Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5463-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5463-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020
Shaoyang He
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100040, China
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China
Jing Tian
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China
Dongdong Kong
Department of Atmospheric Science, School of Environmental Studies,
China University of Geosciences, Wuhan 430074, China
Changming Liu
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China
Related authors
No articles found.
Pierre Laluet, Chiara Corbari, Oscar Baez-Villanueva, Sophia Walther, Yongqiang Zhang, Joaquín Muñoz-Sabater, Gabriel B. Senay, Clément Albergel, and Wouter Dorigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-5716, https://doi.org/10.5194/egusphere-2025-5716, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We examined how well global datasets estimate evapotranspiration, the water moving from land to the air, in irrigated areas. We compared six widely used products with irrigation maps, satellite estimates, and field measurements across different climate regions. Some datasets better capture irrigation effects, especially those using temperature and vegetation satellite data. This work helps guide dataset selection and supports better inclusion of irrigation in hydrological and climate models.
Yongyong Zhang, Yongqiang Zhang, Xiaoyan Zhai, Jun Xia, Qiuhong Tang, Wei Wang, Jian Wu, Xiaoyu Niu, and Bing Han
Hydrol. Earth Syst. Sci., 29, 3257–3275, https://doi.org/10.5194/hess-29-3257-2025, https://doi.org/10.5194/hess-29-3257-2025, 2025
Short summary
Short summary
It is challenging to investigate flood variabilities and their formation mechanisms from massive event samples. This study explores spatiotemporal variabilities of 1446 flood events using hierarchical and partitional clustering methods. Control mechanisms of meteorological and physio-geographical factors are explored for individual flood event classes using constrained rank analysis. This gives insights into comprehensive changes in flood events and aids in flood prediction and control.
Mingwei Li, Shouzhi Chen, Fanghua Hao, Nan Wang, Zhaofei Wu, Yue Xu, Jing Zhang, Yongqiang Zhang, and Yongshuo H. Fu
Hydrol. Earth Syst. Sci., 29, 2081–2095, https://doi.org/10.5194/hess-29-2081-2025, https://doi.org/10.5194/hess-29-2081-2025, 2025
Short summary
Short summary
Climate-driven shifts in vegetation phenology have a significant impact on hydrological processes. In this study, we integrated a process-based phenology module into the SWAT-Carbon model, which led to a substantial improvement in the simulation of vegetation dynamics and hydrological processes in the Jinsha River watershed. Our findings highlight the critical need to incorporate vegetation phenology into hydrological models to achieve a more accurate representation of ecohydrological processes.
Peilin Song, Yongqiang Zhang, Jianping Guo, Jiancheng Shi, Tianjie Zhao, and Bing Tong
Earth Syst. Sci. Data, 14, 2613–2637, https://doi.org/10.5194/essd-14-2613-2022, https://doi.org/10.5194/essd-14-2613-2022, 2022
Short summary
Short summary
Soil moisture information is crucial for understanding the earth surface, but currently available satellite-based soil moisture datasets are imperfect either in their spatiotemporal resolutions or in ensuring image completeness from cloudy weather. In this study, therefore, we developed one soil moisture data product over China that has tackled most of the above problems. This data product has the potential to promote the investigation of earth hydrology and be extended to the global scale.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Cited articles
Adzhar, R., Kelley, D. I., Dong, N., George, C., Torello Raventos, M., Veenendaal, E., Feldpausch, T. R., Phillips, O. L., Lewis, S. L., Sonké, B., Taedoumg, H., Schwantes Marimon, B., Domingues, T., Arroyo, L., Djagbletey, G., Saiz, G., and Gerard, F.: MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas, Biogeosciences, 19, 1377–1394, https://doi.org/10.5194/bg-19-1377-2022, 2022.
Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S.,
Lounsbury, D., and Matonse, A. H.: Examination of change factor
methodologies for climate change impact assessment, Water Resour.
Res., 47, W03501, https://doi.org/10.1029/2010WR009104, 2011.
Anon: Evaluation of MODIS gross primary productivity for Africa using eddy
covariance data, Remote Sens. Environ., 131, 275–286,
https://doi.org/10.1016/j.rse.2012.12.023, 2013.
