Articles | Volume 15, issue 2
https://doi.org/10.5194/essd-15-661-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-661-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatially resolved hourly traffic emission over megacity Delhi using advanced traffic flow data
Akash Biswal
National Atmospheric Research Laboratory, Gadanki, AP, 517112, India
Department of Environment Studies, Panjab University, Chandigarh,
160014, India
National Atmospheric Research Laboratory, Gadanki, AP, 517112, India
Leeza Malik
Department of Civil Engineering, Indian Institute of Technology
(Indian School of Mines), Dhanbad, Jharkhand 826004, India
Geetam Tiwari
Transportation Research and Injury Prevention Programme, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
Khaiwal Ravindra
Department of Community Medicine and School of Public Health, Post
Graduate Institute of Medical Education and Research (PGIMER), Chandigarh
160012, India
Suman Mor
Department of Environment Studies, Panjab University, Chandigarh,
160014, India
Related authors
Akash Biswal, Vikas Singh, Shweta Singh, Amit P. Kesarkar, Khaiwal Ravindra, Ranjeet S. Sokhi, Martyn P. Chipperfield, Sandip S. Dhomse, Richard J. Pope, Tanbir Singh, and Suman Mor
Atmos. Chem. Phys., 21, 5235–5251, https://doi.org/10.5194/acp-21-5235-2021, https://doi.org/10.5194/acp-21-5235-2021, 2021
Short summary
Short summary
Satellite and surface observations show a reduction in NO2 levels over India during the lockdown compared to business-as-usual years. A substantial reduction, proportional to the population, was observed over the urban areas. The changes in NO2 levels at the surface during the lockdown appear to be present in the satellite observations. However, TROPOMI showed a better correlation with surface NO2 and was more sensitive to the changes than OMI because of the finer resolution.
Ailish M. Graham, Richard J. Pope, Martyn P. Chipperfield, Sandip S. Dhomse, Matilda Pimlott, Wuhu Feng, Vikas Singh, Ying Chen, Oliver Wild, Ranjeet Sokhi, and Gufran Beig
Atmos. Chem. Phys., 24, 789–806, https://doi.org/10.5194/acp-24-789-2024, https://doi.org/10.5194/acp-24-789-2024, 2024
Short summary
Short summary
Our paper uses novel satellite datasets and high-resolution emissions datasets alongside a back-trajectory model to investigate the balance of local and external sources influencing NOx air pollution changes in Delhi. We find in the post-monsoon season that NOx from local and non-local transport emissions contributes most to poor air quality in Delhi. Therefore, air quality mitigation strategies in Delhi and surrounding regions are used to control this issue.
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
Akash Biswal, Vikas Singh, Shweta Singh, Amit P. Kesarkar, Khaiwal Ravindra, Ranjeet S. Sokhi, Martyn P. Chipperfield, Sandip S. Dhomse, Richard J. Pope, Tanbir Singh, and Suman Mor
Atmos. Chem. Phys., 21, 5235–5251, https://doi.org/10.5194/acp-21-5235-2021, https://doi.org/10.5194/acp-21-5235-2021, 2021
Short summary
Short summary
Satellite and surface observations show a reduction in NO2 levels over India during the lockdown compared to business-as-usual years. A substantial reduction, proportional to the population, was observed over the urban areas. The changes in NO2 levels at the surface during the lockdown appear to be present in the satellite observations. However, TROPOMI showed a better correlation with surface NO2 and was more sensitive to the changes than OMI because of the finer resolution.
Cited articles
Afrin, T. and Yodo, N.: A Survey of Road Traffic Congestion Measures towards
a Sustainable and Resilient Transportation System, Sustainability, 12, 4660,
https://doi.org/10.3390/su12114660, 2020.
Álamos, N., Huneeus, N., Opazo, M., Osses, M., Puja, S., Pantoja, N., Denier van der Gon, H., Schueftan, A., Reyes, R., and Calvo, R.: High-resolution inventory of atmospheric emissions from transport, industrial, energy, mining and residential activities in Chile, Earth Syst. Sci. Data, 14, 361–379, https://doi.org/10.5194/essd-14-361-2022, 2022.
Anup, S. and Yang, Z.: New two-wheeler vehicle fleet in India for fiscal
year 2017–18, Working paper, International Council for Clean Transport,
https://theicct.org/publication/new-two-wheeler-vehicle-fleet-in-india-for-fiscal-year-2017-18/ (last access: 11 December 2021),
2020.
