Articles | Volume 16, issue 1
https://doi.org/10.5194/essd-16-219-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-219-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A high-resolution synthesis dataset for multistressor analyses along the US West Coast
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Meghan Zulian
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Sara L. Hamilton
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Oregon Kelp Alliance, Port Orford, OR, USA
Tessa M. Hill
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Manuel Delgado
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Carina R. Fish
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Brian Gaylord
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
Kristy J. Kroeker
Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
Hannah M. Palmer
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Aurora M. Ricart
Institut de Ciències del Mar, ICM-CSIC, Barcelona, Spain
Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
Eric Sanford
Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA
Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
Ana K. Spalding
School of Public Policy, Oregon State University, Corvallis, OR, USA
Smithsonian Tropical Research Institute, Panama City, Panama
Melissa Ward
Coastal and Marine Institute, San Diego State University, San Diego, CA, USA
Guadalupe Carrasco
Department of Biology, Sonoma State University, Rohnert Park, CA, USA
Meredith Elliott
Point Blue Conservation Science, Petaluma, CA, USA
Genece V. Grisby
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Evan Harris
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Jaime Jahncke
Point Blue Conservation Science, Petaluma, CA, USA
Catherine N. Rocheleau
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Sebastian Westerink
Department of Land, Air and Water Resources, University of California Davis, Davis, CA, USA
Maddie I. Wilmot
Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
Related authors
No articles found.
Hannah M. Palmer, Veronica Padilla Vriesman, Caitlin M. Livsey, Carina R. Fish, and Tessa M. Hill
Clim. Past, 19, 199–232, https://doi.org/10.5194/cp-19-199-2023, https://doi.org/10.5194/cp-19-199-2023, 2023
Short summary
Short summary
To better understand and contextualize modern climate change, this systematic review synthesizes climate and oceanographic patterns in the Western United States and California Current System through the most recent 11.75 kyr. Through a literature review and coded analysis of past studies, we identify distinct environmental phases through time and linkages between marine and terrestrial systems. We explore climate change impacts on ecosystems and human–environment interactions.
Hannah M. Palmer, Veronica Padilla Vriesman, Roxanne M. W. Banker, and Jessica R. Bean
Earth Syst. Sci. Data, 14, 1695–1705, https://doi.org/10.5194/essd-14-1695-2022, https://doi.org/10.5194/essd-14-1695-2022, 2022
Short summary
Short summary
Shells of coastal marine organisms can serve as archives of past ocean and climate change. Here, we compiled a database of all available oxygen and carbon isotope values of nearshore marine molluscs from the northeast Pacific coast of North America through the Holocene including both modern collected shells and shells analyzed from midden sites. This first-of-its-kind database can be used to answer archaeological and oceanographic questions in future research.
Melissa Ward, Tye L. Kindinger, Heidi K. Hirsh, Tessa M. Hill, Brittany M. Jellison, Sarah Lummis, Emily B. Rivest, George G. Waldbusser, Brian Gaylord, and Kristy J. Kroeker
Biogeosciences, 19, 689–699, https://doi.org/10.5194/bg-19-689-2022, https://doi.org/10.5194/bg-19-689-2022, 2022
Short summary
Short summary
Here, we synthesize the results from 62 studies reporting in situ rates of seagrass metabolism to highlight spatial and temporal variability in oxygen fluxes and inform efforts to use seagrass to mitigate ocean acidification. Our analyses suggest seagrass meadows are generally autotrophic and variable in space and time, and the effects on seawater oxygen are relatively small in magnitude.
Veronica Padilla Vriesman, Sandra J. Carlson, and Tessa M. Hill
Biogeosciences, 19, 329–346, https://doi.org/10.5194/bg-19-329-2022, https://doi.org/10.5194/bg-19-329-2022, 2022
Short summary
Short summary
The shell of the California mussel contains alternating dark and light calcium carbonate increments that record whether the shell was growing normally under optimal conditions (light) or slowly under sub-optimal conditions (dark). However, the timing and specific environmental controls of growth band formation have not been tested. We investigated these controls and found links between stable seawater temperatures and light bands and highly variable or extreme temperatures and dark bands.
Melissa A. Ward, Tessa M. Hill, Chelsey Souza, Tessa Filipczyk, Aurora M. Ricart, Sarah Merolla, Lena R. Capece, Brady C O'Donnell, Kristen Elsmore, Walter C. Oechel, and Kathryn M. Beheshti
Biogeosciences, 18, 4717–4732, https://doi.org/10.5194/bg-18-4717-2021, https://doi.org/10.5194/bg-18-4717-2021, 2021
Short summary
Short summary
Salt marshes and seagrass meadows ("blue carbon" habitats) can sequester and store high levels of organic carbon (OC), helping to mitigate climate change. In California blue carbon sediments, we quantified OC storage and exchange between these habitats. We find that (1) these salt marshes store about twice as much OC as seagrass meadows do and (2), while OC from seagrass meadows is deposited into neighboring salt marshes, little of this material is sequestered as "long-term" carbon.
Hannah M. Palmer, Tessa M. Hill, Peter D. Roopnarine, Sarah E. Myhre, Katherine R. Reyes, and Jonas T. Donnenfield
Biogeosciences, 17, 2923–2937, https://doi.org/10.5194/bg-17-2923-2020, https://doi.org/10.5194/bg-17-2923-2020, 2020
Short summary
Short summary
Modern climate change is causing expansions of low-oxygen zones, with detrimental impacts to marine life. To better predict future ocean oxygen change, we study past expansions and contractions of low-oxygen zones using microfossils of seafloor organisms. We find that, along the San Diego margin, the low-oxygen zone expanded into more shallow water in the last 400 years, but the conditions within and below the low-oxygen zone did not change significantly in the last 1500 years.
Catherine V. Davis, Tessa M. Hill, Ann D. Russell, Brian Gaylord, and Jaime Jahncke
Biogeosciences, 13, 5139–5150, https://doi.org/10.5194/bg-13-5139-2016, https://doi.org/10.5194/bg-13-5139-2016, 2016
Short summary
Short summary
We examine seasonality of planktic foraminifera in an upwelling area to identify species vulnerable to changes in upwelling and ocean acidification and improve interpretation of fossil foraminifera. Of species associated with upwelling on the central California shelf, some are consistent with observations elsewhere while some associations appear to be unique to the region. All species show lunar periodicity and we confirm the presence of foraminifera at very low saturation state of calcite.
T. M. Hill, C. R. Myrvold, H. J. Spero, and T. P. Guilderson
Biogeosciences, 11, 3845–3854, https://doi.org/10.5194/bg-11-3845-2014, https://doi.org/10.5194/bg-11-3845-2014, 2014
G. E. Hofmann, T. G. Evans, M. W. Kelly, J. L. Padilla-Gamiño, C. A. Blanchette, L. Washburn, F. Chan, M. A. McManus, B. A. Menge, B. Gaylord, T. M. Hill, E. Sanford, M. LaVigne, J. M. Rose, L. Kapsenberg, and J. M. Dutton
Biogeosciences, 11, 1053–1064, https://doi.org/10.5194/bg-11-1053-2014, https://doi.org/10.5194/bg-11-1053-2014, 2014
A. Hettinger, E. Sanford, T. M. Hill, J. D. Hosfelt, A. D. Russell, and B. Gaylord
Biogeosciences, 10, 6629–6638, https://doi.org/10.5194/bg-10-6629-2013, https://doi.org/10.5194/bg-10-6629-2013, 2013
M. LaVigne, T. M. Hill, E. Sanford, B. Gaylord, A. D. Russell, E. A. Lenz, J. D. Hosfelt, and M. K. Young
Biogeosciences, 10, 3465–3477, https://doi.org/10.5194/bg-10-3465-2013, https://doi.org/10.5194/bg-10-3465-2013, 2013
Related subject area
Domain: ESSD – Ocean | Subject: Chemical oceanography
Distributions of in situ parameters, dissolved (in)organic carbon, and nutrients in the water column and pore waters of Arctic fjords (western Spitsbergen) during a melting season
Climatological distribution of ocean acidification variables along the North American ocean margins
Updated climatological mean ΔfCO2 and net sea–air CO2 flux over the global open ocean regions
The annual update GLODAPv2.2023: the global interior ocean biogeochemical data product
Synthesis Product for Ocean Time Series (SPOTS) – a ship-based biogeochemical pilot
French coastal network for carbonate system monitoring: the CocoriCO2 dataset
A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)
A decade-long cruise time series (2008–2018) of physical and biogeochemical conditions in the southern Salish Sea, North America
A regional pCO2 climatology of the Baltic Sea from in situ pCO2 observations and a model-based extrapolation approach
A 12-year-long (2010–2021) hydrological and biogeochemical dataset in the Sicily Channel (Mediterranean Sea)
A decade of marine inorganic carbon chemistry observations in the northern Gulf of Alaska – insights into an environment in transition
A novel sea surface pCO2-product for the global coastal ocean resolving trends over 1982–2020
CMEMS-LSCE: a global, 0.25°, monthly reconstruction of the surface ocean carbonate system
A synthesis of ocean total alkalinity and dissolved inorganic carbon measurements from 1993 to 2022: the SNAPO-CO2-v1 dataset
A 20-year (1998–2017) global sea surface dimethyl sulfide gridded dataset with daily resolution
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Database of nitrification and nitrifiers in the global ocean
GOBAI-O2: temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly 2 decades
Spatiotemporal variability in pH and carbonate parameters on the Canadian Atlantic continental shelf between 2014 and 2022
Barium in seawater: dissolved distribution, relationship to silicon, and barite saturation state determined using machine learning
Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N2 fixation
High-frequency, year-round time series of the carbonate chemistry in a high-Arctic fjord (Svalbard)
OceanSODA-UNEXE: a multi-year gridded Amazon and Congo River outflow surface ocean carbonate system dataset
Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer
Spatial reconstruction of long-term (2003–2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis
OceanSODA-MDB: a standardised surface ocean carbonate system dataset for model–data intercomparisons
Hyperspectral reflectance dataset of pristine, weathered, and biofouled plastics
A database of marine macronutrient, temperature and salinity measurements made around the highly productive island of South Georgia, the Scotia Sea and the Antarctic Peninsula between 1980 and 2009
GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product
Oil slicks in the Gulf of Guinea – 10 years of Envisat Advanced Synthetic Aperture Radar observations
Seyed Reza Saghravani, Michael Ernst Böttcher, Wei-Li Hong, Karol Kuliński, Aivo Lepland, Arunima Sen, and Beata Szymczycha
Earth Syst. Sci. Data, 16, 3419–3431, https://doi.org/10.5194/essd-16-3419-2024, https://doi.org/10.5194/essd-16-3419-2024, 2024
Short summary
Short summary
A comprehensive study conducted in 2021 examined the distributions of dissolved nutrients and carbon in the western Spitsbergen fjords during the high-melting season. Significant spatial variability was observed in the water column and pore water concentrations of constituents, highlighting the unique biogeochemical characteristics of each fjord and their potential impact on ecosystem functioning and oceanographic processes.
