z]_max_counts ? E-, N -, or Z-component sample maximum (counts, integer)
trace_[E,N,Z]_rms_counts ? E-, N -, or Z-component sample root mean squared
trace_[E,N,Z]_lower_quartile_counts ? E-, N -, or Z-component sample lower quartile (counts, integer)
trace_[E,N,Z]_upper_quartile_counts ? E-, N -, or Z-component sample upper quartile (counts, integer)
trace_[E,N,Z]_snr_db E-, N -, or Z-component signal-to-noise ratio
trace_[E,N,Z]_spikes ? E-, N -, or Z-component number of spikes (integer)
trace_GPD_[P,S]_number ? P and S number of picks retrieved with GPD
trace_EQT_[P,S]_number ? P and S number of picks retrieved with EQT
trace_EQT_number_detections ? Number of detections retrieved with EQT

trace_[E,N,Z]_pga_cmps2 E-, N -, or Z-component PGA (cm s−2)
trace_[E,N,Z]_pgv_cmps E-, N -, or Z-component PGV (cm s−1)
trace_[E,N,Z]_pga_perc E-, N -, or Z-component PGA (% g)
trace_[E,N,Z]_pga_time E-, N -, or Z-component PGA UTC time (YYYY-MM-DDTHH:MM:SS.SSZ)
trace_[E,N,Z]_pgv_time E-, N -, or Z-component PGV UTC time (YYYY-MM-DDTHH:MM:SS.SSZ)
trace_[E,N,Z]_sa03_cmps2 E-, N -, or Z-component spectral acceleration at t = 0.3 (cm s−2)
trace_[E,N,Z]_sa10_cmps2 E-, N -, or Z-component spectral acceleration at t = 1.0 (cm s−2)
trace_[E,N,Z]_sa30_cmps2 E-, N -, or Z-component spectral acceleration at t = 3.0 (cm s−2)
trace_pga_cmps2 Max. horizontal components PGA value (cm s−2)
trace_pgv_cmps Max. horizontal components PGV value (cm s−2)
trace_pga_perc Max. horizontal components PGA value (% g)
trace_sa03_cmps2 Max. horizontal components spectral acceleration (t = 0.3) (cm s−2)
trace_sa10_cmps2 Max. horizontal components spectral acceleration (t = 1.0) (cm s−2)
trace_sa30_cmps2 Max. horizontal components spectral acceleration (t = 3.0) (cm s−2)
trace_deconvolved_units Ground motion units of the traces in the HDF5 volume (e.g., mps and mps2 for m s−1 and m s−2, respectively)

The horizontal line between “trace_EQT_number_detections” and “trace_[E,N,Z]_pga_cmps2” separates the additional metadata obtained after application of the instrument response transfer function.

training and testing and then used to recover the polarities of
the remaining batch. In this regard, it is noteworthy to ob-
serve that the positive and negative polarities have a ratio of
nearly 2 : 1. In Appendix C we have examined the possible
origin for this asymmetry. In addition, we would like to point
out that, although the source_type is provided among the
metadata, there are inherent difficulties to identify man-made
sources by the staff analysts.

The magnitude type distribution
(source_magnitude_type) is shown in Fig. 5d.
The Wood–Anderson local magnitude ML (Richter, 1935)
is calculated predominantly (∼ 96 %). The moment magni-
tude Mw is determined for earthquakes with ∼ML ≥ 3.5
and when enough good quality station data are available
(Scognamiglio et al., 2009). The Md magnitude is used only
when it is impossible to determine the ML, and it is provided
mainly in the first years of the dataset when the IV network
still included a considerable number of analog stations.

In Fig. 6a and c we present the histograms of the P- and S-
wave residual times included in the dataset. Figure 6b and d
show the phase arrival weights resulting from the earthquake
locations for P and S phases, respectively.

To provide a broader perspective of the dataset and with
the intent of showing the wide range of waveform paths that
have been included, we present, in Fig. 7, the hexbin plots
of the traveltime for both P- and S-wave arrival times used
in the locations. These panels have been arranged using four
different maximum distances and are useful for visualizing
the dominant structure of the data selection given the large
number of data.

More specifically, it can be observed that the hexagon
binning panels for the larger distance ranges (700 and
200 km max distance) and for both P- and S-wave travel-
times (Fig. 7a, b, e, f) highlight well both the direct and the
Moho refracted traveltimes. At smaller distance ranges (100
and 40 km, Fig. 7c, d, g, h), it is evident that our dataset in-
cludes waveforms that propagated across crustal structures
with different velocities. This is very evident, for example,
for both P and S waves in the hexbin plots, where at a small
distance very low VP and VS velocities are observable.

In the following, we will focus on the trace amplitude
metadata. These parameters are important for refined se-
lection of the traces and are extracted from both the raw
waveforms expressed in counts and from the traces in phys-

https://doi.org/10.5194/essd-13-5509-2021 Earth Syst. Sci. Data, 13, 5509–5544, 2021



5518 A. Michelini et al.: INSTANCE

Figure 2. Map of the stations used to assemble the events (a) and noise (b) datasets. The symbol size in panel (a) is proportional to the
number of P phases and corresponding waveform traces available for each station. In panel (b) the symbol size is proportional to the number
of traces. A total of 620 stations are included.

Figure 3. Histograms of the distribution of the trace records composing the dataset according to magnitude (a), epicentral distances (b),
earthquake depth (c), and back azimuth (d). The labels of the horizontal axis are assigned using the metadata names listed in Table 2.

ical units after application of the instrument transfer func-
tion. Some of these parameters can be obtained without any
knowledge on the earthquake source parameters, whereas
others, like the SNR, require knowledge on the arrival times
of P- and S-wave onset times.

The panels of Fig. 8 display the median
(trace_[E,N,Z]_median_counts) and the mean
values (trace_[E,N,Z]_mean_counts) of the dataset
traces. To evidence the whole range of values attained by
these two metadata, we adopt the base-10 log scale. The
histograms show, for all the three components, remarkable
differences of the distributions. The mean values, which
have been removed in the preprocessing preparation stage

(cf. Sect. 2.1.5), are (obviously) centered about the zero
value, whereas the median histograms, while being simi-
larly centered about the zero value, do display a broader
distribution of values around zero. This last behavior occurs
whenever the waveform trace values are unevenly distributed
about the mean, and it derives from the preprocessing of
faulty traces that, for example, result in defective removal
of the linear trend. The same figure for the full range of the
parameters is available in Fig. D2.

In Fig. 9, we present the histograms of the distribution of
the trace quality control parameters obtained from the appli-
cation of the MSEEDMetadata module of the ObsPy seis-
mological software suite. The figure shows the distribution
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Figure 4. Diagram of the earthquake magnitude distribution of the
dataset versus receiver distance represented as a hexbin plot. The
labels are assigned using the metadata names listed in Table 2.

of the quality control parameters in a closer view (see the
full range of values in Fig. D3). The histograms show that
the largest majority of the traces feature root mean square
values less than 2.5× 104, with a minor contribution from
traces featuring higher values. The minimum and maximum
values follow a similar trend for negative and positive val-
ues, respectively. The lower- and upper-quartile values of the
traces show that the peak of the distributions are at∓2×103,
respectively.