Automotive Research Association of India (ARAI): Development of emission
factor for Indian vehicles in the year 2008, Air Quality Monitoring
Project-Indian Clean Air Programme (ICAP), 1–89,
http://www.cpcb.nic.in/Emission_Factors_Vehicles.pdf (last access: 30 November 2021), 2008.
Beig, G., Sahu, S. K., Singh, V., Tikle, S., Sobhana, S. B., Gargeva, P.,
Ramakrishna, K., Rathod, A., and Murthy, B. S.: Objective evaluation of
stubble emission of North India and quantifying its impact on air quality of
Delhi, Sci. Total Environ., 709, 136126,
https://doi.org/10.1016/j.scitotenv.2019.136126, 2020.
Bikkina, S., Andersson, A., Kirillova, E. N., Holmstrand, H., Tiwari, S.,
Srivastava, A. K., Bisht, D. S., and Gustafsson, Ö.: Air quality in
megacity Delhi affected by countryside biomass burning, Nat. Sustain., 2,
200–205, https://doi.org/10.1038/s41893-019-0219-0, 2019.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171, 2013.
Census: Census of India population [data set], https://censusindia.gov.in/census.website/data/census-tables (last access: 1 May 2022), 2011.
Choudhary, A. and Gokhale, S.: On-road measurements and modelling of
vehicular emissions during traffic interruption and congestion events in an
urban traffic corridor, Atmos. Pollut. Res., 10, 480–492,
https://doi.org/10.1016/j.apr.2018.09.008, 2019.
Cifuentes, F., González, C. M., Trejos, E. M., López, L. D.,
Sandoval, F. J., Cuellar, O. A., Mangones, S. C., Rojas, N. Y., and
Aristizábal, B. H.: Comparison of Top-Down and Bottom-Up Road Transport
Emissions through High-Resolution Air Quality Modeling in a City of Complex
Orography, Atmosphere, 12, 1372, https://doi.org/10.3390/atmos12111372,
2021.
Clairotte, M., Suarez-Bertoa, R., Zardini, A. A., Giechaskiel, B., Pavlovic,
J., Valverde, V., Ciuffo, B., and Astorga, C.: Exhaust emission factors of
greenhouse gases (GHGs) from European road vehicles, Environmental Sciences
Europe, 32, 125, https://doi.org/10.1186/s12302-020-00407-5, 2020.
COPERT-5 Guidebook: Road transport emission factor guide book,
https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view (last access: 10 October 2021),
2020.
CPCB: Air quality monitoring, emission inventory and source
apportionment study for Indian cities, Central Pollution Control Board,
https://cpcb.nic.in/displaypdf.php?id=RmluYWxOYXRpb25hbFN1bW1hcnkucGRm (last access: 15 November 2021),
2011.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E.,Muntean, M.,
Schieberle, C., Friedrich, R., and Janssens-Maenhout, G.: High resolution
temporal profiles in the EmissionsDatabase for Global Atmospheric Research,
Sci. Data., 7, 121, https://doi.org/10.1038/s41597-020-0462-2, 2020.
Das, A. and Parikh, J.: Transport scenarios in two metropolitan cities in
India: Delhi and Mumbai, Energ. Convers. Manage., 45, 2603–2625,
https://doi.org/10.1016/j.enconman.2003.08.019, 2004.
Davis, N., Lents, J., Osses, M., Nikkila, N., and Barth, M.: Development and
Application of an International Vehicle Emissions Model, Transp.
Res. Record, 1939, 156–165,
https://doi.org/10.1177/0361198105193900118, 2005.
DDA: Baseline report for transport: Delhi Development Authority and National
Institute of Urban Affair, Master Plan for Delhi 2041,
https://online.dda.org.in/mpd2041dda/_layouts/MPD2041FINALSUGGESTION/Baseline_Transport_ 160721.pdf, last access: 10 November 2021.
Defra: Local Air Quality Management Technical Guidance (TG16),
https://laqm.defra.gov.uk/documents/LAQM-TG16-April-21-v1.pdf (last access: 20 January 2022), 2016.
Deng, F., Lv, Z., Qi, L., Wang, X., Shi, M., and Liu, H.: A big data
approach to improving the vehicle emission inventory in China, Nat. Commun.,
11, 2801, https://doi.org/10.1038/s41467-020-16579-w, 2020.