Li-Qing Jiang, Tim P. Boyer, Christopher R. Paver, Hyelim Yoo, James R. Reagan, Simone R. Alin, Leticia Barbero, Brendan R. Carter, Richard A. Feely, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 3383–3390, https://doi.org/10.5194/essd-16-3383-2024, https://doi.org/10.5194/essd-16-3383-2024, 2024
Short summary
Short summary
In this paper, we unveil a data product featuring ten coastal ocean acidification variables. These indicators are provided on 1°×1° spatial grids at 14 standardized depth levels, ranging from the surface to a depth of 500 m, along the North American ocean margins.
Amanda R. Fay, David R. Munro, Galen A. McKinley, Denis Pierrot, Stewart C. Sutherland, Colm Sweeney, and Rik Wanninkhof
Earth Syst. Sci. Data, 16, 2123–2139, https://doi.org/10.5194/essd-16-2123-2024, https://doi.org/10.5194/essd-16-2123-2024, 2024
Short summary
Short summary
Presented here is a near-global monthly climatological estimate of the difference between atmosphere and ocean carbon dioxide concentrations. The ocean's ability to take up carbon, both now and in the future, is defined by this difference in concentrations. With over 30 million measurements of surface ocean carbon over the last 40 years and utilization of an extrapolation technique, a mean estimate of surface ocean ΔfCO2 is presented.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data, 16, 837–865, https://doi.org/10.5194/essd-16-837-2024, https://doi.org/10.5194/essd-16-837-2024, 2024
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Henry C. Bittig, Erik Jacobs, Thomas Neumann, and Gregor Rehder
Earth Syst. Sci. Data, 16, 753–773, https://doi.org/10.5194/essd-16-753-2024, https://doi.org/10.5194/essd-16-753-2024, 2024
Short summary
Short summary
We present a pCO2 climatology of the Baltic Sea using a new approach to extrapolate from individual observations to the entire Baltic Sea. The extrapolation approach uses (a) a model to inform on how data at one location are connected to data at other locations, together with (b) very accurate pCO2 observations from 2003 to 2021 as the base data. The climatology can be used e.g. to assess uptake and release of CO2 or to identify extreme events.
Francesco Placenti, Marco Torri, Katrin Schroeder, Mireno Borghini, Gabriella Cerrati, Angela Cuttitta, Vincenzo Tancredi, Carmelo Buscaino, and Bernardo Patti
Earth Syst. Sci. Data, 16, 743–752, https://doi.org/10.5194/essd-16-743-2024, https://doi.org/10.5194/essd-16-743-2024, 2024
Short summary
Short summary
Oceanographic surveys were conducted in the Strait of Sicily between 2010 and 2021. This paper provides a description of the time series of nutrients and hydrological data collected in this zone. The dataset fills an important gap in field observations of a crucial area where exchanges with the Mediterranean sub-basin take place, providing support for studies aimed at describing ongoing processes and at realizing reliable projections of the effects of these processes in the near future.
Natalie M. Monacci, Jessica N. Cross, Wiley Evans, Jeremy T. Mathis, and Hongjie Wang
Earth Syst. Sci. Data, 16, 647–665, https://doi.org/10.5194/essd-16-647-2024, https://doi.org/10.5194/essd-16-647-2024, 2024
Short summary
Short summary
As carbon dioxide is released into the air through human-generated activity, about one third dissolves into the surface water of oceans, lowering pH and increasing acidity. This is known as ocean acidification. We merged 10 years of ocean carbon data and made them publicly available for adaptation planning during a time of change. The data confirmed that Alaska is already experiencing the effects of ocean acidification due to naturally cold water, high productivity, and circulation patterns.
Alizée Roobaert, Pierre Regnier, Peter Landschützer, and Goulven G. Laruelle
Earth Syst. Sci. Data, 16, 421–441, https://doi.org/10.5194/essd-16-421-2024, https://doi.org/10.5194/essd-16-421-2024, 2024
Short summary
Short summary
The quantification of the coastal air–sea CO2 exchange (FCO2) has improved in recent years, but its multiannual variability remains unclear. This study, based on interpolated observations, reconstructs the longest global time series of coastal FCO2 (1982–2020). Results show the coastal ocean acts as a CO2 sink, with increasing intensity over time. This new coastal FCO2-product allows establishing regional carbon budgets and provides new constraints for closing the global carbon cycle.
Thi-Tuyet-Trang Chau, Marion Gehlen, Nicolas Metzl, and Frédéric Chevallier
Earth Syst. Sci. Data, 16, 121–160, https://doi.org/10.5194/essd-16-121-2024, https://doi.org/10.5194/essd-16-121-2024, 2024
Short summary
Short summary
CMEMS-LSCE leads as the first global observation-based reconstructions of six carbonate system variables for the years 1985–2021 at monthly and 0.25° resolutions. The high-resolution reconstructions outperform their 1° counterpart in reproducing horizontal and temporal gradients of observations over various oceanic regions to nearshore time series stations. New datasets can be exploited in numerous studies, including monitoring changes in ocean carbon uptake and ocean acidification.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Shengqian Zhou, Ying Chen, Shan Huang, Xianda Gong, Guipeng Yang, Honghai Zhang, Hartmut Herrmann, Alfred Wiedensohler, Laurent Poulain, Yan Zhang, Fanghui Wang, Zongjun Xu, and Ke Yan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-249, https://doi.org/10.5194/essd-2023-249, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Dimethyl sulfide (DMS) is a crucial natural reactive gas in the global climate system, due to its great contribution to aerosols and subsequent impact on clouds over remote oceans. Leveraging machine learning techniques, we constructed a long-term global sea surface DMS gridded dataset with daily resolution. Compared to previous datasets, our new dataset holds promise for improving atmospheric chemistry modeling and advancing our comprehension of the climate effects associated with oceanic DMS.
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023, https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Short summary
Gases dissolved in the ocean water not used by the ecosystem (or "passive tracers") are invaluable to track water over long distances and investigate the processes that modify its properties. Unfortunately, especially so in the ice-covered Arctic Ocean, such gas measurements are sparse. We here present a data set of several passive tracers (anthropogenic gases, noble gases and their isotopes) collected over the full ocean depth, weekly, during the 1-year drift in the Arctic during MOSAiC.
Weiyi Tang, Bess B. Ward, Michael Beman, Laura Bristow, Darren Clark, Sarah Fawcett, Claudia Frey, François Fripiat, Gerhard J. Herndl, Mhlangabezi Mdutyana, Fabien Paulot, Xuefeng Peng, Alyson E. Santoro, Takuhei Shiozaki, Eva Sintes, Charles Stock, Xin Sun, Xianhui S. Wan, Min N. Xu, and Yao Zhang
Earth Syst. Sci. Data, 15, 5039–5077, https://doi.org/10.5194/essd-15-5039-2023, https://doi.org/10.5194/essd-15-5039-2023, 2023
Short summary
Short summary
Nitrification and nitrifiers play an important role in marine nitrogen and carbon cycles by converting ammonium to nitrite and nitrate. Nitrification could affect microbial community structure, marine productivity, and the production of nitrous oxide – a powerful greenhouse gas. We introduce the newly constructed database of nitrification and nitrifiers in the marine water column and guide future research efforts in field observations and model development of nitrification.