Arain, M. A., Yuan, F., and Black, T. A.: Soil–plant nitrogen cycling
modulated carbon exchanges in a western temperate conifer forest in Canada,
Agr. Forest Meteorol., 140, 171–192,
https://doi.org/10.1016/j.agrformet.2006.03.021,2006.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, Ch., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, in: Advances in Ecological Research, edited by: Fitter, A. H. and Raffaelli, D. G., Academic Press, vol. 30, 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 1999.
Baldocchi, D.: Measuring fluxes of trace gases and energy between ecosystems
and the atmosphere – the state and future of the eddy covariance method,
Glob. Change Biol., 20, 3600–3609, https://doi.org/10.1111/gcb.12649,
2014.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel,
W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the
Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water
Vapor, and Energy Flux Densities, B. Am. Meteorol.
Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Beaudoing, H. and Rodell, M. J. G.: Maryland: GLDAS Noah Land Surface Model
L4 monthly 0.25 x 0.25 degree V2.1, NASA/GSFC/HSL: Greenbelt, Maryland,
USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/SXAVCZFAQLNO, 2016.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Bodner, G., Nakhforoosh, A., and Kaul, H.-P.: Management of crop water under
drought: a review, Agron. Sustain. Dev., 35, 401–442,
https://doi.org/10.1007/s13593-015-0283-4, 2015.
Brust, C., Kimball, J. S., Maneta, M. P., Jencso, K., He, M., and Reichle,
R. H.: Using SMAP Level-4 soil moisture to constrain MOD16
evapotranspiration over the contiguous USA, Remote Sens. Environ.,
255, 112277, https://doi.org/10.1016/j.rse.2020.112277, 2021.
Cao, S., Chen, L., and Yu, X.: Impact of China's Grain for Green Project on
the landscape of vulnerable arid and semi-arid agricultural regions: a case
study in northern Shaanxi Province, J. Appl. Ecol., 46,
536–543, https://doi.org/10.1111/j.1365-2664.2008.01605.x, 2009.
Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J., and Yu, Z.: Geographically
weighted regression based methods for merging satellite and gauge
precipitation, J. Hydrol., 558, 275–289,
https://doi.org/10.1016/j.jhydrol.2018.01.042, 2018.
Chen, B., Coops, N. C., Fu, D., Margolis, H. A., Amiro, B. D., Black, T. A.,
Arain, M. A., Barr, A. G., Bourque, C. P.-A., Flanagan, L. B., Lafleur, P.
M., McCaughey, J. H., and Wofsy, S. C.: Characterizing spatial
representativeness of flux tower eddy-covariance measurements across the
Canadian Carbon Program Network using remote sensing and footprint analysis,
Remote Sens. Environ., 124, 742–755,
https://doi.org/10.1016/j.rse.2012.06.007, 2012.
Chen, S., Chen, J., Lin, G., Zhang, W., Miao, H., Wei, L., Huang, J., and
Han, X.: Energy balance and partition in Inner Mongolia steppe ecosystems
with different land use types, Agr. Forest Meteorol., 149,
1800–1809, https://doi.org/10.1016/j.agrformet.2009.06.009, 2009.
Cheng, M., Jiao, X., Li, B., Yu, X., Shao, M., and Jin, X.: Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation, Earth Syst. Sci. Data, 13, 3995–4017, https://doi.org/10.5194/essd-13-3995-2021, 2021.
Chu, H., Baldocchi, D. D., John, R., Wolf, S., and Reichstein, M.: Fluxes
all of the time? A primer on the temporal representativeness of FLUXNET,
J. Geophys. Res.-Biogeo., 122, 289–307,
https://doi.org/10.1002/2016JG003576, 2017.
Dong, G., Guo, J., Chen, J., Sun, G., Gao, S., Hu, L., and Wang, Y.: Effects
of spring drought on carbon sequestration, evapotranspiration and water use
efficiency in the songnen meadow steppe in northeast China, Ecohydrol., 4,
211–224, https://doi.org/10.1002/eco.200, 2011.