Deo, A. and Yang, Z.: Fuel consumption of new passenger cars in India:
Manufacturers performance in fiscal year 2018–19 (No. 2020-13) May,
International Council for Clean Transport,
https://theicct.org/wp-content/uploads/2021/06/India-PV-fuel-consumption-052020.pdf (last access: 12 November 2021),
2020.
Dey, S., Caulfield, B., and Ghosh, B.: Modelling uncertainty of vehicular
emissions inventory: A case study of Ireland, J. Clean. Prod.,
213, 1115–1126, https://doi.org/10.1016/j.jclepro.2018.12.125, 2019.
Dhyani, R. and Sharma, N.: Sensitivity Analysis of CALINE4 Model under Mix
Traffic Conditions, Aerosol Air Qual. Res., 17, 314–329,
https://doi.org/10.4209/aaqr.2016.01.0012, 2017.
Dimaratos, A., Toumasatos, Z., Doulgeris, S., Triantafyllopoulos, G.,
Kontses, A., and Samaras, Z.: Assessment of CO2 and NOx Emissions of One
Diesel and One Bi-Fuel Gasoline/CNG Euro 6 Vehicles During Real-World
Driving and Laboratory Testing, Front. Mech. Eng., 5, 62,
https://doi.org/10.3389/fmech.2019.00062, 2019.
EMISIA: The industry standard emissions calculator, https://www.emisia.com/utilities/copert/, last access: 10 October 2021.
Errampalli, M., Kayitha, R., Chalumuri, R. S., Tavasszy, L. A., Borst, J.,
and Chandra, S.: Assessment of urban freight travel characteristics - A case
study of Delhi, Transp. Res. Proc., 48, 467–485,
https://doi.org/10.1016/j.trpro.2020.08.053, 2020.
Franco, V., Kousoulidou, M., Muntean, M., Ntziachristos, L., Hausberger, S.,
and Dilara, P.: Road vehicle emission factors development: A review,
Atmos. Environ., 70, 84–97,
https://doi.org/10.1016/j.atmosenv.2013.01.006, 2013.
GBD: Global Burden of Disease from Major Air Pollution Sources,
https://www.healtheffects.org/publication/global-burden-disease-major-air-pollution-sources-gbd-maps-global-approach (last access: 10 January 2022),
2021.
GDP: Gross domestic product report, World Bank,
https://databank.worldbank.org/data/download/GDP.pdf (last access: 10 March 2022), 2020.
Goel, R. and Guttikunda, S. K.: Evolution of on-road vehicle exhaust
emissions in Delhi, Atmos. Environ., 105, 78–90,
https://doi.org/10.1016/j.atmosenv.2015.01.045, 2015.
Goel, R., Guttikunda, S. K., Mohan, D., and Tiwari, G.: Benchmarking vehicle
and passenger travel characteristics in Delhi for on-road emissions
analysis, Travel Behaviour and Society, 2, 88–101,
https://doi.org/10.1016/j.tbs.2014.10.001, 2015.
Goyal, P., Mishra, D., and Kumar, A.: Vehicular emission inventory of
criteria pollutants in Delhi, Springerplus, 2, 216,
https://doi.org/10.1186/2193-1801-2-216, 2013.
Gulia, S., Nagendra, S. S., Khare, M., and Khanna, I.: Urban air quality
management – A review, Atmos. Pollut. Res., 6, 286–304, 2015.
Guttikunda, S. K. and Calori, G.: A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi,
India, Atmos. Environ., 67, 101–111,
https://doi.org/10.1016/j.atmosenv.2012.10.040, 2013.
Hakkim, H., Kumar, A., Annadate, S., Sinha, B., and Sinha, V.: RTEII: A new
high-resolution (0.1∘ × 0.1∘) road transport
emission inventory for India of 74 speciated NMVOCs, CO, NOx, NH3, CH4,
CO2, PM2.5 reveals massive overestimation of NOx and CO and missing
nitromethane emissions by existing inventories, Atmos. Environ. X,
11, 100118, https://doi.org/10.1016/j.aeaoa.2021.100118, 2021.
Hooper, E., Chapman, L., and Quinn, A.: The impact of precipitation on
speed–flow relationships along a UK motorway corridor, Theor. Appl. Climatol.,
117, 303–316, https://doi.org/10.1007/s00704-013-0999-5, 2014.