The SNR distributions are shown in Fig. 10 as histograms
and versus distance and magnitude (M ≥ 2) as hexbin plots
in Fig. 11. The histograms show that the peak values for the
whole dataset are at ∼ 10 db for the two horizontal compo-
nents and slightly less for the vertical components (∼ 6 db).
This is expected because the S-wave motion in the shallow,
near-surface, low-velocity layers is polarized on a plane per-
pendicular to the nearly vertical propagation direction of the
wavefront, implying that the ground motion occurs mainly
along the horizontal components. In any event, the distribu-
tion of the SNR values of our dataset can be considered sen-
sible given that values larger than 2 already provide distinct
earthquake signals. In contrast and at the lower end of the
SNR distribution, we find that 10 % (see Table 3) of the trace
data of the HH channels have SNR values less than 2.3 (1.2
for the vertical component) that corresponds to roughly to
59 000 waveform traces out of the 592 000 traces of the HH
channels included in the dataset. This number of low SNR
traces could still be used, for example, to train ML models
aimed at the detection of very small magnitude earthquakes
slightly above the background noise level.

The hexbin plots of Fig. 11 provide a snapshot of the dom-
inant levels of SNR with distance and magnitude. It is ob-
served that higher values occur for nearby earthquakes and
that the SNR progressively decreases at farther distances.

Conversely and as expected, the SNR generally increases
with larger-magnitude earthquakes.

The hexbin plots of the distribution of the IMs with dis-
tance for earthquakes with M ≥ 2 are shown in Fig. 12,
whereas their associated distributions are shown in Fig. D4.
The panels evidence a broad concentration of ground motion
values deriving from the inclusion of earthquake recordings
from different distances and magnitudes. The panels also ev-
idence some horizontal stripes at higher and lower values of
ground motion resulting presumably from the acquisition and
processing problems mentioned in Sect. 2.2.

To show the distance dependence of the IMs for a given
magnitude, in Fig. 13 we plot the values for M = 3 earth-
quakes (i.e., IMs in the range 2.9≤M ≤ 3.1). The maximum
concentration of IMs represent an average ground motion
model for M = 3 earthquakes in Italy.

2.4 Examples of event data traces

Some examples of the data traces are shown in Figs. 14, 15,
and 16. The traces have been selected randomly according to
certainly non-exhaustive criteria described in the figure cap-
tion using, as a guideline, the metadata distribution illustrated
in Sect. 2.3.

In Fig. 14 we show the traces in counts of events recorded
by the broadband instruments (HH channels). Specifically,
the first three rows (Fig. 14a–i) show traces for different
ranges of magnitude which, taken together, represent more
than 80 % of the total HH traces. In the following two panel
rows (Fig. 14j–o) we show examples of traces selected ac-
cording to SNR and distance criteria that evidence that more
than 65 % of the traces feature relatively high SNR (i.e.,
≥ 10) within the whole distance range covered by our data
collection. The seismograms shown in the last panel row
(Fig. 14p–r) provide some samples of recordings of the
largest events (M ≥ 4) where we found that ∼ 87 % feature
SNR≥ 10.

To show how metadata can be used to isolate end-members
of the dataset, we focus next on examples of problematic
traces. Although different criteria could have been used given
the comprehensive set of metadata available, here for sim-
plicity we base our identification on (i) the number of picks
and detections resulting from application of the GPD and
EQTransformer algorithms to isolate those traces likely con-
taining more than a single event, (ii) the value of the SNR
to identify poor-quality noisy traces, (iii) the values of the
trace median values which are expected to diverge from zero
whenever the trace values are unevenly distributed about the
mean value as result of acquisition or processing problems,
and (iv) the values of peak acceleration and velocity ground
motion parameters. The user, depending on desiderata, can
customize the selection criteria. In Table 3, we provide a ba-
sic quantification of the distribution of the relevant metadata
shown in Fig. 15, and, in Table 4, we present the distribution
of the values of the maximum horizontal ground acceleration
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Figure 5. Pie diagrams of the earthquake dataset summarizing the distribution of the channels (a), the data contributing networks (b), the
P-wave polarities (c), and the magnitude types (d) of the dataset. The full list of station_network_code with % < 1 collected in
“Others” in decreasing order is OX, ST, SI, XO, NI, IX, OT, RF, YD, TV, B1, AC, HL, ZM, and 3A. See the metadata names listed in Table 2
for the specific metadata being represented.

Figure 6. Histogram of the P- and S-wave residuals (a, c) and of the preassigned phase arrival weights, expressed as percent, resulting from
the location (b, d). The metadata names listed in Table 2 are used as labels for the specific metadata being represented.

and velocity expressed as percent of the acceleration of grav-
ity (% g) and centimeters per second (cm s−1), respectively.
Some of the values reported in these two tables are used for
our trace selections.

In Fig. 15a–c and d–f we show some traces that have been
selected from the HH channels according to the number of P-
and S-wave onset picks greater than three detected through
the application of the GPD and EQTransformer techniques,
respectively. Based on the values reported in Table 3, the
presence of these multiple event traces in the dataset is less
than the 10 %. In Fig. 15g–i, we focus attention on the traces
that feature SNR values on at least one component within the

lowest 10 % of the dataset. These traces are good examples
of noisy traces and low-amplitude event signals. In Fig. 15j–
l, we plot three traces for which the median values of all the
three components fall within the two 10 % extremes. They
represent about 6 % of the entire HH channels dataset. In the
bottom row of Fig. 15m–o, we show that by excluding the
very low 25 % of SNR values from the previous selection
(Fig. 15j–l), it is possible to select traces that do not suffer of
particular problems. In particular, we see that just by select-
ing a higher threshold of SNR values, about 85 % of the first
and last 10 % of the distribution of median values, the traces
appear acceptable.
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Figure 7. Hexbin plot of the traveltimes for different hypocentral distance ranges for P (a–d) and S waves (e–h): (a, e) 0–700 km; (b, f)
0–200 km; (c, g) 0–100 km; (d, h) 0–40 km. The metadata names listed in Table 2 are used as labels.

Figure 8. Close view of the histogram of the distribution of the median and mean values of the E-, N -, and Z-component earthquake
waveform traces. The full distribution is shown in Fig. D2. Note that the mean values (d–f) are shown to the sole scope of reference. The
metadata names listed in Table 2 are used as labels for the specific metadata being represented.

In Fig. 16, we show the instrument-corrected traces ran-
domly chosen in groups of six for each channel. The traces
drawn from the entire dataset belong to the 75 % with the
largest values of the maximum horizontal acceleration (i.e.,
second, third, and fourth quartile of the value distribution; see
Table 4). The total of traces satisfying this criterion amounts
to more than 860 000 3C traces. Application of the instru-
ment transfer function appears to be generally successful
without introduction of particular side effects with the ex-
ception of some amplification of the very low frequencies
for some very low amplitude traces of the EH channels (e.g.,
panels h and k in Fig. 16). This effect results from our choice
to bandpass filter all the traces channels in the same fre-
quency range: this has the negative effect of boosting the low
frequencies of the narrower-band EH channels, although it

can be promptly removed by high-pass filtering. Overall, the
quality of the ground motion unit dataset can be considered
of satisfactory quality to perform analysis of ground motions.