Jonathan D. Sharp, Andrea J. Fassbender, Brendan R. Carter, Gregory C. Johnson, Cristina Schultz, and John P. Dunne
Earth Syst. Sci. Data, 15, 4481–4518, https://doi.org/10.5194/essd-15-4481-2023, https://doi.org/10.5194/essd-15-4481-2023, 2023
Short summary
Short summary
Dissolved oxygen content is a critical metric of ocean health. Recently, expanding fleets of autonomous platforms that measure oxygen in the ocean have produced a wealth of new data. We leverage machine learning to take advantage of this growing global dataset, producing a gridded data product of ocean interior dissolved oxygen at monthly resolution over nearly 2 decades. This work provides novel information for investigations of spatial, seasonal, and interannual variability in ocean oxygen.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Öykü Z. Mete, Adam V. Subhas, Heather H. Kim, Ann G. Dunlea, Laura M. Whitmore, Alan M. Shiller, Melissa Gilbert, William D. Leavitt, and Tristan J. Horner
Earth Syst. Sci. Data, 15, 4023–4045, https://doi.org/10.5194/essd-15-4023-2023, https://doi.org/10.5194/essd-15-4023-2023, 2023
Short summary
Short summary
We present results from a machine learning model that accurately predicts dissolved barium concentrations for the global ocean. Our results reveal that the whole-ocean barium inventory is significantly lower than previously thought and that the deep ocean below 1000 m is at equilibrium with respect to barite. The model output can be used for a number of applications, including intercomparison, interpolation, and identification of regions warranting additional investigation.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Jean-Pierre Gattuso, Samir Alliouane, and Philipp Fischer
Earth Syst. Sci. Data, 15, 2809–2825, https://doi.org/10.5194/essd-15-2809-2023, https://doi.org/10.5194/essd-15-2809-2023, 2023
Short summary
Short summary
The Arctic Ocean is subject to high rates of ocean warming and acidification, with critical implications for marine organisms, ecosystems and the services they provide. We report here on the first high-frequency (1 h), multi-year (5 years) dataset of the carbonate system at a coastal site in a high-Arctic fjord (Kongsfjorden, Svalbard). This site is a significant sink for CO2 every month of the year (9 to 17 mol m-2 yr-1). The saturation state of aragonite can be as low as 1.3.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Yayoi Inomata and Michio Aoyama
Earth Syst. Sci. Data, 15, 1969–2007, https://doi.org/10.5194/essd-15-1969-2023, https://doi.org/10.5194/essd-15-1969-2023, 2023
Short summary
Short summary
The behavior of 137Cs in surface seawater in the global ocean was analyzed by using the HAMGlobal2021 database. Approximately 32 % of 137Cs existed in the surface seawater in 1970. The 137Cs released into the North Pacific Ocean by large-scale nuclear weapons tests was transported to the Indian Ocean and then the Atlantic Ocean on a 4–5 decadal timescale, whereas 137Cs released from nuclear reprocessing plants was transported northward to the Arctic Ocean on a decadal scale.
Zhixuan Wang, Guizhi Wang, Xianghui Guo, Yan Bai, Yi Xu, and Minhan Dai
Earth Syst. Sci. Data, 15, 1711–1731, https://doi.org/10.5194/essd-15-1711-2023, https://doi.org/10.5194/essd-15-1711-2023, 2023
Short summary
Short summary
We reconstructed monthly sea surface pCO2 data with a high spatial resolution in the South China Sea (SCS) from 2003 to 2020. We validate our reconstruction with three independent testing datasets and present a new method to assess the uncertainty of the data. The results strongly suggest that our reconstruction effectively captures the main features of the spatiotemporal patterns of pCO2 in the SCS. Using this dataset, we found that the SCS is overall a weak source of atmospheric CO2.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Giulia Leone, Ana I. Catarino, Liesbeth De Keukelaere, Mattias Bossaer, Els Knaeps, and Gert Everaert
Earth Syst. Sci. Data, 15, 745–752, https://doi.org/10.5194/essd-15-745-2023, https://doi.org/10.5194/essd-15-745-2023, 2023
Short summary
Short summary
This paper illustrates a dataset of hyperspectral reflectance measurements of macroplastics. Plastic samples consisted of pristine, artificially weathered, and biofouled plastic items and field plastic debris. Samples were measured in dry conditions and a subset of plastics in wet and submerged conditions. This dataset can be used to better understand plastic optical features when exposed to natural agents and to support the development of algorithms for monitoring environmental plastics.
Michael J. Whitehouse, Katharine R. Hendry, Geraint A. Tarling, Sally E. Thorpe, and Petra ten Hoopen
Earth Syst. Sci. Data, 15, 211–224, https://doi.org/10.5194/essd-15-211-2023, https://doi.org/10.5194/essd-15-211-2023, 2023
Short summary
Short summary
We present a database of Southern Ocean macronutrient, temperature and salinity measurements collected on 20 oceanographic cruises between 1980 and 2009. Vertical profiles and underway surface measurements were collected year-round as part of an integrated ecosystem study. Our data provide a novel view of biogeochemical cycling in biologically productive regions across a critical period in recent climate history and will contribute to a better understanding of the drivers of primary production.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Zhour Najoui, Nellya Amoussou, Serge Riazanoff, Guillaume Aurel, and Frédéric Frappart
Earth Syst. Sci. Data, 14, 4569–4588, https://doi.org/10.5194/essd-14-4569-2022, https://doi.org/10.5194/essd-14-4569-2022, 2022
Short summary
Short summary
Oil spills could have serious repercussions for both the marine environment and ecosystem. The Gulf of Guinea is a very active area with respect to maritime traffic as well as oil and gas exploitation (platforms). As a result, the region is subject to a large number of oil pollution events. This study aims to detect oil slicks in the Gulf of Guinea and analyse their spatial and temporal distribution using satellite data.
Cited articles
Alin, S. R., Feely, R. A., Dickson, A. G., Hernández-Ayón, J. M., Juranek, L. W., Ohman, M. D., and Goericke, R.: Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005–2011), J. Geophys. Res.-Oceans, 117, C05033, https://doi.org/10.1029/2011JC007511, 2012.
Alin, S. R., Newton, J., Sutton, A. J., and Mickett, J.: Dissolved inorganic carbon, total alkalinity, phosphate, silicate, and other variables collected from profile and discrete sample observations using CTD, Niskin bottle and other instruments in the northwest coast of the United States near the ChÃ!` BÄf mooring off La Push, Washington from 2011-05-22 to 2014-10-24 (NCEI Accession 0145160), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/v5b27sbj, 2016.
Alin, S. R., Feely, R. A., Hales, B., Byrne, R. H., Cochlan, W., Liu, X., and Greely, D.: Dissolved inorganic carbon, total alkalinity, pH on total scale, and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Ronald H. Brown in the U.S. West Coast California Current System from 2016-05-08 to 2016-06-06 (NCEI Accession 0169412), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/v5v40shg, 2017.
Alin, S. R., Feely, R. A., Newton, J., Trainer, V. L., Adams, N. G., Greeley, D., Curry, B., Herndon, J., and Ostendorf, M. L.: Dissolved inorganic carbon (DIC), total alkalinity (TA), temperature, salinity, oxygen, and nutrient data collected from discrete profile measurements during the National Oceanic and Atmospheric Administration Harmful Algal Blooms (NOAA HABs) program cruise SH1709 (EXPOCODE 3322220170918) in Pacific Northwest marine waters on NOAA Ship Bell M. Shimada from 2017-09-18 to 2017-09-28 (NCEI Accession 0208230), NOAA National Centers for Environmental Information, [data set], https://doi.org/10.25921/3qa5-v720, 2019.
Aylesworth, L., Fields, S. A., Fields, R. T., and Kane, C.: Oceanography Appendix Report, Oregon Department of Fish and Wildlife Marine Resources Program, Newport, OR, https://ecologyreports.oregonmarinereserves.com/Data_Files/6. Across Reserves/Oceanography/Oceanography_Appendix.html (last access: 15 March 2023), 2022.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N., Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J., Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., and Sydeman, W. J.: Anticipated effects of climate change on coastal upwelling ecosystems, Curr. Clim. Change Rep., 1, 85–93, https://doi.org/10.1007/s40641-015-0008-4, 2015.
Bandstra, L., Hales, B., and Takahashi, T.: High-frequency measurements of total CO2: Method development and first oceanographic observations, Mar. Chem., 100, 24–38, https://doi.org/10.1016/j.marchem.2005.10.009, 2006.
Baptista, A. M., Seaton, C., Wilkin, M. P., Riseman, S. F., Needoba, J. A., Maier, D., Turner, P. J., Kärnä, T., Lopez, J. E., Herfort, L., Megler, V. M., McNeil, C., Crump, B. C., Peterson, T. D., Spitz, Y. H., and Simon, H. M.: Infrastructure for collaborative science and societal applications in the Columbia River estuary, Front. Earth Sci., 9, 659–682, https://doi.org/10.1007/s11707-015-0540-5, 2015.
Barth, J. A., Erofeev, A., and Chan, F.: Oceanographic data across Oregon's marine reserves, Oregon State University, Oregon Department of Fish and Wildlife Marine Resources Program, Newport, OR, 2021.
Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., Cudd, S., Eudeline, B., Langdon, C. J., Jefferds, I., King, T., Suhrbier, A., and McLaughlin, K.: Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response, Oceanography, 28, 146–159, 2015.
Bauer, J. E., Cai, W.-J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The changing carbon cycle of the coastal ocean, Nature, 504, 61–70, https://doi.org/10.1038/nature12857, 2013.
Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B. P. V., Kessouri, F., León, P., Lischka, S., Maas, A. E., McLaughlin, K., Nezlin, N. P., Sutula, M., and Weisberg, S. B.: Systematic review and meta-analysis toward synthesis of thresholds of ocean acidification impacts on calcifying pteropods and interactions with warming, Front. Mar. Sci., 6, 227, https://doi.org/10.3389/fmars.2019.00227, 2019.
Bednaršek, N., Ambrose, R., Calosi, P., Childers, R. K., Feely, R. A., Litvin, S. Y., Long, W. C., Spicer, J. I., Štrus, J., Taylor, J., Kessouri, F., Roethler, M., Sutula, M., and Weisberg, S. B.: Synthesis of thresholds of ocean acidification impacts on decapods, Front. Mar. Sci., 8, 651102, https://doi.org/10.3389/fmars.2021.651102, 2021.
Bezalel S., Davis, J., Featherston, T., Flores, L., Grosso, C., Hale, T., Shusterman, G., Sutton, R., Weaver, M., Wong, A., and Yee, D.: Regional Monitoring Program for Water Quality in San Francisco Bay (RMP), San Francisco Estuary Institute (SFEI) [data set], https://www.sfei.org/programs/sf-bay-regional-monitoring-program (last access: 20 August 2023), 2021.
Bjorkstedt, E. P.: Trinidad Head Line CTD Hydrogeography, NOAA [data set], https://oceanview.pfeg.noaa.gov/erddap/tabledap/swfscTrinidadCTD.html (last access: 15 September 2023), 2023.
Bjorkstedt, E. P. and Peterson, W. T.: Chapter 8 – Zooplankton Data from High-Frequency Coastal Transects: Enriching the Contributions of Ocean Observing Systems to Ecosystem-Based Management in the Northern California Current, in: Coastal Ocean Observing Systems, edited by: Liu, Y., Kerkering, H., and Weisberg, R. H., Academic Press, 119–142, https://doi.org/10.1016/B978-0-12-802022-7.00008-0, 2015.
Bograd, S. J., Checkley, D. A., and Wooster, W. S.: CalCOFI: a half century of physical, chemical, and biological research in the California Current System, Deep-Sea Res. Pt. II, 50, 2349–2353, https://doi.org/10.1016/S0967-0645(03)00122-X, 2003.
Bograd, S. J., Castro, C. G., Lorenzo, E. D., Palacios, D. M., Bailey, H., Gilly, W., and Chavez, F. P.: Oxygen declines and the shoaling of the hypoxic boundary in the California Current, Geophys. Res. Lett., 35, L12607, https://doi.org/10.1029/2008GL034185, 2008.
Bograd, S. J., Schroeder, I., Sarkar, N., Qiu, X., Sydeman, W. J., and Schwing, F. B.: Phenology of coastal upwelling in the California Current, Geophys. Res. Lett., 36, L12607, https://doi.org/10.1029/2008GL035933, 2009.
Bond, N. A., Cronin, M. F., Freeland, H., and Mantua, N.: Causes and impacts of the 2014 warm anomaly in the NE Pacific, Geophys. Res. Lett., 42, 3414–3420, https://doi.org/10.1002/2015GL063306, 2015.
Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification, Limnol. Oceanogr., 55, 346–353, https://doi.org/10.4319/lo.2010.55.1.0346, 2010.
Breitburg, D. L., Salisbury, J., Bernhard, J. M., Cai, W.-J., Dupont, S., Doney, S. C., Kroeker, K. J., Levin, L. A., Long, W. C., Milke, L. M., Miller, S. H., Phelan, B., Passow, U., Seibel, B. A., Todgham, A. E., and Tarrant, A. M.: And on top of all that…: Coping with ocean acidification in the midst of many stressors, Oceanography, 28, 48–61, 2015.
Burger, F. A., Terhaar, J., and Frölicher, T. L.: Compound marine heatwaves and ocean acidity extremes, Nat. Commun., 13, 4722, https://doi.org/10.1038/s41467-022-32120-7, 2022.
Bushinsky, S. M., Takeshita, Y., and Williams, N. L.: Observing changes in ocean carbonate chemistry: Our autonomous future, Curr. Clim. Change Rep., 5, 207–220, https://doi.org/10.1007/s40641-019-00129-8, 2019.
Bushnell, M.: Quality Control of Real-Time Water Level Data: The U.S. IOOS® QARTOD Project, Mar. Technol. Soc. J., 52, 13–17, https://doi.org/10.4031/MTSJ.52.2.2, 2018.
Byrne, M. and Przeslawski, R.: Multistressor impacts of warming and acidification of the ocean on marine invertebrates' life histories, Integr. Comp. Biol., 53, 582–596, https://doi.org/10.1093/icb/ict049, 2013.
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.: Acidification of subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4, 766–770, https://doi.org/10.1038/ngeo1297, 2011.
Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean pH, Nature, 425, 365–365, https://doi.org/10.1038/425365a, 2003.
California Cooperative Oceanic Fisheries Investigations (CalCOFI), Bottle Database [data set], https://calcofi.org/data/oceanographic-data/bottle-database/ (last access: 1 September 2021), 2020.
California Polytechnic State University, Center for Coastal Marine Sciences: Morro Bay – BS1, CeNCOOS Data Portal [data set], https://data.cencoos.org/#metadata/100050/station (last access: 1 August 2023), 2023.
Carter, M. L., Flick, R. E., Terrill, E., Beckhaus, E. C., Martin, K., Fey, C. L., Walker, P. W., Largier, J. L., and McGowan, J. A.: Shore Stations Program Data Archive: Current and historical coastal ocean temperature and salinity measurements from California stations, UC San Diego Library Digital Collections [data set], https://doi.org/10.6075/J06T0K0M, 2021.
Cavole, L., Demko, A., Diner, R., Giddings, A., Koester, I., Pagniello, C., Paulsen, M.-L., Ramirez-Valdez, A., Schwenck, S., Yen, N., Zill, M., and Franks, P.: Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future, Oceanography, 29, 273–285, https://doi.org/10.5670/oceanog.2016.32, 2016.
Chan, F. and Menge, B. A.: SH70 SAMI pCO2 from SH70 mooring 2009-MI_LOCO-Lander, 2010-MI_LOCO-Lander in the SH70 mid-shelf time series station (Strawberry Hill): 44.25N, 124.50W from 2009–2010 (EAGER project), December 2012 ver 04, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], http://lod.bco-dmo.org/id/dataset/3812 (last access: 15 October 2023), 2012.
Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., and Menge, B. A.: Emergence of anoxia in the California Current Large Marine Ecosystem, Science, 319, 920–920, https://doi.org/10.1126/science.1149016, 2008.
Chan, F., Barth, J. A., Blanchette, C. A., Byrne, R. H., Chavez, F., Cheriton, O., Feely, R. A., Friederich, G., Gaylord, B., Gouhier, T., Hacker, S., Hill, T., Hofmann, G., McManus, M. A., Menge, B. A., Nielsen, K. J., Russell, A., Sanford, E., Sevadjian, J., and Washburn, L.: Persistent spatial structuring of coastal ocean acidification in the California Current System, Sci. Rep.-UK, 7, 1–7, https://doi.org/10.1038/s41598-017-02777-y, 2017.
Chan, F., Barth, J. A., Kroeker, K. J., Lubchenco, J., and Menge, B. A.: The dynamics and impact of ocean acidification and hypoxia: Insights from sustained investigations in the Northern California Current Large Marine Ecosystem, Oceanography, 32, 62–71, 2019.
Chavez, F., Pennington, J. T., Michisaki, R., Blum, M., Chavez, G., Friederich, J., Jones, B., Herlien, R., Kieft, B., Hobson, B., Ren, A., Ryan, J., Sevadjian, J., Wahl, C., Walz, K., Yamahara, K., Friederich, G., and Messié, M.: Climate variability and change: Response of a coastal ocean ecosystem, Oceanography, 30, 128–145, https://doi.org/10.5670/oceanog.2017.429, 2017.
Chavez, F. P. and Messié, M.: A comparison of Eastern Boundary Upwelling Ecosystems, Prog. Oceanogr., 83, 80–96, https://doi.org/10.1016/j.pocean.2009.07.032, 2009.
Cheresh, J. and Fiechter, J.: Physical and biogeochemical drivers of alongshore pH and oxygen variability in the California Current System, Geophys. Res. Lett., 47, e2020GL089553, https://doi.org/10.1029/2020GL089553, 2020.
Cheung, W. W. L. and Frölicher, T. L.: Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific, Sci. Rep.-UK, 10, 6678, https://doi.org/10.1038/s41598-020-63650-z, 2020.
Clements, J. C. and Chopin, T.: Ocean acidification and marine aquaculture in North America: potential impacts and mitigation strategies, Rev. Aquacult., 9, 326–341, https://doi.org/10.1111/raq.12140, 2017.
Columbia River Intertribal Fish Commission Center for Coastal Margin Observation and Prediction: SATURN Observation Network Endurance Stations: SATURN-02, Columbia River Intertribal Fish Commission Center for Coastal Margin Observation and Prediction [data set], https://cmop.critfc.org/datamart/observation-network/fixed-station/?id=saturn02&tab=inventory#anchor_38 (last access: 22 October 2023), 2023.