Feng, M. and Bai, Y.: A global land cover map produced through integrating multi-source datasets, Big Earth Data, 3, 191–219,
https://doi.org/10.1080/20964471.2019.1663627, 2019.
Feng, T., Su, T., Ji, F., Zhi, R., and Han, Z.: Temporal Characteristics of
Actual Evapotranspiration Over China Under Global Warming, J.
Geophys. Res.-Atmos., 123, 5845–5858,
https://doi.org/10.1029/2017JD028227, 2018.
Foken, T.: The energy balance closure problem: an overview, Ecol. Appl., 18,
1351–1367, https://doi.org/10.1890/06-0922.1, 2008.
Gan, R., Zhang, Y., Shi, H., Yang, Y., Eamus, D., Cheng, L., Chiew, F. H.
S., and Yu, Q.: Use of satellite leaf area index estimating
evapotranspiration and gross assimilation for Australian ecosystems,
Ecohydrology, 11, e1974, https://doi.org/10.1002/eco.1974, 2018.
Gevaert, C. M. and García-Haro, F. J.: A comparison of STARFM and an
unmixing-based algorithm for Landsat and MODIS data fusion, Remote Sens.
Environ., 156, 34–44, https://doi.org/10.1016/j.rse.2014.09.012, 2015.
Graf, A., Bogena, H. R., Drüe, C., Hardelauf, H., Pütz, T.,
Heinemann, G., and Vereecken, H.: Spatiotemporal relations between water
budget components and soil water content in a forested tributary catchment,
Water Resour. Res., 50, 4837–4857,
https://doi.org/10.1002/2013WR014516, 2014.
Grant, R. F., Arain, A., Arora, V., Barr, A., Black, T. A., Chen, J., Wang,
S., Yuan, F., and Zhang, Y.: Intercomparison of techniques to model high
temperature effects on CO2 and energy exchange in temperate and boreal
coniferous forests, Ecol. Modell., 188, 217–252,
https://doi.org/10.1016/j.ecolmodel.2005.01.060, 2005.
Hanson, P. J., Amthor, J. S., Wullschleger, S. D., Wilson, K. B., Grant, R.
F., Hartley, A., Hui, D., Hunt Jr., E. R., Johnson, D. W., Kimball, J. S.,
King, A. W., Luo, Y., McNulty, S. G., Sun, G., Thornton, P. E., Wang, S.,
Williams, M., Baldocchi, D. D., and Cushman, R. M.: Oak Forest Carbon and
Water Simulations: Model Intercomparisons and Evaluations Against
Independent Data, Ecol. Monogr., 74, 443–489,
https://doi.org/10.1890/03-4049, 2004.
Hao, Y., Wang, Y., and Yu, G.: A dataset of carbon and water fluxes over
Xilinhot temperate steppe in Inner Mongolia (2003–2010),
Science Data Bank [data set], https://doi.org/10.11922/sciencedb.996, 2020.
Haro-Monteagudo, D., Palazón, L., and Beguería, S.: Long-term
sustainability of large water resource systems under climate change: A
cascade modeling approach, J. Hydrol., 582, 124546,
https://doi.org/10.1016/j.jhydrol.2020.124546, 2020.
He, H., Wu, Z., Li, D., Zhang, T., Pan, F., Yuan, H., Jiang, S., Shi, Z.,
Yang, S., and Wang, F.: Characteristics of Winter Wheat Evapotranspiration
in Eastern China and Comparative Evaluation of Applicability of Different
Reference Evapotranspiration Models, J. Soil Sci. Plant Nutr., 22, 2078–2091,
https://doi.org/10.1007/s42729-022-00795-y, 2022.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
high-resolution meteorological forcing dataset for land process studies over
China, Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Heinsch, F. A., Zhao, M., Running, S. W., Kimball, J. S., Nemani, R.
R., Davis, K. J., Bolstad, P. V., Cook, B. D., Desai, A. R., Ricciuto, D.