3 Noise

Noise is generated by many different sources such as ocean
waves, wind, traffic, instrumental noise, and electrical noise,
and its suppression in earthquake recordings represents a
long-standing objective (W. Zhu et al., 2019, and references
therein). The inclusion of noise data in a dataset like IN-
STANCE is thus important because it provides information
on the noise characteristics of the individual stations in the
absence of earthquake-generated signal. ML models can re-
veal to be effective for noise removal or, in a classification
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Figure 9. Histogram of the distribution of quality control metadata of the earthquake E-, N -, and Z-component waveform traces: rms, min,
max, and first and third quartile. The width of the bins is 2× 103. The full distribution of values is provided in Fig. D3. The horizontal axis
labels correspond to the metadata being represented which are listed in Table 2.

Figure 10. Distribution of the signal-to-noise ratio of the earthquake E-, N -, and Z-component waveform traces. The panels (a)–(c) have
linear y axes, whereas those on the bottom are in logarithmic scale. The horizontal axis labels correspond to the metadata being represented
which are listed in Table 2.
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Figure 11. Hexbin representation of the distribution of the signal-to-noise ratio for the E, N , and Z components of the earthquake dataset
as function of hypocentral distance and magnitude. The metadata names listed in Table 2 are used as labels for the specific metadata being
represented.

Figure 12. Hexbin plot of the distribution of the intensity measures (IMs) with hypocentral distance of the earthquake dataset for the M ≥ 2
earthquakes. The units are kilometers (km) along the horizontal axis in all panels, and along the vertical axis the units are centimeters per
second squared (cm s−2) in panels (a) and (d)–(f), centimeters per second (cm s−1) in panel (b), and percent of the acceleration of gravity
(% g) in panel (c). The metadata names listed in Table 2 are used as labels for the specific metadata being represented.
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Table 3. Distribution according to different quantiles of selected metadata (cf. Table 2) for the HH channels of the event dataset.

Metadata parameter name Min 10 % 25 % 50 % 75 % 90 % Max

trace_E_median_counts −6.57× 106
−22 −6 0 6 22 3.03× 106

trace_N_median_counts −6.51× 105
−22 -6 0 6 22.5 2.5× 106

trace_Z_median_counts −7.63× 105
−11.5 −3 0 3 12 9.92× 105

trace_E_snr_db −25.5 2.31 7.29 15 25 35.4 95.4
trace_N_snr_db −26.9 2.3 7.27 15.1 25.1 35.5 95.8
trace_Z_snr_db −23.3 1.21 5.51 12.5 22.2 32.5 95.4
trace_EQT_number_det. 0 1 1 1 1 1 7
trace_GPD_P_number 0 0 1 1 1 2 13
trace_GPD_S_number 0 0 1 1 2 3 22

Figure 13. Hexbin plot of the distribution of the intensity measures (IMs) with hypocentral distance for M = 3 earthquakes. The units are
kilometers (km) along the horizontal axis in all panels, and along the vertical axis the units are centimeters per second squared (cm s−2)
in panels (a) and (d)–(f), centimeters per second (cm s−1) in panel (b), and percent of the acceleration of gravity (% g) in panel (c). The
metadata names listed in Table 2 are used as labels for the specific metadata being represented.

analysis, for improving the detection of earthquakes. The
noise data have been assembled starting from the stations
gathered in the event selection stage described above.

3.1 Data preparation

Starting from the entire catalogue consisting of more than
300 000 events (Table 1), we first identified 600 s long time
windows free of any earthquake. Secondly, we obtained the
operational times of acquisition of each station. The third
step consisted of identifying the 120 s time windows to be

included in the dataset for each station and channel. This
was achieved by intersecting the time window series obtained
in the previous two stages (i.e., the event-free windows and
the periods of station acquisition). It follows that the adopted
procedure does not entail the selection of the same time win-
dow for multiple stations. For stations acquiring more than
one channel type (e.g., HH and HN), noise windows for all
the channels were identified and downloaded. The result-
ing total number of noise trace windows is 132 288, corre-
sponding to about 10 % of the total number of traces of IN-
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Figure 14. Example of earthquake waveforms of the broadband HH channels contained in INSTANCE randomly drawn according to
different criteria based on the metadata provided in Table 2. Each row contains three, randomly selected, 3C traces based on the follow-
ing criteria: (a–c) earthquakes 2≤M < 3 (66.8 % of the total of the HH channels); (d–f) earthquakes 3≤M < 4 (13.5 %); (g–i) earth-
quakes M ≥ 4 (2.0 %); (j–l) earthquakes trace_E_snr_db ≥ 10 and path_ep_distance < 100 km (55.0 %); (m–o) earthquakes
trace_E_snr_db≥ 10 and path_ep_distance≥ 100 km (10.8 %); (p–r) earthquakes M ≥ 4 and trace_E_snr_db≥ 10 (1.7 %).
The arrival times of P- and S-wave onsets (i.e., trace_[P,S]_arrival_time) are shown by indigo and dark orange vertical lines, re-
spectively.
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Figure 15. Example of randomly selected “problematic” earthquake waveforms of the broadband HH channels. Each row contains
three, randomly selected, 3C traces drawn according to the following criteria based on the metadata listed in Table 2: (a–c) traces with
trace_GPD_[P,S]_number > 3 (7.96 % of the total of the HH channels); (d–f) traces with trace_EQT_number_detections
> 3 (0.38 % of the total of the HH channels); (g–i) traces trace_[ENZ]_snr_db with at least one component in the 10 % quantile
(18.10 % of the total of the HH channels); (j–l) traces with all trace_[ENZ]_median_counts either in the first 10 % or the last 10 %
quantiles (5.90 % of the total of the HH channels); (m–o) traces with trace_[ENZ]_median_counts either in the first 10 % or the last
10 % quantiles and corresponding trace_[ENZ]_snr_db excluded from the first quartile (5.06 % HH dataset). The arrival times of P-
and S-wave onsets (i.e., trace_[P,S]_arrival_time ) are shown by indigo and dark orange vertical lines, respectively.

STANCE. We note also that this procedure does not preclude
the presence of noise traces that include energy from regional
and teleseismic events.

3.2 Metadata description

The 46 metadata elements (Table 2) used for the noise data
selection include for each 3C waveform trace an identifier
based on the start time, the station parameters, the trace qual-
ity control that includes the automatic picks, and event detec-
tion obtained using the GPD and EQTransformer procedures.
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Figure 16. Example of randomly selected event waveforms in ground motion physical units of the HH, EH, and HN channels in INSTANCE.
The traces are representative of 75 % of the data and belong to the second, third, and fourth quartiles of each channel. Each row contains three,
randomly selected, 3C traces drawn according to the following criteria based on the metadata listed in Table 2 and the quantile values provided
in Table 4: (a–f) HH traces with trace_pga_perc > 5.1e− 4 % g; (g–l) EH traces with trace_pga_perc > 9.3e− 4 % g; (m–r) HN
traces with trace_pga_perc > 8.7e− 4 % g. The arrival times of P- and S-wave onsets (i.e., trace_[P,S]_arrival_time) are
shown by indigo and dark orange vertical lines, respectively.
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Table 4. Distribution according to different quantiles of IM selected metadata for the HH, EH, and HN channels.