Connolly, T. P., Hickey, B. M., Geier, S. L., and Cochlan, W. P.: Processes influencing seasonal hypoxia in the northern California Current System, J. Geophys. Res.-Oceans, 115, C03021, https://doi.org/10.1029/2009JC005283, 2010.
Cullison Gray, S. E., DeGrandpre, M. D., Moore, T. S., Martz, T. R., Friederich, G. E., and Johnson, K. S.: Applications of in situ pH measurements for inorganic carbon calculations, Mar. Chem., 125, 82–90, https://doi.org/10.1016/j.marchem.2011.02.005, 2011.
Davis, C. V., Hewett, K., Hill, T. M., Largier, J. L., Gaylord, B., and Jahncke, J.: Reconstructing aragonite saturation state based on an empirical relationship for Northern California, Estuar. Coast., 41, 2056–2069, https://doi.org/10.1007/s12237-018-0372-0, 2018.
DeGrandpre, M.: pCO2, pH, salinity and temperature data collected off the coast of Oregon, USA by a SAMI-CO2 sensor on the Shelf Break Mooring located below the National Data Buoy Center's meteorological Buoy 46050; 2007–2011 (NH10_ShelfBreak_MLR project), January 2016 ver 12, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], http://lod.bco-dmo.org/id/dataset/632498 (last access: 10 March 2023), 2016.
Dewitt, L.: SFSU EOS YSI Raw data, NOAA [data set], https://oceanview.pfeg.noaa.gov/erddap/tabledap/rtcctdRTCysirt.html (last access: 10 March 2023), 2022.
Dickson, A. G.: Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22, 113–127, https://doi.org/10.1016/0021-9614(90)90074-Z, 1990.
Dickson, A. G.: Part 1: Seawater carbonate chemistry, in: Guide to Best Practices for Ocean Acidification Research and Data Reporting, edited by: Riesbesell, U., Fabry, V. J., and Hansson, L. (Eds.), Publications Office of the European Union, Luxembourg, 17–40, 2010.
Doney, S. C.: The growing human footprint on coastal and open-ocean biogeochemistry, Science, 328, 1512–1516, https://doi.org/10.1126/science.1185198, 2010.
Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean acidification: The other CO2 Problem, Annu. Rev. Mar. Sci., 1, 169–192, https://doi.org/10.1146/annurev.marine.010908.163834, 2009.
Donham, E., Strope, L., Hamilton, S., and Kroeker, K.: Coupled changes in pH, temperature and dissolved oxygen impact the physiology and ecology of herbivorous kelp forest grazers, Dryad [data set], https://doi.org/10.5061/dryad.8sf7m0cq7, 2022a.
Donham, E. M., Strope, L. T., Hamilton, S. L., and Kroeker, K. J.: Coupled changes in pH, temperature, and dissolved oxygen impact the physiology and ecology of herbivorous kelp forest grazers, Glob. Change. Biol., 28, 3023–3039, https://doi.org/10.1111/gcb.16125, 2022b.
Donham, E. M., Flores, I., Hooper, A., O'Brien, E., Vylet, K., Takeshita, Y., Freiwald, J., and Kroeker, K. J.: Population-specific vulnerability to ocean change in a multistressor environment, Sci. Adv., 9, eade2365, https://doi.org/10.1126/sciadv.ade2365, 2023.
Ekstrom, J. A., Suatoni, L., Cooley, S. R., Pendleton, L. H., Waldbusser, G. G., Cinner, J. E., Ritter, J., Langdon, C., van Hooidonk, R., Gledhill, D., Wellman, K., Beck, M. W., Brander, L. M., Rittschof, D., Doherty, C., Edwards, P. E. T., and Portela, R.: Vulnerability and adaptation of US shellfisheries to ocean acidification, Nat. Clim. Change, 5, 207–214, https://doi.org/10.1038/nclimate2508, 2015.
Fassbender, A. J., Sabine, C. L., Feely, R. A., Langdon, C., and Mordy, C. W.: Inorganic carbon dynamics during northern California coastal upwelling, Cont. Shelf Res., 31, 1180–1192, https://doi.org/10.1016/j.csr.2011.04.006, 2011.
Fassbender, A. J., Alin, S. R., Feely, R. A., Sutton, A. J., Newton, J. A., and Byrne, R. H.: Estimating Total Alkalinity in the Washington State Coastal Zone: Complexities and Surprising Utility for Ocean Acidification Research, Estuar. Coast., 40, 404–418, https://doi.org/10.1007/s12237-016-0168-z, 2017.
Feely, R. A. and Sabine, C. L.: Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from WECOMA in the U.S. West Coast California Current System from 2007-05-11 to 2007-06-14 (NCEI Accession 0083685), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.clivar_nacp_west_coast_cruise _2007, 2013.
Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B.: Evidence for upwelling of corrosive “acidified” water onto the continental shelf, Science, 320, 1490–1492, https://doi.org/10.1126/science.1155676, 2008.
Feely, R. A., Alin, S. R., Hales, B., Johnson, G. C., Byrne, R. H., Peterson, W. T., Liu, X., and Greeley, D.: Dissolved inorganic carbon, total alkalinity, pH on total scale and other variables collected from profile and discrete sample observations on NOAA Ship Fairweather (EXPOCODE 317W20130803) and R/V Point Sur (EXPOCODE 32P020130821) in the U.S. West Coast California Current System during the 2013 West Coast Ocean Acidification Cruise (WCOA2013) from 2013-08-03 to 2013-08-29 (NCEI Accession 0132082), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/v5c53hxp, 2015a.
Feely, R. A., Alin, S. R., Hales, B., Johnson, G. C., Juranek, L. W., Byrne, R. H., Peterson, W. T., Goni, M., Liu, X., Greeley, D.: Dissolved inorganic carbon, total alkalinity, pH, temperature, salinity and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from R/V Wecoma in the U.S. West Coast California Current System during the 2011 West Coast Ocean Acidification Cruise (WCOA2011) from 2011-08-12 to 2011-08-30 (NCEI Accession 0123467), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/v5jq0xz1, 2015b.
Feely, R. A., Alin, S. R., Carter, B., Bednaršek, N., Hales, B., Chan, F., Hill, T. M., Gaylord, B., Sanford, E., Byrne, R. H., Sabine, C. L., Greeley, D., and Juranek, L.: Chemical and biological impacts of ocean acidification along the west coast of North America, Estuar. Coast. Shelf Sci., 183, 260–270, https://doi.org/10.1016/j.ecss.2016.08.043, 2016a.
Feely, R. A., Alin, S. R., Hales, B., Johnson, G. C., Juranek, L. W., Peterson, W. T., and Greeley, D.: Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship Bell M. Shimada in the Columbia River estuary – Washington/Oregon, Gulf of the Farallones National Marine Sanctuary and others from 2012-09-04 to 2012-09-17 (NCEI Accession 0157445), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/e7m6-gh32, 2016b.
Feely, R. A., Carter, B. R., Greeley, D., McCabe, R. M., and Herndon, J.: Dissolved inorganic carbon (DIC), total alkalinity (TA), pH, temperature, salinity, oxygen, and nutrient data collected from discrete profile measurements during the National Oceanic and Atmospheric Administration Ocean Acidification Program (OAP) program cruise WCOA2021 (EXPOCODE 33RO20210613) in the northeast Pacific marine waters on NOAA Ship Ronald H. Brown from 2021-06-13 to 2021-07-26 (NCEI Accession 0260718). NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/tzxh-n954, 2022.
Field, J. C. and Francis, R. C.: Considering ecosystem-based fisheries management in the California Current, Mar. Policy, 30, 552–569, https://doi.org/10.1016/j.marpol.2005.07.004, 2006.
Frieder, C. A., Nam, S. H., Martz, T. R., and Levin, L. A.: High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest, Biogeosciences, 9, 3917–3930, https://doi.org/10.5194/bg-9-3917-2012, 2012.
Free, C. M., Anderson, S. C., Hellmers, E. A., Muhling, B. A., Navarro, M. O., Richerson, K., Rogers, L. A., Satterthwaite, W. H., Thompson, A. R., Burt, J. M., Gaines, S. D., Marshall, K. N., White, J. W., and Bellquist, L. F.: Impact of the 2014–2016 marine heatwave on US and Canada West Coast fisheries: Surprises and lessons from key case studies, Fish. Fish., 24, 652–674, https://doi.org/10.1111/faf.12753, 2023.
Frölicher, T. L. and Laufkötter, C.: Emerging risks from marine heat waves, Nat. Commun., 9, 650, https://doi.org/10.1038/s41467-018-03163-6, 2018.
Fumo, J. T., Carter, M. L., Flick, R. E., Rasmussen, L. L., Rudnick, D. L., and Iacobellis, S. F.: Contextualizing marine heatwaves in the Southern California Bight under anthropogenic climate change, J. Geophys. Res.-Oceans, 125, e2019JC015674, https://doi.org/10.1029/2019JC015674, 2020.
García-Reyes, M. and Largier, J.: Observations of increased wind-driven coastal upwelling off central California, J. Geophys. Res.-Oceans, 115, C040411, https://doi.org/10.1029/2009JC005576, 2010.
García-Reyes, M. and Largier, J. L.: Seasonality of coastal upwelling off central and northern California: New insights, including temporal and spatial variability, J. Geophys. Res.-Oceans, 117, C03028, https://doi.org/10.1029/2011JC007629, 2012.