IQAIR: Global map of PM2.5 exposure by city in 2020,
https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2020-en.pdf (last access: 16 January 2022), 2020.
Jaikumar, R., Shiva Nagendra, S. M., and Sivanandan, R.: Modeling of real
time exhaust emissions of passenger cars under heterogeneous traffic
conditions, Atmos. Pollut. Res., 8, 80–88,
https://doi.org/10.1016/j.apr.2016.07.011, 2017.
Järvi, L., Junninen, H., Karppinen, A., Hillamo, R., Virkkula, A., Mäkelä, T., Pakkanen, T., and Kulmala, M.: Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005, Atmos. Chem. Phys., 8, 1017–1027, https://doi.org/10.5194/acp-8-1017-2008, 2008.
Jiang, L., Xia, Y., Wang, L., Chen, X., Ye, J., Hou, T., Wang, L., Zhang, Y., Li, M., Li, Z., Song, Z., Jiang, Y., Liu, W., Li, P., Rosenfeld, D., Seinfeld, J. H., and Yu, S.: Hyperfine-resolution mapping of on-road vehicle emissions with comprehensive traffic monitoring and an intelligent transportation system, Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, 2021.
Jing, B., Wu, L., Mao, H., Gong, S., He, J., Zou, C., Song, G., Li, X., and Wu, Z.: Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory, Atmos. Chem. Phys., 16, 3161–3170, https://doi.org/10.5194/acp-16-3161-2016, 2016.
Kouridis, C., Gkatzoflias, D., Kioutsioukis, I., Ntziachristos, L.,
Pastorello, C., and Dilara, P.: Uncertainty estimates and guidance for road
transport emission calculations: Publications Office, LU,
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC57352/uncertainty eur report final for print.pdf (last access: 20 November 2022),
2010.
Kumar, P., Gurjar, B. R., Nagpure, A. S., and Harrison, R. M.: Preliminary
Estimates of Nanoparticle Number Emissions from Road Vehicles in Megacity
Delhi and Associated Health Impacts, Environ. Sci. Technol., 45, 5514–5521,
https://doi.org/10.1021/es2003183, 2011.
Kumari, R., Attri, A. K., Panis, L. I., and Gurjar, B. R.: Emission
estimates of particulate matter and heavy metals from mobile sources in
Delhi (India), J. Environ. Science & Engg, 55, 127–142, 2013.
Lejri, D., Can, A., Schiper, N., and Leclercq, L.: Accounting for traffic
speed dynamics when calculating COPERT and PHEM pollutant emissions at the
urban scale, Transport. Res. D-Tr. E., 63,
588–603, https://doi.org/10.1016/j.trd.2018.06.023, 2018.
Liang, L. and Gong, P.: Urban and air pollution: a multi-city study of
long-term effects of urban landscape patterns on air quality trends, Sci.
Rep., 10, 18618, https://doi.org/10.1038/s41598-020-74524-9, 2020.
Lipfert, F. W. and Wyzga, R. E.: On exposure and response relationships for
health effects associated with exposure to vehicular traffic, J. Expo. Sci.
Environ. Epidemiol., 18, 588–599, https://doi.org/10.1038/jes.2008.4, 2008.
Liu, T., Marlier, M. E., DeFries, R. S., Westervelt, D. M., Xia, K. R.,
Fiore, A. M., Mickley, L. J., Cusworth, D. H., and Milly, G.: Seasonal
impact of regional outdoor biomass burning on air pollution in three Indian
cities: Delhi, Bengaluru, and Pune, Atmos. Environ., 172, 83–92,
https://doi.org/10.1016/j.atmosenv.2017.10.024, 2018.
London Atmospheric Emissions Inventory (LAEI): Homepage,
https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory--laei--2016 (last access: 2 February 2022),
2016.
Lyu, P., Wang, P. (Slade), Liu, Y., and Wang, Y.: Review of the studies on
emission evaluation approaches for operating vehicles, Journal of Traffic and Transportation Engineering, 8, 493–509,
https://doi.org/10.1016/j.jtte.2021.07.004, 2021.
Malik, L., Tiwari, G., and Khanuja, R. K.: Classified Traffic Volume and
Speed Study Delhi, Transportation Research and Injury Prevention Programme
(TRIPP),
http://tripp.iitd.ac.in/assets/publication/classified_volume_speed_studyDelhi-2018.pdf (last access: 15 November 2022), 2018.