Metadata parameter name 10 % 25 % 50 % 75 % 90 % Max

trace_pga_perc (HH) 0.000219 0.000506 0.00148 0.00532 0.0201 57.6
trace_pgv_cmps (HH) 7.81× 10−5 0.000158 0.000413 0.00139 0.00499 58.6
trace_pga_perc (EH) 0.000341 0.000927 0.00328 0.0139 0.0559 71
trace_pgv_cmps (EH) 0.000174 0.00035 0.000882 0.00302 0.0114 55.6
trace_pga_perc (HN) 0.000329 0.000875 0.00328 0.0141 0.0509 77.8
trace_pgv_cmps (HN) 0.000392 0.000582 0.00134 0.00501 0.0153 59.1

These picks provide potential insights on whether any earth-
quake not catalogued in the INGV bulletin might be present
in the selected time windows.

In Fig. 17 we show the channel subdivision of the down-
loaded noise together with the networks the stations belong
to. In Figs. 18 and 19, in analogy with what is presented
for the event data, we present the trace characteristics of
the metadata. The trace_[E,N,Z]_mean_counts
and trace_[E,N,Z]_median_count provide
an outlook on the distribution of the mean and
median values, and likewise the same parameters
extracted from the event traces could be used to
identify high-quality data. The histograms of the
trace_[E,N,Z]_rms_counts noise values fall mainly
in the range of values from 0 to 2000 counts with similar
peak values for either trace_[E,N,Z]_max_counts or
trace_[E,N,Z]_min_counts. This all would suggest
that the gathered noise traces are of fairly good quality
responding to the expectation of traces characterized by
amplitudes with small number of counts.

3.3 Examples of noise data traces

Examples of the noise traces are shown in Fig. 20. To per-
form the selection, we have used the distribution of the trace
rms values that is provided in Table 5.

In the top two rows of Fig. 20, some examples of events
detected using the GPD and EQTransformer algorithms on
the EH channels are shown. As it was the case with the event
dataset, the noise traces also contain undetected events al-
though their number according to our analysis seems rather
small especially for the earthquakes detected by EQTrans-
former. This result gives us good confidence that the noise
traces are for the great majority free of earthquake events.
The following rows of Fig. 20 provide waveform samples
drawn from the 90 % of the dataset (panels g–i and m–o) for
the HH and EH channels, respectively. Both sets of panels
exemplify some of the features of the great majority of the
noise data. In contrast, the panels j–l and p–r have been cho-
sen to show what could be considered traces exceeding noise
values or that contain finite-duration events of uncertain ori-
gin.

4 Discussion

The primary objective of this work has been to assemble a
benchmark dataset consisting of seismic waveforms and as-
sociated metadata. It has been designed to be used for the
analysis of earthquakes in Italy (and neighboring areas) us-
ing ML techniques, and it could prove useful for ML analysis
also elsewhere in other active tectonic regions by adopting
transfer learning methodologies (Jozinović et al., 2021). The
dataset consists of three HDF5 volumes – raw and instrument
removed event traces, as well as raw noise traces – and of the
associated metadata.

The selection of the waveform traces to be included was
based on the availability of low (≤ 1 s) P- and S-phase lo-
cation residual times and large location weights taken from
the preferred solutions listed in the INGV bulletin. To coun-
teract the Gutenberg–Richter power law which affects the
compilation of seismological datasets targeting ML analy-
sis applications, attention was paid towards assembling a
dataset that was not completely skewed by a large number
of small-magnitude earthquakes. To this end, we included all
the traces available of the larger-size earthquakes, and then
we decreased progressively the number of smaller-size earth-
quakes and associated traces. Our effort, however, trades off
with the need of assembling a dataset that is sufficiently
large for ML purposes. The distribution of the selected traces
shown in Figs. 3 and 4 according to magnitude, distance, and
focal depth allows the users to make the appropriate choices
for their purposes even though we recognize that the achieve-
ment of the sought balanced distribution remains difficult.
Other data selection criteria could have been used (e.g., se-
lect all the data acquired within distance ranges depending
on earthquake magnitude), but the (un)balanced magnitude
and distance distribution would have persisted. Thus, given
the criteria adopted it is pleonastic to remark that this dataset
is not designed for studies addressing the earthquake mag-
nitude power-law distribution (e.g., the b-value parameter).
Similarly, although the dataset contains an average of 21
traces per earthquake, it may not be optimal for dedicated
earthquake relocation studies.

Our criterion, based on the available high-quality P and S
phases with low location residual times, is expected to pro-
vide a large number of traces with distinct earthquake sig-
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Figure 17. Pie diagrams summarizing the distribution of the channels (a) and the data contributing networks (b) of the noise dataset. The
full list of station_network_code with % < 1 collected in “Others” in decreasing order is SI, YD, 3A, XO, ZM, BA, AC, HL, TV,
and RF.

Figure 18. Close view of the histogram of the distribution of the median and mean values of the E-, N -, and Z-component noise waveform
traces. The full distribution is shown in Fig. D5. Note that the mean values (d–f) are shown to the sole scope of reference. The metadata
names listed in Table 2 are used as labels for the specific metadata being represented.

nal and high SNRs. The distribution of SNR values shown
in Figs. 10 and 11 and in Table 3 and the example seismo-
grams shown in Figs. 14j–r and 15m–o appear to confirm
our choices.

The selection of 120 s trace length time window is longer
than those made by other authors for analogous benchmark
datasets (e.g., Mousavi et al., 2019; Magrini et al., 2020).
This relatively long time window was required, however, be-
cause we sought to include the entire seismicity occurring
in Italy that spans from very shallow to very deep (Fig. 3).
Unfortunately, this long window trades off with a higher
probability of including earthquakes close in time that had
not been reported in the INGV catalogue. For this reason,
we carried out also a (preliminary) automatic picking and
earthquake detection analysis using two well-established re-
cent ML techniques (GPD and EQTransformer; Ross et al.,

2018a; Mousavi et al., 2020) to possibly isolate those traces
that include multiple events. The results of this analysis sum-
marized in Table 3 would indicate that about 90 % of the
event data contain only one earthquake according to the EQ-
Transformer analysis, whereas the GPD analysis returned
some slightly higher numbers of P- and S-phase detections.