Gattuso, J.-P., Epitalon, J.-M., Lavigne, H., and Orr, J.: seacarb: Seawater Carbonate Chemistry, R package version 3.2.16, https://CRAN.R-project.org/package=seacarb (last access: 4 January 2024), 2023.
Gentemann, C. L., Fewings, M. R., and García-Reyes, M.: Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave, Geophys. Res. Lett., 44, 312–319, https://doi.org/10.1002/2016GL071039, 2017.
Gobler, C. J. and Baumann, H.: Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life, Biol. Lett., 12, 20150976, https://doi.org/10.1098/rsbl.2015.0976, 2016.
Grantham, B. A., Chan, F., Nielsen, K. J., Fox, D. S., Barth, J. A., Huyer, A., Lubchenco, J., and Menge, B. A.: Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific, Nature, 429, 749–754, https://doi.org/10.1038/nature02605, 2004.
Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frölicher, T. L., and Plattner, G.-K.: Rapid progression of ocean acidification in the California Current System, Science, 337, 220–223, https://doi.org/10.1126/science.1216773, 2012.
Hales, B., Chipman, D., and Takahashi, T.: High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors, Limnol. Oceanogr. Methods, 2, 356–364, https://doi.org/10.4319/lom.2004.2.356, 2004.
Hamilton, S. L., Kennedy, E. G., Zulian, M., Hill, T. M., Gaylord, B., Sanford, E., Ricart, A. M., Ward, M., Spalding, A. K., and Kroeker, K.: Variable exposure to multiple climate stressors across the California marine protected area network and policy implications, ICES J. Mar. Sci., 80, 1923–1935, https://doi.org/10.1093/icesjms/fsad120, 2023.
Hauri, C., Gruber, N., Vogt, M., Doney, S. C., Feely, R. A., Lachkar, Z., Leinweber, A., McDonnell, A. M. P., Munnich, M., and Plattner, G.-K.: Spatiotemporal variability and long-term trends of ocean acidification in the California Current System, Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, 2013.
Hickey, B. M.: The California current system – hypotheses and facts, Prog. Oceanogr., 8, 191–279, https://doi.org/10.1016/0079-6611(79)90002-8, 1979.
Hodgson, E. E., Kaplan, I. C., Marshall, K. N., Leonard, J., Essington, T. E., Busch, D. S., Fulton, E. A., Harvey, C. J., Hermann, A. J., and McElhany, P.: Consequences of spatially variable ocean acidification in the California Current: Lower pH drives strongest declines in benthic species in southern regions while greatest economic impacts occur in northern regions, Ecol. Modell., 383, 106–117, https://doi.org/10.1016/j.ecolmodel.2018.05.018, 2018.
Hofmann, A. F., Peltzer, E. T., Walz, P. M., and Brewer, P. G.: Hypoxia by degrees: Establishing definitions for a changing ocean, Deep-Sea Res. Pt. I, 58, 1212–1226, https://doi.org/10.1016/j.dsr.2011.09.004, 2011a.
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.: High-Frequency dynamics of ocean pH: A multi-ecosystem comparison, PLoS ONE, 6, e28983, https://doi.org/10.1371/journal.pone.0028983, 2011b.
Howard, E. M., Frenzel, H., Kessouri, F., Renault, L., Bianchi, D., McWilliams, J. C., and Deutsch, C.: Attributing causes of future climate change in the California Current System with multimodel downscaling, Global Biogeochem. Cy., 34, e2020GB006646, https://doi.org/10.1029/2020GB006646, 2020a.
Howard, E. M., Penn, J. L., Frenzel, H., Seibel, B. A., Bianchi, D., Renault, L., Kessouri, F., Sutula, M. A., McWilliams, J. C., and Deutsch, C.: Climate-driven aerobic habitat loss in the California Current System, Sci. Adv., 6, eaay3188, https://doi.org/10.1126/sciadv.aay3188, 2020b.
Huyer, A.: Coastal upwelling in the California current system, Prog. Oceanogr., 12, 259–284, https://doi.org/10.1016/0079-6611(83)90010-1, 1983.
IPCC: IPCC special report on the ocean and cryosphere in a changing climate, 1st edn., edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 755 pp., https://doi.org/10.1017/9781009157964, 2019.
Jacox, M. G., Hazen, E. L., Zaba, K. D., Rudnick, D. L., Edwards, C. A., Moore, A. M., and Bograd, S. J.: Impacts of the 2015–2016 El Niño on the California Current System: Early assessment and comparison to past events, Geophys. Res. Lett., 43, 7072–7080, https://doi.org/10.1002/2016GL069716, 2016.
Jacox, M. G., Edwards, C. A., Hazen, E. L., and Bograd, S. J.: Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast, J. Geophys. Res.-Oceans, 123, 7332–7350, https://doi.org/10.1029/2018JC014187, 2018.
Jiang, L.-Q., Feely, R. A., Wanninkhof, R., Greeley, D., Barbero, L., Alin, S., Carter, B. R., Pierrot, D., Featherstone, C., Hooper, J., Melrose, C., Monacci, N., Sharp, J. D., Shellito, S., Xu, Y.-Y., Kozyr, A., Byrne, R. H., Cai, W.-J., Cross, J., Johnson, G. C., Hales, B., Langdon, C., Mathis, J., Salisbury, J., and Townsend, D. W.: Coastal Ocean Data Analysis Product in North America (CODAP-NA) – an internally consistent data product for discrete inorganic carbon, oxygen, and nutrients on the North American ocean margins, Earth Syst. Sci. Data, 13, 2777–2799, https://doi.org/10.5194/essd-13-2777-2021, 2021.
Kekuewa, S. and Andersson, A.: Monthly cross-shore transects of biogeochemical properties in La Jolla, CA, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], https://doi.org/10.26008/1912/bco-dmo.839175.1, 2022.
Kekuewa, S. A. H., Courtney, T. A., Cyronak, T., and Andersson, A. J.: Seasonal nearshore ocean acidification and deoxygenation in the Southern California Bight, Sci. Rep.-UK, 12, 17969, https://doi.org/10.1038/s41598-022-21831-y, 2022.
Kelly, M. W. and Hofmann, G. E.: Adaptation and the physiology of ocean acidification, Funct. Ecol., 27, 980–990, https://doi.org/10.1111/j.1365-2435.2012.02061.x, 2013.
Kennedy, E.: egkennedy/DSP_public_code: Code to accompany Kennedy et al., 2023 (initial_release), Zenodo [code], https://doi.org/10.5281/zenodo.10408321, 2023.
Kennedy, E. G., Zulian, M., Hamilton, S. L., Hill, T. M., Delgado, M., Fish, C. R., Gaylord, B., Kroeker, K. J., Palmer, H. M., Ricart, A. M., Sanford, E., Spalding, A. K., Ward, M. A., Carrasco, G., Elliott, M., Grisby, G. V., Harris, E., Jahncke, J., Rocheleau, C. N., Westerink, S., and Wilmot, M. I.: Multistressor Observations of Coastal Hypoxia and Acidification (MOCHA) Synthesis (NCEI Accession 0277984), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/2vve-fh39, 2023.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J.-P.: Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob. Change Biol., 19, 1884–1896, https://doi.org/10.1111/gcb.12179, 2013.
Kroeker, K. J., Donham, E. M., Vylet, K., Warren, J. K., Cheresh, J., Fiechter, J., Freiwald, J., and Takeshita, Y.: Exposure to extremes in multiple global change drivers: Characterizing pH , dissolved oxygen, and temperature variability in a dynamic, upwelling dominated ecosystem, Limnol. Oceanogr., 68, 1611–1623, https://doi.org/10.1002/lno.12371, 2023.
Kudela, R.: CeNCOOS in situ Water monitoring data at the Santa Cruz municipal wharf, CeNCOOS Data Portal [data set], https://data.cencoos.org/#metadata/48323/station, 2020.
Lai, C.-Z., DeGrandpre, M. D., and Darlington, R. C.: Autonomous optofluidic chemical analyzers for marine applications: Insights from the Submersible Autonomous Moored Instruments (SAMI) for pH and pCO2, Front. Mar. Sci., 4, 438, 2018.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M.: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106, 2012.
Low, N. H. N., Micheli, F., Aguilar, J. D., Arce, D. R., Boch, C. A., Bonilla, J. C., Bracamontes, M. Á., De Leo, G., Diaz, E., Enríquez, E., Hernandez, A., Martinez, R., Mendoza, R., Miranda, C., Monismith, S., Ramade, M., Rogers-Bennett, L., Romero, A., Salinas, C., Smith, A. E., Torre, J., Villavicencio, G., and Woodson, C. B.: Variable coastal hypoxia exposure and drivers across the southern California Current, Sci. Rep.-UK, 11, 10929, https://doi.org/10.1038/s41598-021-89928-4, 2021.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Equilibrium structure and dynamics of the California Current System, J. Phys. Oceanogr., 33, 753–783, https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2, 2003.
Marshall, K. N., Kaplan, I. C., Hodgson, E. E., Hermann, A., Busch, D. S., McElhany, P., Essington, T. E., Harvey, C. J., and Fulton, E. A.: Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections, Glob. Change Biol., 23, 1525–1539, https://doi.org/10.1111/gcb.13594, 2017.
