Articles | Volume 16, issue 4
https://doi.org/10.5194/essd-16-1747-2024
https://doi.org/10.5194/essd-16-1747-2024
Data description paper
 | 
08 Apr 2024
Data description paper |  | 08 Apr 2024

Introduction to the NJIAS Himawari-8/9 Cloud Feature Dataset for climate and typhoon research

Xiaoyong Zhuge, Xiaolei Zou, Lu Yu, Xin Li, Mingjian Zeng, Yilun Chen, Bing Zhang, Bin Yao, Fei Tang, Fengjiao Chen, and Wanlin Kan

Related authors

Assimilating Geostationary Satellite Visible Reflectance Data: developing and testing the GSI-EnKF-CRTM-Vis technique
Chong Luo, Yongbo Zhou, Yubao Liu, Wei Han, Bin Yao, and Chao Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4553,https://doi.org/10.5194/egusphere-2025-4553, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Development of a fast radiative transfer model for ground-based microwave radiometers (ARMS-gb v1.0): validation and comparison to RTTOV-gb
Yi-Ning Shi, Jun Yang, Wei Han, Lujie Han, Jiajia Mao, Wanlin Kan, and Fuzhong Weng
Geosci. Model Dev., 18, 1947–1964, https://doi.org/10.5194/gmd-18-1947-2025,https://doi.org/10.5194/gmd-18-1947-2025, 2025
Short summary
Distinct effects of fine and coarse aerosols on microphysical processes of shallow-precipitation systems in summer over southern China
Fengjiao Chen, Yuanjian Yang, Lu Yu, Yang Li, Weiguang Liu, Yan Liu, and Simone Lolli
Atmos. Chem. Phys., 25, 1587–1601, https://doi.org/10.5194/acp-25-1587-2025,https://doi.org/10.5194/acp-25-1587-2025, 2025
Short summary
A general comprehensive evaluation method for cross-scale precipitation forecasts
Bing Zhang, Mingjian Zeng, Anning Huang, Zhengkun Qin, Couhua Liu, Wenru Shi, Xin Li, Kefeng Zhu, Chunlei Gu, and Jialing Zhou
Geosci. Model Dev., 17, 4579–4601, https://doi.org/10.5194/gmd-17-4579-2024,https://doi.org/10.5194/gmd-17-4579-2024, 2024
Short summary
Resilient dataset of rain clusters with life cycle evolution during April to June 2016–2020 over eastern Asia based on observations from the GPM DPR and Himawari-8 AHI
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022,https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary

Cited articles

Avery, M. A., Ryan, R. A., Getzewich, B. J., Vaughan, M. A., Winker, D. M., Hu, Y., Garnier, A., Pelon, J., and Verhappen, C. A.: CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles, Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, 2020. 
Baum, B. A., Menzel, W., Frey, R., Tobin, D., Holz, R., Ackerman, S., Heidinger, A., and Yang, P.: MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteorol. Clim., 1145–1163, https://doi.org/10.1175/JAMC-D-11-0203.1, 2012. 
Baum, B. A., Yang, P., Heymsfield, A. J., Bansemer, A., Merrelli, A., Schmitt, C., and Wang, C.: Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm, J. Quant. Spectrosc. Ra., 146, 123–139, https://doi.org/10.1016/j.jqsrt.2014.02.029, 2014. 
Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Kumagai, Y., Miyakawa, T., Murata, H., Ohno, T., Okuyama, A., Oyama, R., Sasaki, Y., Shimazu, Y., Shimoji, K., Sumida, Y., Suzuki, M., Taniguchi, H., Tsuchiyama, H., Uesawa, D., Yokota, H., and Yoshida, R.: An Introduction to Himawari-8/9 – Japan's New-Generation Geostationary Meteorological Satellites, J. Meteorol. Soc. Jpn., 94, 151–183, https://doi.org/10.2151/jmsj.2016-009, 2016. 
Cai, D., Tao, L., Yang, X., Sang, X., Fang, J., Sun, X., Wang, W., and Yan H.: A climate perspective of the quasi-stationary front in southwestern China: structure, variation and impact, Clim. Dynam., 59, 547–560, https://doi.org/10.1007/s00382-022-06151-1, 2022. 
Download
Short summary
The Himawari-8/9 level-2 operational cloud product has a low spatial resolution and is available only during the daytime. To supplement this official dataset, a new dataset named the NJIAS Himawari-8/9 Cloud Feature Dataset (HCFD) was constructed. The NJIAS HCFD provides a comprehensive description of cloud features over the East Asia and west North Pacific regions for the years 2016–2022 by 30 retrieved cloud variables. The NJIAS HCFD has been demonstrated to outperform the official dataset.
Share
Altmetrics
Final-revised paper
Preprint