Malik, L., Tiwari, G., Thakur, S., and Kumar, A.: Assessment of freight
vehicle characteristics and impact of future policy interventions on their
emissions in Delhi, Transport. Res. D-Tr.
E., 67, 610–627, https://doi.org/10.1016/j.trd.2019.01.007, 2019.
Malik, L., Tiwari, G., Biswas, U., and Woxenius, J.: Estimating urban
freight flow using limited data: The case of Delhi, India, Transport.
Res. E-Log., 149, 102316,
https://doi.org/10.1016/j.tre.2021.102316, 2021.
Mangones, S. C., Jaramillo, P., Fischbeck, P., and Rojas, N. Y.: Development
of a high-resolution traffic emission model: Lessons and key insights from
the case of Bogotá, Colombia, Environ. Pollut., 253, 552–559,
https://doi.org/10.1016/j.envpol.2019.07.008, 2019.
Nagpure, A. S., Sharma, K., and Gurjar, B. R.: Traffic induced emission
estimates and trends (2000–2005) in megacity Delhi, Urban Climate, 4,
61–73, https://doi.org/10.1016/j.uclim.2013.04.005, 2013.
NCAP: National Clean Air Programme, Ministry of environment forest and
climate change; NATIONAL CLEAN AIR PROGRAMME (NCAP) – India,
http://www.indiaenvironmentportal.org.in > file (last access: 9 January 2022), 2019.
Ntziachristos, L. and Samaras, Z.: Exhaust Emissions for Road
Transport – EMEP/EEA Emission Inventory Guidebook 2019, European Environment
Agency, https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view (last access: 20 December 2022), 2019.
Osses, M., Rojas, N., Ibarra, C., Valdebenito, V., Laengle, I., Pantoja, N., Osses, D., Basoa, K., Tolvett, S., Huneeus, N., Gallardo, L., and Gómez, B.: High-resolution spatial-distribution maps of road transport exhaust emissions in Chile, 1990–2020, Earth Syst. Sci. Data, 14, 1359–1376, https://doi.org/10.5194/essd-14-1359-2022, 2022.
Pandey, A., Brauer, M., Cropper, M. L., et al.: Health and economic impact of air pollution in the states of
India: the Global Burden of Disease Study 2019, The Lancet Planetary Health,
5, e25–e38, https://doi.org/10.1016/S2542-5196(20)30298-9, 2021.
Pant, P. and Harrison, R. M.: Estimation of the contribution of road traffic
emissions to particulate matter concentrations from field measurements: A
review, Atmos. Environ., 77, 78–97,
https://doi.org/10.1016/j.atmosenv.2013.04.028, 2013.
Pinto, J. A., Kumar, P., Alonso, M. F., Andreão, W. L., Pedruzzi, R.,
dos Santos, F. S., Moreira, D. M., and Albuquerque, T. T. de A.: Traffic
data in air quality modeling: A review of key variables, improvements in
results, open problems and challenges in current research, Atmos. Pollut. Res., 11, 454–468, https://doi.org/10.1016/j.apr.2019.11.018,
2020.
Ravindra, K., Singh, T., and Mor, S.: Emissions of air pollutants from
primary crop residue burning in India and their mitigation strategies for
cleaner emissions, J. Clean. Prod., 208, 261–273,
https://doi.org/10.1016/j.jclepro.2018.10.031, 2019.
SAFAR: Safar-High Resolution Emission Inventory of Mega City Delhi – 2018,
System of Air Quality and Weather Forecasting And Research (SAFAR) – Delhi,
Special Scientific Report, ISSN 0252-1075, 2018.
Sahu, S. K., Beig, G., and Parkhi, N. S.: Emissions inventory of
anthropogenic PM2.5 and PM10 in Delhi during Commonwealth Games 2010,
Atmos. Environ., 45, 6180–6190,
https://doi.org/10.1016/j.atmosenv.2011.08.014, 2011.
Sahu, S. K., Beig, G., and Parkhi, N.: High Resolution Emission Inventory of
NOx and CO for Mega City Delhi, India, Aerosol Air Qual. Res., 15,
1137–1144, https://doi.org/10.4209/aaqr.2014.07.0132, 2015.