Martz, T. R., Connery, J. G., and Johnson, K. S.: Testing the Honeywell Durafet® for seawater pH applications, Limnol. Oceanogr. Methods, 8, 172–184, https://doi.org/10.4319/lom.2010.8.172, 2010.
Martz, T. R., Daly, K. L., Byrne, R. H., Stillman, J. H., and Turk, D.: Technology for ocean acidification research: Needs and availability, Oceanography, 28, 40–47, 2015.
Menge, B. A., Chavez, F., Chan, F., Russell, A. D., Blanchette, C. A., Sanford, E., Friederich, G., McManus, M. A., Raimondi, P. T., Barth, J., Hill, T. M., Nielsen, K. J., Hacker, S. D., Washburn, L., and Gaylord, B.: Moorings temperature and pH from multiple sites in the California Current System starting 2008 (OMEGAS-MaS project, ACIDIC project), May 2015 ver 28, Biological and Chemical Oceanography Data Management Office (BCO-DMO) [data set], http://lod.bco-dmo.org/id/dataset/3650 (last access: 12 October 2023), 2015.
National Data Buoy Center: Historical NDBC Data, National Oceanic and Atmospheric Administration [data set], https://www.ndbc.noaa.gov/historical_data.shtml#ocean (last access: 4 January 2024), 2023.
Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J.: Global Ocean Acidification Observing Network: Requirements and Governance Plan, GOA-ON, 2nd edn., https://www.iaea.org/sites/default/files/18/06/goa-on-second-edition-2015.pdf (last access: 4 January 2023), 2015.
NSF Ocean Observatories Initiative: Coastal Endurance Washington Shelf Surface Mooring from June 2016 to December 2022, Data Explorer [data set], https://dataexplorer.oceanobservatories.org/#ooi/array/CE/subsite/CE07SHSM (last access: 11 October 2023), 2022.
Palevsky, H., Clayton, S., Atamanchuk, D., Battisti, R., Batryn, J., Bourbonnais, A., Briggs, E. M., Carvalho, F., Chase, A. P., Eveleth, R., Fatland, R., Fogaren, K. E., Fram, J. P., Hartman, S. E., Le Bras, I., Manning, C. C. M., Needoba, J. A., Neely, M. B., Oliver, H., Reed, A. C., Rheuban, J. E., Schallenberg, C., Vardaro, M. F., Walsh, I., and Wingard, C.: OOI Biogeochemical Sensor Data Best Practices and User Guide, Version 1.0.0, Ocean Observatories Initiative, Biogeochemical Sensor Data Working Group, https://doi.org/10.25607/OBP-1865, 2022.
Perez, F. F. and Fraga, F.: Association constant of fluoride and hydrogen ions in seawater, Mar. Chem., 21, 161–168, https://doi.org/10.1016/0304-4203(87)90036-3, 1987.
Ricart, A. M., Ward, M., Hill, T. M., Sanford, E., Kroeker, K. J., Takeshita, Y., Merolla, S., Shukla, P., Ninokawa, A. T., Elsmore, K., and Gaylord, B.: Coast-wide evidence of low pH amelioration by seagrass ecosystems, Glob. Change Biol., 27, 2580–2591, https://doi.org/10.1111/gcb.15594, 2021.
Risien, C. M., Fewings, M. R., Fisher, J. L., Peterson, J. O., and Morgan, C. A.: Spatially gridded cross-shelf hydrographic sections and monthly climatologies from shipboard survey data collected along the Newport Hydrographic Line, 1997–2021, Data Brief, 41, 107922, https://doi.org/10.1016/j.dib.2022.107922, 2022a.
Risien, C. M., Fewings, M. R., Fisher, J. L., Peterson, J. O., Morgan, C. A., and Peterson, W.: Spatially gridded cross-shelf hydrographic sections and monthly climatologies from shipboard survey data collected along the Newport Hydrographic Line, 1997–2021 (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.5814071, 2022b.
Rogers-Bennett, L. and Catton, C. A.: Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens, Sci. Rep.-UK, 9, 15050, https://doi.org/10.1038/s41598-019-51114-y, 2019.
Rosenau, N. A., Galavotti, H., Yates, K. K., Bohlen, C., Hunt, C. W., Liebman, M., Brown, C. A., Pacella, S. R., Largier, J. L., Nielsen, K. J., Hu, X., McCutcheon, M. R., Vasslides, J. M., Poach, M., Ford, T., Johnston, K., and Steele, A.: High-resolution coastal acidification monitoring data collected in seven estuaries along the US East Coast, US West Coast and Gulf of Mexico from 2015-04-23 to 2020-07-29 (NCEI Accession 0225225), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/xg33-1n83, 2021a.
Rosenau, N. A., Galavotti, H., Yates, K. K., Bohlen, C. C., Hunt, C. W., Liebman, M., Brown, C. A., Pacella, S. R., Largier, J. L., Nielsen, K. J., Hu, X., McCutcheon, M. R., Vasslides, J. M., Poach, M., Ford, T., Johnston, K., and Steele, A.: Integrating high-resolution coastal acidification monitoring data across seven United States estuaries, Front. Mar. Sci., 8, 679913, 2021b.
Ruhl, H. A., Brown, J. A., Harper, A. R., Hazen, E. L., deWitt, L., Daniel, P., DeVogelaere, A., Kudela, R. M., Ryan, J. P., Fischer, A. D., Muller-Karger, F. E., and Chavez, F. P.: Integrating biodiversity and environmental observations: In support of National Marine Sanctuary and Large Marine Ecosystem assessments, Oceanography, 34, 142–155, 2021.
Sabine, C. L., Hankin, S., Koyuk, H., Bakker, D. C. E., Pfeil, B., Olsen, A., Metzl, N., Kozyr, A., Fassbender, A., Manke, A., Malczyk, J., Akl, J., Alin, S. R., Bellerby, R. G. J., Borges, A., Boutin, J., Brown, P. J., Cai, W.-J., Chavez, F. P., Chen, A., Cosca, C., Feely, R. A., González-Dávila, M., Goyet, C., Hardman-Mountford, N., Heinze, C., Hoppema, M., Hunt, C. W., Hydes, D., Ishii, M., Johannessen, T., Key, R. M., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lourantou, A., Merlivat, L., Midorikawa, T., Mintrop, L., Miyazaki, C., Murata, A., Nakadate, A., Nakano, Y., Nakaoka, S., Nojiri, Y., Omar, A. M., Padin, X. A., Park, G.-H., Paterson, K., Perez, F. F., Pierrot, D., Poisson, A., Ríos, A. F., Salisbury, J., Santana-Casiano, J. M., Sarma, V. V. S. S., Schlitzer, R., Schneider, B., Schuster, U., Sieger, R., Skjelvan, I., Steinhoff, T., Suzuki, T., Takahashi, T., Tedesco, K., Telszewski, M., Thomas, H., Tilbrook, B., Vandemark, D., Veness, T., Watson, A. J., Weiss, R., Wong, C. S., and Yoshikawa-Inoue, H.: Surface Ocean CO2 Atlas (SOCAT) gridded data products, Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-2013, 2013.
Sakuma, K.: Project report: Rockfish Recruitment and Ecosystem Assessment (NOAA Ship Reuben Lasker, RL-22-02, 28 April–16 June 2022), NMFS Southwest Fisheries Science Center, Santa Cruz, CA, 2022.
Salop, P. and Herrmann, C.: 2019 RMP Water cruise report, Regional Monitoring Program for Water Quality in San Francisco Bay, San Francisco Estuary Institute, Richmond, CA, 2019.
Sanford, E. and Kelly, M. W.: Local adaptation in marine invertebrates, Annu. Rev. Mar. Sci., 3, 509–535, https://doi.org/10.1146/annurev-marine-120709-142756, 2011.
Sanford, E., Sones, J. L., García-Reyes, M., Goddard, J. H. R., and Largier, J. L.: Widespread shifts in the coastal biota of northern California during the 2014–2016 marine heatwaves, Sci. Rep.-UK, 9, 4216, https://doi.org/10.1038/s41598-019-40784-3, 2019.
Santa Barbara Coastal LTER, Hofmann, G. E. and Washburn, L.: SBC LTER: Ocean: Time-series: Mid-water SeaFET pH and CO2 system chemistry at Alegria(ALE), ongoing since 2011-06-21, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/1bd1491475ff6afee4be10d054d1ef0b, 2018.
Santa Barbara Coastal LTER, Hofmann, G., and Washburn, L.: SBC LTER: Ocean: Time-series: Mid-water SeaFET pH and CO2 system chemistry with surface and bottom Dissolved Oxygen at Arroyo Quemado Reef(ARQ), 2012–2017 ver 5, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/6a81dcaaa9931c31dfa59132c7c5f829, 2020a.
Santa Barbara Coastal LTER, Hofmann, G., and Washburn, L.: SBC LTER: Ocean: Time-series: Mid-water SeaFET pH and CO2 system chemistry with surface and bottom Dissolved Oxygen at Mohawk Reef(MKO), 2012–2017 ver 5, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/23b8070eb65bae7aedc82fae8ee38b9f, 2020b.
Santa Barbara Coastal LTER, Hofmann, G., and Washburn, L.: SBC LTER: Ocean: Time-series: Mid-water SeaFET pH and CO2 system chemistry with surface and bottom Dissolved Oxygen at Santa Barbara Harbor/Stearns Wharf(SBH), 2012–2017 ver 4, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/6322ad40dfbc0bbc037994490218e28e, 2020c.