M., Law, B. E., Oechel, W. C., Hyojung Kwon, Hongyan Luo, Wofsy, S. C.,
Dunn, A. L., Munger, J. W., Baldocchi, D. D., Liukang Xu, Hollinger, D. Y.,
Richardson, A. D., Stoy, P. C., Siqueira, M. B. S., Monson, R. K., Burns, S.
P., and Flanagan, L. B.: Evaluation of remote sensing based terrestrial
productivity from MODIS using regional tower eddy flux network observations,
IEEE T. Geosci. Remote, 44, 1908–1925,
https://doi.org/10.1109/TGRS.2005.853936, 2006.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hilker, T., Coops, N. C., Wulder, M. A., Black, T. A., and Guy, R. D.: The
use of remote sensing in light use efficiency based models of gross primary
production: A review of current status and future requirements, Sci.
Total Environ., 404, 411–423,
https://doi.org/10.1016/j.scitotenv.2007.11.007, 2008.
Holland, J. H.: Genetic Algorithms, Sci. Am., 267, 66–73, 1992.
Houborg, R., Cescatti, A., Migliavacca, M., and Kustas, W. P.: Satellite
retrievals of leaf chlorophyll and photosynthetic capacity for improved
modeling of GPP, Agr. Forest Meteorol., 177, 10–23,
https://doi.org/10.1016/j.agrformet.2013.04.006, 2013.
Huang, Y., Nicholson, D., Huang, B., and Cassar, N.: Global Estimates of
Marine Gross Primary Production Based on Machine Learning Upscaling of Field
Observations, Global Biogeochem. Cy., 35, e2020GB006718,
https://doi.org/10.1029/2020GB006718, 2021.
Hui, Y., Dehua, Q., Yiping, Z., Qinghai, S., Xuehai, F., Liqing, S.,
Yuntong, L., Wenjun, Z., Liguo, Z., Xiaobao, D., Yan, L., Yun, D., and
Donghai, Y.: An observation dataset of carbon and water fluxes in
Xishuangbanna rubber plantations from 2010 to 2014, Science Data
Bank [data set], https://doi.org/10.11922/sciencedb.j00001.00123, 2021.
Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., and Bierkens, M. F. P.: Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff, Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, 2015.
Jia, B., Luo, X., Cai, X., Jain, A., Huntzinger, D. N., Xie, Z., Zeng, N., Mao, J., Shi, X., Ito, A., Wei, Y., Tian, H., Poulter, B., Hayes, D., and Schaefer, K.: Impacts of land use change and elevated CO2 on the interannual variations and seasonal cycles of gross primary productivity in China, Earth Syst. Dynam., 11, 235–249, https://doi.org/10.5194/esd-11-235-2020, 2020.
Joiner, J. and Yoshida, Y.: Satellite-based reflectances capture large
fraction of variability in global gross primary production (GPP) at weekly
time scales, Agr. Forest Meteorol., 291, 108092,
https://doi.org/10.1016/j.agrformet.2020.108092, 2020.
Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and Zhao, X.:
Temperature and biomass influences on interannual changes in CO2 exchange in
an alpine meadow on the Qinghai-Tibetan Plateau, Glob. Change Biol., 12,
1285–1298, https://doi.org/10.1111/j.1365-2486.2006.01153.x, 2006.
Konak, A., Coit, D. W., and Smith, A. E.: Multi-objective optimization using
genetic algorithms: A tutorial, Reliab. Eng. Sys. Safe.,
91, 992–1007, https://doi.org/10.1016/j.ress.2005.11.018, 2006.
Kong, D., Zhang, Y., Gu, X., and Wang, D.: A robust method for
reconstructing global MODIS EVI time series on the Google Earth Engine,
ISPRS J. Photogramm., 155, 13–24,
https://doi.org/10.1016/j.isprsjprs.2019.06.014, 2019.
Landerer, F.: TELLUS_GRAC_L3_CSR_RL06_LND_v04. Ver. RL06 v04, PO.DAAC, CA, USA [data set],
https://doi.org/10.5067/TELND-3AC64, 2021.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial
water storage estimates, Water Resour. Res., 48, W04531,
https://doi.org/10.1029/2011wr011453, 2012.