Our metadata for the earthquake part of the dataset con-
sist of 115 parameters. They are subdivided into three main
classes plus one additional class derived from the previous
ones. This is a rather rich set of parameters that can be used
either (i) to select subsets of the dataset or (ii) as additional
features to rely on when developing ML models, as labels
in supervised ML analysis, or for unsupervised ML applica-
tions. In addition, the metadata could be used by themselves
for specific studies (seismic velocity model regionalization,
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Figure 19. Histogram of the distribution of the quality control metadata of the noise E-, N -, and Z-component waveform traces: rms, min,
max, and first and third quartile. The width of the bins is 2× 103. The full distribution of values is provided in Fig. D6. The horizontal axis
labels correspond to the metadata being represented which are listed in Table 2.

Table 5. Distribution according to different quantiles of selected noise metadata (cf. Table 2) for the HH and EH channels.

Metadata parameter name 10 % 25 % 50 % 75 % 90 % Max

trace_E_rms_counts (HH) 52.79 101.6 205 447.9 1013 1.919× 107

trace_N_rms_counts (HH) 53.47 102 207.3 465.8 1071 1.902× 107

trace_Z_rms_counts (HH) 44.68 85.42 166.3 364 793.1 9.986× 105

trace_EQT_number_det. (HH) 0 0 0 0 0 5
trace_GPD_P_number (HH) 0 0 0 0 1 31
trace_GPD_S_number(HH) 0 0 0 1 2 24

trace_E_rms_counts (EH) 7.53 22.92 58.29 141.8 327.1 7.54× 105

trace_N_rms_counts (EH) 7.864 22.88 57.65 140.9 332.6 2.913× 105

trace_Z_rms_counts (EH) 5.639 18.44 50.09 119.8 307.1 6.236× 105

trace_EQT_number_det. (EH) 0 0 0 0 0 5
trace_GPD_P_number (EH) 0 0 0 1 2 23
trace_GPD_S_number (EH) 0 0 0 2 4 26

traveltime tomography, ground motion prediction models, lo-
cal site corrections, etc.).

Earthquake data gathered by seismic instruments and
streamed in real time to earthquake monitoring centers or
preserved within archives can suffer from problems of dif-
ferent nature (e.g., sensor, data logger, equipment installa-
tion, data transmission, and processing among the most com-

mon). Thus, the compiled dataset could be useful for the de-
velopment of robust techniques of analysis, and this is one
main reason for including several trace quality parameters as
metadata since they can help the user to identify the possibly
faulty records, which can be then either removed or included
to train the ML model just to “learn” them. This approach
may seem to contradict one of the main purposes of com-
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Figure 20. Example of randomly selected noise waveforms of the HH and EH channels contained in INSTANCE. The traces
are drawn randomly according to different criteria based on the metadata provided in Table 2 and on the quantile val-
ues listed in Table 5. Each row contains three, randomly selected, 3C traces drawn according to the following criteria: (a–c)
trace_GPD_[P,S]_number> 3 (11.6 % of the total of the EH channels); (d–f) trace_EQT_number_detections> 3 (0.13 %
of the total of the EH channels); (g–i) all the trace_[E,N,Z]_rms_counts< [1013, 1071, 793] (86.31 % of the total of the
HH channels); (j–l) any of the trace_[E,N,Z]_rms_counts > [1013, 1071, 793] (13.69 % of the total of the HH channels);
(m–o) all the trace_[E,N,Z]_rms_counts< [327.1, 332, 307] (86.36 % of the total of the EH channels); (p–r) any of the
trace_[E,N,Z]_rms_counts> [327.1, 332, 307] (13.64 % of the total of the EH channels).
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piling a high-quality dataset, and it may also be an obstacle
when attempting to reveal deep information therein, but the
expectation is that, by including all the data together, the rich
set of metadata leaves the users enough freedom to identify
the “good” data for their purposes. It is worthwhile to men-
tion that Yeck et al. (2020) have found that inclusion of only
good, high-SNR trace data during training of various body
waves resulted in lower performance when applied to real-
time pick data.

The INSTANCE dataset includes intensity measures (i.e.,
PGA, PGV, spectral accelerations) obtained after deconvolu-
tion of the instrument response performed automatically and
possibly affected by digital signal processing problems in-
duced, for example, by the presence of abnormal drifts and
spikes. Given the difficulty in verifying the quality of all
the individual processed traces, the availability of a rich set
of trace metadata can be useful (again) to detect the faulty
traces.

The example traces drawn randomly from the dataset that
we have presented in Figs. 14, 15, 16, and 20 provide some
evidence of the characteristics of the traces contained in the
dataset and how they can be promptly selected through the
provided metadata. Although the great majority of the data
appear to be of very good quality, we are also aware that
low-quality data almost inevitably occur. Inspection of the
waveform traces by using other selection criteria than those
shown here and of the IM metadata (see Fig. 12) gives us,
however, good confidence on an overall good quality of the
dataset.

The INSTANCE data collection assembles for the first
time a very large amount of earthquake and noise data
throughout Italy. If on one hand this might seem a limitation
when compared to other recent data collections like STEAD
and LEN-DB that have gathered data globally, on the other
hand the dataset can be considered a representative subset
of the seismicity in Italy and neighboring areas. The dataset
equals to more than 43 000 h of continuous event and noise
data and associated metadata with an average of 21 3C traces
per earthquake. For the purpose of comparison, in Table 6,
we summarize the main features of the currently available
seismological datasets assembled for ML analysis. As noted
above, the main features that distinguish INSTANCE from
the other datasets are the number of metadata for both earth-
quakes and noise traces and the average number of traces
per event. In addition, the dataset provides a generally large
number of traces for each recording site, making the dataset
suitable for quite diversified target studies. The dataset is also
unique since it is the only one (yet) to provide the waveform
traces in both digital counts and physical units. In this con-
text, the set of parameters provided by INSTANCE spans
both specific seismological parameters like P and S arrival
times, fault plane and moment tensor solutions, and also
peak ground motion parameters in physical units (e.g., PGA,
PGV), which can be used for studies that target the estima-
tion of the ground shaking (e.g., shakemaps).

In summary, the dataset features strengths such as the
prompt availability of a large number of records assembled
within a ready-to-use data volume that can be certainly con-
sidered representative of the whole waveform data archive
of the INGV ORFEUS-EIDA node and that can be used for
many diverse studies. In our opinion, the strengths of pro-
viding a diversified set of data outnumber the weaknesses,
and the latter ones be isolated and their negative contribu-
tion reduced through the exploitation of the very rich set of
metadata.

5 Applications

For the purpose of describing the range of possible applica-
tions of INSTANCE, we follow the basic exposition schema
adopted by Mousavi et al. (2019) for the STEAD benchmark
dataset. These authors addressed four main areas in which
benchmark datasets can prove very effective for improv-
ing seismological knowledge and seismic monitoring oper-
ational activities: earthquake trace denoising, earthquake de-
tection and onset picking, classification/discrimination, and
direct earthquake characterization.