Santa Barbara Coastal LTER, Hofmann, G., Blanchette, C., Passow, U., Washburn, L., Lunden, J., Rivest, E., Kapsenberg, L., and Kui, L.: SBC LTER: pH time series: Water-sample pH and CO2 system chemistry, ongoing since 2011, ver 6, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/8efa600f49c3a171b13d05d70fad1d98, 2022.
Schar, D., Atkinson, M., Johengen, T., Pinchuk, A., Purcell, H., Robertson, C., Smith, G. J., and Tamburri, M.: Performance demonstration statement: Sunburst Sensors SAMI-CO2, Alliance for Coastal Technologies, Chesapeake Biological Laboratory, Solomons, Maryland, USA, 2009.
Send, U., Ohman, M., Lankhorst, M., and Kim, H-J.: Dissolved inorganic carbon, total alkalinity, nutrients, and other variables collected from profile and discrete observations using CTD, Niskin bottle, and other instruments from R/V New Horizon and R/V Robert Gordon Sproul in the U.S. West Coast for calibration and validation of California Current Ecosystem (CCE) Moorings from 2009-12-15 to 2015-04-29 (NCEI Accession 0146024), NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/v57d2s6c, 2016.
Sharp, J. D., Fassbender, A. J., Carter, B. R., Lavin, P. D., and Sutton, A. J.: A monthly surface pCO2 product for the California Current Large Marine Ecosystem, Earth Syst. Sci. Data, 14, 2081–2108, https://doi.org/10.5194/essd-14-2081-2022, 2022.
Shaughnessy, F: CeNCOOS in situ water monitoring data at Trinidad Head, California [data set], https://data.cencoos.org/#metadata/48097/station (last access: 10 August 2023), 2023.
Siedlecki, S., Bjorkstedt, E., Feely, R., Sutton, A., Cross, J., and Newton, J.: Impact of the Blob on the Northeast Pacific Ocean biogeochemistry and ecosystems, US Clivar Variations, 14, 7–12, 2016.
Siedlecki, S. A., Pilcher, D., Howard, E. M., Deutsch, C., MacCready, P., Norton, E. L., Frenzel, H., Newton, J., Feely, R. A., Alin, S. R., and Klinger, T.: Coastal processes modify projections of some climate-driven stressors in the California Current System, Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, 2021.
Sunday, J. M., Howard, E., Siedlecki, S., Pilcher, D. J., Deutsch, C., MacCready, P., Newton, J., and Klinger, T.: Biological sensitivities to high-resolution climate change projections in the California Current marine ecosystem, Glob. Change Biol., 28, 5726–5740, https://doi.org/10.1111/gcb.16317, 2021.
Sutton, A. J., Sabine, C. L., Send, U., Ohman, M., Musielewicz, S., Maenner Jones, S., Dietrich, C., Bott, R., and Osborne, J.: High-resolution ocean and atmosphere pCO2 time-series measurements from Mooring CCE2_121W_34N in the North Pacific Ocean from 2010-01-17 to 2021-06-16 (NCEI Accession 0084099), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.tsm_cce2_121w_34n, 2012.
Sutton, A. J., Sabine, C. L., Musielewicz, S., Maenner Jones, S., Dietrich, C., Bott, R., and Osborne, J.: High-resolution ocean and atmosphere pCO2 time-series measurements from mooring WA_125W_47N in the North Pacific Ocean (NCEI Accession 0115322), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.tsm_wa_125w_47n, 2013.
Sutton, A. J., Sabine, C. L., Maenner-Jones, S., Lawrence-Slavas, N., Meinig, C., Feely, R. A., Mathis, J. T., Musielewicz, S., Bott, R., McLain, P. D., Fought, H. J., and Kozyr, A.: A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system, Earth Syst. Sci. Data, 6, 353–366, https://doi.org/10.5194/essd-6-353-2014, 2014.
Sutton, A. J., Sabine, C. L., Hales, B., Musielewicz, S., Maenner Jones, S., Dietrich, C., Bott, R., and Osborne, J.: High-resolution ocean and atmosphere pCO2 time-series measurements from mooring NH10_124W_44N in the North Pacific Ocean (NCEI Accession 0157247), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.tsm_nh10_124w_44n, 2016a.
Sutton, A. J., Sabine, C. L., Send, U., Ohman, M., Dietrich, C., Maenner Jones, S., Musielewicz, S., Bott, R., and Osborne, J.: High-resolution ocean and atmosphere pCO2 time-series measurements from mooring CCE1_122W_33N in the North Pacific Ocean from 2008-11-11 to 2020-06-11 (NCEI Accession 0144245), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.tsm_cce1_122w_33n, 2016b.
Sutton, A. J., Hales, B., Musielewicz, S., Maenner Jones, S., Bott, R., and Osborne, J.: High-resolution ocean and atmosphere pCO2 time-series measurements from mooring CB-06_125W_43N in the North Pacific Ocean (NCEI Accession 0190840), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/rr8z-se53, 2019.
Swiney, K. M., Long, W. C., Foy, R. J., and Fields, D. M.: Decreased pH and increased temperatures affect young-of-the-year red king crab (Paralithodes camtschaticus), ICES J. Mar. Sci., 74, 1191–1200, https://doi.org/10.1093/icesjms/fsw251, 2017.
Sydeman, W. J., Thompson, S. A., García-Reyes, M., Kahru, M., Peterson, W. T., and Largier, J. L.: Multivariate ocean-climate indicators (MOCI) for the central California Current: Environmental change, 1990–2010, Prog. Oceanogr., 120, 352–369, https://doi.org/10.1016/j.pocean.2013.10.017, 2014.
Takeshita, Y., Frieder, C. A., Martz, T. R., Ballard, J. R., Feely, R. A., Kram, S., Nam, S., Navarro, M. O., Price, N. N., and Smith, J. E.: Including high-frequency variability in coastal ocean acidification projections, Biogeosciences, 12, 5853–5870, https://doi.org/10.5194/bg-12-5853-2015, 2015.
Taylor-Burns, R., Cochran, C., Ferron, K., Harris, M., Thomas, C., Fredston, A., and Kendall, B. E.: Locating gaps in the California Current System ocean acidification monitoring network, Sci. Prog., 103, 0036850420936204, https://doi.org/10.1177/0036850420936204, 2020.
Trowbridge, J., Weller, R., Kelley, D., Dever, E., Plueddemann, A., Barth, J. A., and Kawka, O.: The Ocean Observatories Initiative, Front. Mar. Sci., 6, 74, 2019.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the Pacific Ocean, Deep-Sea Res. Pt. I, 21, 161–162, https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Vaquer-Sunyer, R. and Duarte, C. M.: Thresholds of hypoxia for marine biodiversity, P. Natl. Acad. Sci. USA, 105, 15452–15457, https://doi.org/10.1073/pnas.0803833105, 2008.
Walter, R.: CeNCOOS in situ water quality monitoring at Morro Bay, CeNCOOS Data Portal [data set], https://data.cencoos.org/#metadata/20679/station (last access: 12 August 2023), 2023.
Wang, D., Gouhier, T. C., Menge, B. A., and Ganguly, A. R.: Intensification and spatial homogenization of coastal upwelling under climate change, Nature, 518, 390–394, https://doi.org/10.1038/nature14235, 2015.
Ward, M., Spalding, A. K., Levine, A., and Wolters, E. A.: California shellfish farmers: Perceptions of changing ocean conditions and strategies for adaptive capacity, Ocean Coast Manag., 225, 106155, https://doi.org/10.1016/j.ocecoaman.2022.106155, 2022.
Weisberg, S., Chan, F., Barry, J., Boehm, A., Noaa, S. B., Cooley, S., Feely, R., Levin, L., Carter, H., Abderrahim, M., and Kimball, J.: Enhancing California's ocean acidification and hypoxia monitoring network: Recommendations to the Ocean Protection Council from the California Ocean Acidification and Hypoxia Science Task Force, California Ocean Science Trust, Sacramento, California, USA, https://www.opc.ca.gov/webmaster/ftp/pdf/agenda_items/20210615/Item4a_Exhibit_B_Enhancing_Californias_Ocean_Acidification_and_Hypoxia_Monitoring_Network.pdf (last access: 4 January 2023), 2020.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Woodson, C. B., Micheli, F., Boch, C., Al-Najjar, M., Espinoza, A., Hernandez, A., Vázquez-Vera, L., Saenz-Arroyo, A., Monismith, S. G., and Torre, J.: Harnessing marine microclimates for climate change adaptation and marine conservation, Conserv. Lett., 12, e12609, https://doi.org/10.1111/conl.12609, 2019.
Wootton, J. T. and Pfister, C. A.: Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH, PLoS ONE, 7, e53396, https://doi.org/10.1371/journal.pone.0053396, 2012.
Short summary
We present a new synthesis of oceanographic observations along the US West Coast that has been optimized for multiparameter investigations of coastal warming, deoxygenation, and acidification risk. This synthesis includes both previously published and new observations, all of which have been consistently formatted and quality-controlled to facilitate high-resolution investigations of climate risks and consequences across a wide range of spatial and temporal scales.
We present a new synthesis of oceanographic observations along the US West Coast that has been...
Altmetrics
Final-revised paper
Preprint