Leuning, R., Zhang, Y. Q., Rajaud, A., Cleugh, H., and Tu, K.: A simple
surface conductance model to estimate regional evaporation using MODIS leaf
area index and the Penman-Monteith equation, Water Resour. Res., 44, W10419,
https://doi.org/10.1029/2007WR006562, 2008.
Li, S., Wang, G., Sun, S., Chen, H., Bai, P., Zhou, S., Huang, Y., Wang, J.,
and Deng, P.: Assessment of Multi-Source Evapotranspiration Products over
China Using Eddy Covariance Observations, Remote Sensing, 10, 1692,
https://doi.org/10.3390/rs10111692, 2018.
Li, X., Li, X., Li, Z., Ma, M., Wang, J., Xiao, Q., Liu, Q., Che, T., Chen,
E., Yan, G., Hu, Z., Zhang, L., Chu, R., Su, P., Liu, Q., Liu, S., Wang, J.,
Niu, Z., Chen, Y., Jin, R., Wang, W., Ran, Y., Xin, X., and Ren, H.:
Watershed Allied Telemetry Experimental Research, J. Geophys.
Res.-Atmos., 114, D22103, https://doi.org/10.1029/2008JD011590, 2009.
Liang, D., Zuo, Y., Huang, L., Zhao, J., Teng, L., and Yang, F.: Evaluation
of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30
m GlobeLand30 Datasets: A Case Study in Anhui Province, China, ISPRS
Int. J. Geo-Inf., 4, 2519–2541,
https://doi.org/10.3390/ijgi4042519, 2015.
Liu, J., Rambal, S., and Mouillot, F.: Soil Drought Anomalies in MODIS GPP
of a Mediterranean Broadleaved Evergreen Forest, Remote Sensing, 7,
1154–1180, https://doi.org/10.3390/rs70101154, 2015.
Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., and Qiao, Z.: Mapping
cropping intensity in China using time series Landsat and Sentinel-2 images
and Google Earth Engine, Remote Sens. Environ., 239, 111624,
https://doi.org/10.1016/j.rse.2019.111624, 2020.
Liu, S., Bliss, N., Sundquist, E., and Huntington, T. G.: Modeling carbon
dynamics in vegetation and soil under the impact of soil erosion and
deposition, Global Biogeochem. Cy., 17, 1074,
https://doi.org/10.1029/2002GB002010, 2003.
Liu, S., Xu, Z., Zhu, Z., Jia, Z., and Zhu, M.: Measurements of
evapotranspiration from eddy-covariance systems and large aperture
scintillometers in the Hai River Basin, China, J. Hydrol., 487,
24–38, https://doi.org/10.1016/j.jhydrol.2013.02.025, 2013.
Liu, S., Xu, Z., Song, L., Zhao, Q., Ge, Y., Xu, T., Ma, Y., Zhu, Z., Jia,
Z., Zhang, F.: Upscaling evapotranspiration measurements from multi-site to
the satellite pixel scale over heterogeneous land surfaces, Agr.
Forest Meteorol., 230, 97–113,
https://doi.org/10.1016/j.agrformet.2016.04.008, 2016.
Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo,
J., Wang, L., Wang, W., Qi, Y., Li, H., Xu, T., Ran, Y., Hu, X., Shi, S.,
Zhu, Z., Tan, J., Zhang, Y., and Ren, Z.: The Heihe Integrated Observatory
Network: A Basin-Scale Land Surface Processes Observatory in China, Vadose
Zone J., 17, 180072, https://doi.org/10.2136/vzj2018.04.0072, 2018.
Liu, S. M., Xu, Z. W., Wang, W. Z., Jia, Z. Z., Zhu, M. J., Bai, J., and Wang, J. M.: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem, Hydrol. Earth Syst. Sci., 15, 1291–1306, https://doi.org/10.5194/hess-15-1291-2011, 2011.
Liu, W., Wang, L., Zhou, J., Li, Y., Sun, F., Fu, G., Li, X., and Sang,
Y.-F.: A worldwide evaluation of basin-scale evapotranspiration estimates
against the water balance method, J. Hydrol., 538, 82–95,
https://doi.org/10.1016/j.jhydrol.2016.04.006, 2016.