The seismic noise level at a station is frequency depen-
dent and derives from many factors such as types of equip-
ment, installation, meteorological conditions, anthropic gen-
erated noise, geography, season, and time of day (McNa-
mara and Buland, 2004). Seismic trace denoising enhances
the SNR that is crucial to lowering the magnitude detection
level of earthquake catalogs and, by so doing, increase the
number events detected. Analogously, denoising can be rel-
evant to preprocess seismic traces when performing ambi-
ent noise cross-correlation analysis (e.g., Baig et al., 2009),
for detecting speed-of-light changes of the gravitational field
(Vallée et al., 2017), or for the analysis of seismic data ac-
quired in urban areas (e.g., Parolai, 2009), just to mention
a few among many applications. ML techniques seem very
promising to address the reduction of noise in seismic data.
For example, W. Zhu et al. (2019) (and references therein for
a list of applications in applied geophysics and seismology)
have proposed a denoising/decomposition method, DeepDe-
noiser, based on a deep neural network which is based on the
adoption of signal and noise masks which are then used to
effectively decompose the input data into a signal of interest
and noise. The technique has been tested against a dataset
composed of broadband recordings of the North California
Seismic Network which is similar to the data of INSTANCE.
The adoption of an unsupervised machine learning method
has been instead advocated by Chen et al. (2019), who have
proposed it in combination with an autoencoder algorithm
that adaptively learns the features from the raw noisy seismo-
logical datasets and uses the sparse constraint to suppress the
learned trivial features that may be associated with the partial
noise component. They apply the technique to the waveform
stacked data used in Shearer (1991), and similar stacks can

Earth Syst. Sci. Data, 13, 5509–5544, 2021 https://doi.org/10.5194/essd-13-5509-2021



A. Michelini et al.: INSTANCE 5533

Table 6. Comparison between INSTANCE and other published seismic waveform datasets. It was not possible to retrieve some attributes of
the original SCEDC dataset since it is available as different subsets extracted for specific application (list available at https://scedc.caltech.
edu/data/deeplearing.html, last access: 19 November 2021).

INSTANCE1 STEAD2 SCEDC3 LEN-DB4 CNQ_INGV5 NEIC6

Metadata (events) 115 35 – 14 6 5
Metadata (noise) 46 8 – 7 2 –
Trace length (s) 120 60 4,6 27 50 60
Units7 D, P D D P P D
Events 54 008 ∼ 450000 273 882 304 874 6213 136 716
Traces (events) 1 159 249 1 050 000 – 629 095 22 046 –
Traces (noise) 132 288 ∼ 100000 – 615 847 12 543 –
Receivers 620 2613 – 1487 26 2361
Average receivers per event 21 2 – 2 4 –
Duration in hours (events) 38 641 ∼ 17500 – 4718 306 –
Duration in hours (noise) 4409 ∼ 1700 – 4618 174 –
Epicentral distance range (km) < 620 < 350 < 360 < 189 < 19310 < 10000
Magnitude range 0–6.5 0–7.9 −0.81–7.3 0.4–7.1 3–9.1 1–8.3
Sampling rate (Hz) 100 100 100 20 20 40
Storage size (GB) 331.2 91.4 – 18.4 0.9 ∼ 51
Focal mechanism 527 6200 – – – –
Event type8 L, R L L, G L L, R, G L, R, G
Data type9 BB, SM, SP BB, SM, SP BB, SM – BB BB, SP?

1 INSTANCE, https://doi.org/10.13127/instance. 2 STEAD, https://doi.org/10.1109/ACCESS.2019.2947848. 3 SCEDC,
https://scedc.caltech.edu/data/deeplearning.html (last access: 19 November 2021). 4 LEN-DB, https://doi.org/10.5281/zenodo.3648232.
5 ConvNetQuake_INGV (CNQ_INGV), https://doi.org/10.5281/zenodo.5040865. 6 NEIC, https://doi.org/10.5066/P9OHF4WL. 7 D: digital; P: physical.
8 L: local; R: regional; G: global. 9 BB: broadband; SM: strong motion; SP: short period.

be promptly prepared using INSTANCE at the local/regional
scale and applying the denoising technique accordingly.

Earthquake detection (including phase picking), discrim-
ination, and rapid characterization represent main pillars of
seismic monitoring and surveillance. During their lifetime,
operational seismic centers alternate between calm periods
characterized by low levels of seismicity, in which the de-
tection of even the smallest possible events can become of
relevance to delineate the activation of often hidden tectonic
structures, and paroxysmal periods starting with significant
earthquakes and followed by hundreds or thousands of after-
shocks felt by people. To ameliorate the response of the cen-
ters in both these extreme cases, we find that the INSTANCE
dataset can be of importance to calibrate and benchmark
methodologies (i) for phase onset picking and earthquake de-
tection methods to lower the magnitude detection level (e.g.,
Ross et al., 2018a; L. Zhu et al., 2019; Walter et al., 2020;
Mousavi et al., 2020, among others); (ii) to discriminate be-
tween volcanic and tectonic earthquakes (e.g., Esposito et al.,
2006) and, in the future, after updating INSTANCE with new
data, discriminate between earthquakes and other sources of
seismic energy (e.g., sonic booms, quarry blasts, underwa-
ter explosions) often felt by the population (e.g., Del Pezzo
et al., 2003; Linville et al., 2019); (iii) for the rapid and ac-
curate characterization of the earthquake source, distance,
and depth (e.g., Perol et al., 2018; Trugman and Shearer,
2018; Kriegerowski et al., 2018; Zhang et al., 2020; Lomax

et al., 2019; Mousavi and Beroza, 2020; Münchmeyer et al.,
2021) and of the ground shaking (e.g., Alavi, 2011; Derras
et al., 2012; Derras, 2014; Jozinović et al., 2020; Münch-
meyer et al., 2020).

Indeed, the field of application of the dataset is quite exten-
sive, it can be used to address many diverse topics depending
on how the data are grouped, and it can also be useful for
applications not relying on ML techniques. For example, the
dataset features some stations with several thousand traces
recording earthquakes from different azimuths and distances
that can be used to construct common-station gathers of seis-
mograms for swaths of sources in almost any desired geom-
etry (e.g., Korneev et al., 2003) or to study in detail the lo-
cal site response. Analogously, the metadata alone provide a
rich set of arrival times (cf. Fig. 7) that could be used as is
for traveltime tomography at a regional scale in Italy, and, in
addition, the availability of the associated waveforms makes
possible the application of methodologies that resolve the
velocity structure jointly using arrival times and waveform
data (e.g., Zhang and Chen, 2014). For what concerns the
ground motion amplitude data, the availability of these meta-
data can be of relevance in combination with the shakemaps
to develop new tools for rapid earthquake ground motion es-
timation. Other applications of the data collection include the
adoption of unsupervised ML algorithms to group the wave-
forms independently of the earthquake location and just on
the waveform themselves (e.g., Seydoux et al., 2020). IN-
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Table 7. Seismic networks used in the compilation of the INSTANCE dataset.