Salo, L., Hyvärinen, A., Jalava, P., Teinilä, K., Hooda, R. K.,
Datta, A., Saarikoski, S., Lintusaari, H., Lepistö, T., Martikainen, S.,
Rostedt, A., Sharma, V. P., Rahman, Md. H., Subudhi, S., Asmi, E., Niemi, J.
V., Lihavainen, H., Lal, B., Keskinen, J., Kuuluvainen, H., Timonen, H., and
Rönkkö, T.: The characteristics and size of lung-depositing
particles vary significantly between high and low pollution traffic
environments, Atmos. Environ., 255, 118421,
https://doi.org/10.1016/j.atmosenv.2021.118421, 2021.
Sharma, M. and Dikshit O.: Comprehensive study on air pollution and
greenhouse gases (GHGs) in Delhi, A report of NCT Delhi and DPCC Delhi,
https://cerca.iitd.ac.in/uploads/Reports/1576211826iitk.pdf (last access: 10 October 2021), 2016.
Sharma, N., Kumar, P. P., Dhyani, R., Ravisekhar, C., and Ravinder, K.:
Idling fuel consumption and emissions of air pollutants at selected
signalized intersections in Delhi, J. Clean. Prod., 212,
8–21, https://doi.org/10.1016/j.jclepro.2018.11.275, 2019.
Sharpe, B. and Sathiamoorthy, B.: Market analysis of heavy-duty vehicles in
India for fiscal year 2017–18, International Council for Clean Transport,
Working Paper (2019–20), https://theicct.org/wp-content/uploads/2021/06/India-HDV-2017-18-Market-Working-Paper.FINAL_.pdf (last access: 15 October 2021), 2019.
Singh, T., Biswal, A., Mor, S., Ravindra, K., Singh, V., and Mor, S.: A
high-resolution emission inventory of air pollutants from primary crop
residue burning over Northern India based on VIIRS thermal anomalies,
Environ. Pollut., 266, 115132,
https://doi.org/10.1016/j.envpol.2020.115132, 2020.
Singh, V., Sokhi, R. S., and Kukkonen, J.: PM2.5 concentrations in London
for 2008 – A modeling analysis of contributions from road traffic, J. Air Waste Manage., 64, 509–518,
https://doi.org/10.1080/10962247.2013.848244, 2014.
Singh, V., Sahu, S. K., Kesarkar, A. P., and Biswal, A.: Estimation of high
resolution emissions from road transport sector in a megacity Delhi, Urban
Climate, 26, 109–120, https://doi.org/10.1016/j.uclim.2018.08.011, 2018.
Singh, V., Biswal, A., Kesarkar, A. P., Mor, S., and Ravindra, K.: High
resolution vehicular PM10 emissions over megacity Delhi: Relative
contributions of exhaust and non-exhaust sources, Sci. Total Environ., 699, 134273, https://doi.org/10.1016/j.scitotenv.2019.134273,
2020.
Singh, V., Singh, S., and Biswal, A.: Exceedances and trends of particulate
matter (PM2.5) in five Indian megacities, Sci. Total Environ.,
750, 141461, https://doi.org/10.1016/j.scitotenv.2020.141461, 2021.
Singh, V., Biswal, A., Malik, L., Tiwari, G., Ravindra, K., and Mor, S.:
On-road traffic emission over megacity Delhi, V1, Zenodo [data set],
https://doi.org/10.5281/zenodo.6553770, 2022.
Sun, C., Xu, S., Yang, M., and Gong, X.: Urban traffic regulation and air
pollution: A case study of urban motor vehicle restriction policy, Energ.
Policy, 163, 112819, https://doi.org/10.1016/j.enpol.2022.112819, 2022.
Sun, S., Zhao, G., Wang, T., Jin, J., Wang, P., Lin, Y., Li, H., Ying, Q.,
and Mao, H.: Past and future trends of vehicle emissions in Tianjin, China,
from 2000 to 2030, Atmos. Environ., 209, 182–191,
https://doi.org/10.1016/j.atmosenv.2019.04.016, 2019.
Super, I., Dellaert, S. N. C., Visschedijk, A. J. H., and Denier van der Gon, H. A. C.: Uncertainty analysis of a European high-resolution emission inventory of CO2 and CO to support inverse modelling and network design, Atmos. Chem. Phys., 20, 1795–1816, https://doi.org/10.5194/acp-20-1795-2020, 2020.