Code Name Identifier Citation

3A Seismic Microzonation Network 2016 Central
Italy (2016–2016)

https://doi.org/10.13127/SD/ku7Xm12Yy9 Istituto Nazionale di Geofisica e Vulcanologia
et al. (2018)

AC Albanian Seismological Network https://doi.org/10.7914/SN/AC Institute of Geosciences, Energy, Water and En-
vironment (2002)

BA UniBAS https://www.fdsn.org/networks/detail/BA/∗ Universita della Basilicata (2005)

GU Regional Seismic Network of North Western
Italy

https://doi.org/10.7914/SN/GU University of Genoa (1967)

HL National Observatory of Athens Seismic
Network

https://doi.org/10.7914/SN/HL National Observatory of Athens, Institute of
Geodynamics, Athens (1997)

IV Italian National Seismic Network https://doi.org/10.13127/SD/X0FXNH7QFY INGV Seismological Data Centre (1997)

IX Irpinia Seismic Network http://isnet.unina.it/∗ Universita Federico II Napoli (2005)

MN MedNet https://doi.org/10.13127/SD/FBBBTDTD6Q MedNet Project Partner Institutions (1988)

NI North-East Italy Broadband Network https://doi.org/10.7914/SN/NI OGS (Istituto Nazionale di Oceanografia e di
Geofisica Sperimentale) and University of Tri-
este (2002)

OT OTRIONS https://doi.org/10.7914/SN/OT University of Bari “Aldo Moro” (2013)

OX North-East Italy Seismic Network https://doi.org/10.7914/SN/OX Istituto Nazionale di Oceanografia e di Ge-
ofisica Sperimentale (OGS) (2016)

RF Friuli Venezia Giulia Accelerometric Network https://doi.org/10.7914/SN/RF University of Trieste (1993)

SI Province Südtirol https://www.fdsn.org/networks/detail/SI/∗ Zentralanstalt fur Meterologie und Geody-
namik (2006)

ST Trentino Seismic Network https://doi.org/10.7914/SN/ST Geological Survey-Provincia Autonoma di
Trento (1981)

TV INGV experiments network https://www.fdsn.org/networks/detail/TV/∗ Istituto Nazionale di Geofisica e Vulcanologia
(2008)

XO EMERSITO Working Group (2018) https://doi.org/10.13127/SD/7TXeGdo5X8 EMERSITO Working Group (2018)

YD INGV SISMIKO Emergency Seismic Network
for Molise-Italy (2018–2018)

https://doi.org/10.13127/SD/FIR72CHYWU Moretti et al. (2018)

ZM Seismic Emergency for Ischia by Sismiko
(2017–2021)

https://www.fdsn.org/networks/detail/ZM_2017/∗ Istituto Nazionale di Geofisica e Vulcanologia
(2017)

∗ last access: 19 November 2021.

STANCE can also be used, as a dataset with a large number
of data, for creating pretrained models when using transfer
learning techniques either for seismological or other applica-
tions which use time-series data (Otović et al., 2021).

Overall, we believe that the dataset will be useful for step-
ping up towards a new generation of earthquake monitoring
tools that will profit from the ongoing very fast develop-
ments in machine learning. What is certain is that seismol-
ogy is in great need of benchmark datasets (Mousavi et al.,
2019) upon which to test new and existing techniques. To
this end, standardization of the input data and metadata for-
mats is of great relevance, and in constructing this dataset we
have adopted the schema proposed by the SeisBench initia-
tive (Wollam et al., 2021). It is needless to emphasize that
widespread adoption of the same metadata schema and data
volume formats can foster the compilation of similar datasets
also for other regions with the possibility of merging them
all together giving the opportunity to perform ML analysis
exploiting the potentials of the resulting large datasets. Per-
haps more importantly, standardization of data and metadata

formats will make it easier to test different datasets using
the same ML model or, alternatively, benchmarking different
models on the same dataset, and in both cases the benefits
appear clear.

6 Code and data availability

The data used in this work are all gathered on the Italian
node of the European Integrated Data Archives (EIDA; http:
//eida.ingv.it/en/, last access: 19 November 2021) and were
downloaded using the web services provided by INGV (http:
//terremoti.ingv.it/en/webservices_and_software, last access:
19 November 2021). The networks used for the INSTANCE
dataset are organized in Table 7.

Routines and notebooks for analysis and display of the
dataset (and the sample dataset) are available at https://
github.com/ingv/instance (last access: 19 November 2021).
The processing was performed using ObsPy (Beyreuther
et al., 2010; Megies et al., 2011; Krischer et al., 2015),
NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020),
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and Pandas (McKinney, 2010; The pandas development
team, 2020) python modules, and the graphics were prepared
using the Matplotlib library (Hunter, 2007) and seaborn
(Waskom, 2021).

The dataset can be downloaded from http://doi.org/10.
13127/instance (Michelini et al., 2021). A versioning schema
has also been included since the dataset is expected to un-
dergo modifications or expansions in the future. For instance,
it is possible that some earthquakes or noise traces have been
misclassified or that future significant seismic events have
been included. A sample dataset is also provided on the same
landing page.

7 Conclusions

INSTANCE is the first dataset designed for the application of
ML methodologies compiled using the seismic data archived
on the ORFEUS-EIDA node of INGV for Italy (Danecek
et al., 2021). One of the main scopes of the dataset is to pro-
vide a benchmark for developing improved techniques for
earthquake and ground motion characterization. The dataset
consists of about 1.3 million, 120 s long each, 100 Hz sam-
pling, 3C traces subdivided into about 1.2 million containing
seismic events and more than 100 000 that include noise. The
traces are assembled within HDF5 formatted volumes to fa-
cilitate access and analysis. More than 100 metadata grouped
according to source, station, and trace (and derived quan-
tities) are associated with each trace to give the user much
flexibility and control for the selection of the most appropri-
ate data for her/his scientific targets.

The event data include recordings of earthquakes in the
magnitude range 0≤M ≤ 6.5 and in the distance range be-
tween 0 and more than 600 km, although the great majority
of the traces belong to earthquakes in the magnitude range
2≤M ≤ 3 and within 250 km. The depth of the earthquakes
varies between very shallow crustal earthquakes and about
600 km depth in the Calabrian subduction slab. The data have
been recorded by more than 600 stations operating in Italy
in the time span January 2005–January 2020. The dataset
equals to more than 43 000 h of continuous event and noise
data and associated metadata. An average of 21 3C traces is
provided per earthquake.

Appendix A: Preparation of the HDF5 data containers

The waveform trace data are provided in binary HDF5 file
volumes. The volumes have been prepared for event data in
counts and ground motion units and for noise data in counts.
The HDF5 format allows for rapid and easy access to the in-
dividual traces without the need of loading the whole dataset
into memory. The waveform trace datasets have been created
using the HDF5 group data structure https://portal.hdfgroup.
org/display/HDF5/HDF5 (last access: 19 November 2021),
which contains as many HDF5 datasets as 3C waveforms.

Every three-component waveform is a separate HDF5 dataset
and is accessed by its trace name (trace_name), found in
the metadata file.

Appendix B: Velocity model used by the Italian
Seismic Bulletin for the earthquake locations

The earthquake locations provided in the Italian Seis-
mic Bulletin (http://terremoti.ingv.it/en/help#BSI, last ac-
cess: 19 November 2021) are fully described by Mele et al.
(2010). The model consists of two layers over a half space
assuming a ratio VP/VS = 1.732.

Table B1. P- and S-wave velocity model used in the location pro-
cedures for the Italian Seismic Bulletin.

Thickness VP VS
(km) (km s−1) (km s−1)

Upper crust 11.1 5.0 2.89
Lower crust 26.9 6.5 3.75
Mantle half space 8.05 4.65

The IPOP software developed by Alberto Basili is used for
the earthquake locations (Bono, 2008).

Appendix C: Positive and negative polarities

In this Appendix, we examine the origin for the observed
asymmetry (almost 2 : 1 ratio) in the number of reported pos-
itive (up) and negative (down) polarities of the INSTANCE
dataset. We evaluate whether (i) the inclusion of anthropic,
unidentified sources like quarry blasts mistaken for earth-
quakes can affect the reported asymmetry and (ii) the tec-
tonics of the region can condition the number of positive and
negative polarities in INSTANCE.

For the first investigation, we have followed Mele et al.
(2010) (see also the recent work by Gulia and Gasperini,
2021), who found that in the 2008 bulletin 99.6 % of the
blasts have local magnitude ML ≤ 2.2 (Fig. 23 of their
study). We have progressively increased the lower magni-
tude threshold to verify whether the nearly 2 : 1 ratio be-
tween positive and negative polarities persists as the mag-
nitude is increased. The expectation is that, as the magni-
tude increases, the ratio progressively levels out since the
blasts (or other artificial sources) do not produce magnitudes
greater than M = 3 in Europe (cf. Giardini et al., 2004).
To address the variation of the proportion between positive
and negative polarities with magnitude, we have selected
from the INSTANCE dataset earthquakes with progressively
larger minimum threshold magnitudes and found that the
fraction (percent values) of negative polarities increases pro-
gressively from 36 % to 41 % when including earthquakes
with M > 0.25 and M > 3, respectively. For larger mini-
mum magnitudes, the percentage stabilizes around 42 %–
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43 %. This indicates that inclusion of the polarities of, e.g.,
unrecognized blasts (i.e., with M < 3) has a moderate but
still significant impact on the observed asymmetry between
the reported positive and negative polarities. This asymme-
try, although somewhat surprising, seems to occur also else-
where. For example, Ross et al. (2018b) report, in their analy-
sis of the southern California earthquake dataset (before data
augmentation), a content of 67 % and 33 % for up and down
polarities, respectively. We also note that the regional tec-
tonic setting in Southern California is quite different from
that in Italy.

Secondly, we have subdivided the Italian area into two
zones selecting earthquakes with magnitude M > 2.5 occur-
ring in the Apennines (defined as a rectangular area from 41
to 44◦ N latitude and 9 to 15◦ E longitude) and elsewhere out-
side this area. This data selection is aimed at verifying if the
observed asymmetry of positive and negative polarities can
result from the dominant extensional stress field characteriz-
ing the Apennines when compared to the other areas in Italy.
In the Apennine target area, the largest majority of the earth-
quakes are characterized by normal faulting mechanisms: in
this case the lobes of the seismic radiation pattern show neg-
ative polarities at short epicentral distances.

Given these conditions, the observed asymmetry could re-
sult from the complex interplay between the source receiver
geometry, the 200–300 km width of peninsular Italy, and the
dominant NE–SW extensional axis direction characterizing
the tectonic regime in the Apennines. In this setting, the ra-
diation pattern predicts negative polarities in the near field
and positive polarities farther away from the source. Also the
negative lobes are characterized by a smaller extension with
respect to the positive lobes. Since the seismic receivers are
more or less evenly distributed, the chance to record a nega-
tive pulse is smaller with respect to the positive one.

Figure C1. Distribution of the positive and negative P-wave polarities for earthquakes with M > 2.5 in the Apennine region (41–44◦ N and
9–15◦ E) (a); (b) as in panel (a) but for earthquakes outside the Apennines; (c) as in panel (a) but filtered by back azimuth along the NE–SW
directions, corresponding to the intervals 15–105◦ and 195–285◦.

The Fig. C1 shows the histograms of the distribution of the
positive and negative polarities with distance. The Fig. C1a
shows the distribution of the polarities for the chosen target
area in the Apennines, while Fig. C1c exhibits the polarities
in the same area but only along back azimuth approximately
NE–SW (i.e., the ranges 15–105◦ and 195–285◦). Finally,
Fig. C1b displays the polarities from earthquakes outside the
target area. We note that within the target area (Fig. C1a)
the polarities are overwhelmingly positive, in gross agree-
ment with the explanation above. For further confirmation,
we note in Fig. C1c that, if we restrict to the NE–SW prop-
agation direction perpendicular to the Italian Peninsula, the
ratio between positive and negative polarities (positive %,
negative %) increases further from (68 %, 32 %) to (81 %,
19 %), respectively. Conversely, the number of polarities for
the earthquakes outside the target area are pretty much well
balanced (49 %, 51 %) as shown in Fig. C1b.

In conclusion, (i) the INSTANCE dataset does contain
positive polarities resulting from the inclusion of quarry
blasts misidentified as earthquakes for magnitudes M.2.5–
3.0. This follows from what reported by Mele et al. (2010)
(see also the recent work by Gulia and Gasperini, 2021) and
the change in positive and negative polarity proportions in
INSTANCE at varying minimum magnitude thresholds ap-
pears to confirm it; (ii) the current modalities of earthquake
revision at INGV do not allow for the identification of all the
anthropic sources, so the (source_type) parameter of the
metadata can be misleading; (iii) the target area in the se-
lected Apennine region includes 76 % of the total number of
polarities of the dataset and features a dominance of positive
polarities: a possible explanation is the dominant normal type
of earthquake faulting in the selected Apennine region; and
(iv) the asymmetry observed in the target Apennine region
disappears for M > 2.5 elsewhere in Italy.
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Appendix D: Additional quality control figures

Figure D1. Distribution of P- (a) and S-arrival (b) samples of the extracted waveform traces belonging to the earthquake dataset.

Figure D2. Histogram of the distribution of the quality control metadata of the full earthquake dataset, with the horizontal axis inclusive of
the complete range of values: median (a–c) and mean (d–f). The width of the bins is 2× 103; axes are labeled according to the metadata
listed in Table 2.
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Figure D3. Histogram of the distribution of quality control metadata of the full earthquake dataset, with the horizontal axis inclusive of the
complete range of values: rms, min, max, and first and third quartile. The width of the bins is 2× 105; axes are labeled according to the
metadata listed in Table 2.

Figure D4. Histograms of the distribution of the intensity measures (IMs) of the earthquake dataset for M ≥ 2 earthquakes, with the hori-
zontal axis inclusive of the complete range of values. Axes are labeled according to the metadata listed in Table 2.
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Figure D5. Histogram of the distribution of the noise quality control metadata including the full range of values attained by the median
values: median (a–c) and mean (d–f). The width of the bins is 2× 103; axes are labeled according to the metadata listed in Table 2.

Figure D6. Histogram of the distribution of noise quality control metadata: rms, min, max, and first and third quartile. The width of the bins
is 2× 105; axes are labeled according to the metadata listed in Table 2.
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