TERI: ARAI, Automotive Research Association of India, Source Apportionment
of PM2.5 & PM10, of Delhi NCR for Identification of Major Sources, https://www.teriin.org/sites/default/files/2018-08/Report_SA_AQM-Delhi-NCR_0.pdf (last access: 5 February 2022), 2018.
TomTom: TomTom Congestion Index, TomTom [data set], https://www.tomtom.com/en_gb/traffic-index/new-delhi-traffic/, last access: 10 October 2021.
Tsagatakis, I., Ruddy, M., Richardson, J., Otto, A., Pearson, B., and
Passant, N.: UK Emission Mapping Methodology: A report of the National
Atmospheric Emission Inventory 2018, Ricardo Energy & Environment, https://uk-air.defra.gov.uk/assets/documents/reports/cat07/1710261436_Methodology_for_NAEI_2017.pdf (last access: 5 March 2022),
2020.
Vanhulsel, M., Degraeuwe, B., Beckx, C., Vankerkom, J., and De Vlieger, I.:
Road transportation emission inventories and projections – Case study of
Belgium: Methodology and pitfalls, Transport. Res. D-Tr.
E., 27, 41–45, https://doi.org/10.1016/j.trd.2013.12.002,
2014.
Vickrey, W. S.: Congestion Theory and Transport Investment, Am.
Econ. Rev., 59, 251–260, https://www.jstor.org/stable/1823678 (last access: 22 November 2022), 1969.
Wang, H., Fu, L., Zhou, Y., Du, X., and Ge, W.: Trends in vehicular
emissions in China's mega cities from 1995 to 2005, Environ. Pollut.,
158, 394–400, https://doi.org/10.1016/j.envpol.2009.09.002, 2010.
Wang, Z., Wu, Y., Zhou, Y., Li, Z., Wang, Y., Zhang, S., and Hao, J.:
Real-world emissions of gasoline passenger cars in Macao and their
correlation with driving conditions, Int. J. Environ. Sci. Technol., 11,
1135–1146, https://doi.org/10.1007/s13762-013-0276-2, 2014.
Wei, X., Ren, Y., Shen, L., and Shu, T.: Exploring the spatiotemporal
pattern of traffic congestion performance of large cities in China: A
real-time data based investigation, Environ. Impact Assess.,
95, 106808, https://doi.org/10.1016/j.eiar.2022.106808, 2022.
Winkler, S. L., Anderson, J. E., Garza, L., Ruona, W. C., Vogt, R., and
Wallington, T. J.: Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions:
how low should we go?, npj Clim. Atmos. Sci., 1, 26,
https://doi.org/10.1038/s41612-018-0037-5, 2018.
Wu, Y., Zhang, S. J., Li, M. L., Ge, Y. S., Shu, J. W., Zhou, Y., Xu, Y. Y., Hu, J. N., Liu, H., Fu, L. X., He, K. B., and Hao, J. M.: The challenge to NOx emission control for heavy-duty diesel vehicles in China, Atmos. Chem. Phys., 12, 9365–9379, https://doi.org/10.5194/acp-12-9365-2012, 2012.
Yang, D., Zhang, S., Niu, T., Wang, Y., Xu, H., Zhang, K. M., and Wu, Y.: High-resolution mapping of vehicle emissions of atmospheric pollutants based on large-scale, real-world traffic datasets, Atmos. Chem. Phys., 19, 8831–8843, https://doi.org/10.5194/acp-19-8831-2019, 2019.
Zavala, M., Molina, L. T., Yacovitch, T. I., Fortner, E. C., Roscioli, J. R., Floerchinger, C., Herndon, S. C., Kolb, C. E., Knighton, W. B., Paramo, V. H., Zirath, S., Mejía, J. A., and Jazcilevich, A.: Emission factors of black carbon and co-pollutants from diesel vehicles in Mexico City, Atmos. Chem. Phys., 17, 15293–15305, https://doi.org/10.5194/acp-17-15293-2017, 2017.
Short summary
This paper presents detailed emission estimates of on-road traffic exhaust emissions of nine major pollutants for Delhi. We use advanced traffic data and emission factors as a function of speed to estimate emissions for each hour and 100 m × 100 m spatial resolution. We examine the source contribution according to the vehicle, fuel, road and Euro types to identify the most polluting vehicles. These data are useful for high-resolution air quality modelling for developing suitable strategies.
This paper presents detailed emission estimates of on-road traffic exhaust emissions of nine...
Altmetrics
Final-revised paper
Preprint