Luo, Y., Zhang, Z., Chen, Y., Li, Z., and Tao, F.: ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products, Earth Syst. Sci. Data, 12, 197–214, https://doi.org/10.5194/essd-12-197-2020, 2020.
Ma, J., Xiao, X., Zhang, Y., Doughty, R., Chen, B., and Zhao, B.:
Spatial-temporal consistency between gross primary productivity and
solar-induced chlorophyll fluorescence of vegetation in China during
2007–2014, Sci. Total Environ., 639, 1241–1253,
https://doi.org/10.1016/j.scitotenv.2018.05.245, 2018.
Ma, J., Xiao, X., Miao, R., Li, Y., Chen, B., Zhang, Y., and Zhao, B.:
Trends and controls of terrestrial gross primary productivity of China
during 2000–2016, Environ. Res. Lett., 14, 084032,
https://doi.org/10.1088/1748-9326/ab31e4, 2019.
Ma, N. and Zhang, Y.: Increasing Tibetan Plateau terrestrial
evapotranspiration primarily driven by precipitation, Agr.
Forest Meteorol., 317, 108887, https://doi.org/10.1016/j.agrformet.2022.108887,
2022.
Ma, N., Szilagyi, J., Zhang, Y., and Liu, W.:
Complementary-Relationship-Based Modeling of Terrestrial Evapotranspiration
Across China During 1982–2012: Validations and Spatiotemporal Analyses,
J. Geophys. Res.-Atmos., 124, 4326–4351,
https://doi.org/10.1029/2018jd029850, 2019.
Ma, T., Sun, S., Fu, G., Hall, J. W., Ni, Y., He, L., Yi, J., Zhao, N., Du,
Y., Pei, T., Cheng, W., Song, C., Fang, C., and Zhou, C.: Pollution
exacerbates China's water scarcity and its regional inequality, Nat.
Commun., 11, 650, https://doi.org/10.1038/s41467-020-14532-5, 2020.
Ma, Y., Hu, Z., Xie, Z., Ma, W., Wang, B., Chen, X., Li, M., Zhong, L., Sun, F., Gu, L., Han, C., Zhang, L., Liu, X., Ding, Z., Sun, G., Wang, S., Wang, Y., and Wang, Z.: A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau, Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, 2020.
Mao, Y. and Wang, K.: Comparison of evapotranspiration estimates based on
the surface water balance, modified Penman-Monteith model, and reanalysis
data sets for continental China, J. Geophys. Res.-Atmos., 122, 3228–3244, https://doi.org/10.1002/2016JD026065, 2017.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Mauder, M., Desjardins, R. L., and MacPherson, I.: Scale analysis of
airborne flux measurements over heterogeneous terrain in a boreal ecosystem,
J. Geophys. Res.-Atmos., 112, D13112,
https://doi.org/10.1029/2006JD008133, 2007.
Medvigy, D., Wofsy, S., Munger, J., Hollinger, D., and Moorcroft, P.:
Mechanistic scaling of ecosystem function and dynamics in space and time:
Ecosystem Demography model version 2, J. Geophys. Res.-Biogeo., 114, G01002, https://doi.org/10.1029/2008JG000812, 2009.
Miao, C., Gou, J., Fu, B., Tang, Q., Duan, Q., Chen, Z., Lei, H., Chen, J.,
Guo, J., Borthwick, A. G. L., Ding, W., Duan, X., Li, Y., Kong, D., Guo, X.,
and Wu, J.: High-quality reconstruction of China's natural streamflow,
Sci. Bull., 67, 547–556, https://doi.org/10.1016/j.scib.2021.09.022,
2022.
Minx, J. C., Lamb, W. F., Andrew, R. M., Canadell, J. G., Crippa, M., Döbbeling, N., Forster, P. M., Guizzardi, D., Olivier, J., Peters, G. P., Pongratz, J., Reisinger, A., Rigby, M., Saunois, M., Smith, S. J., Solazzo, E., and Tian, H.: A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019, Earth Syst. Sci. Data, 13, 5213–5252, https://doi.org/10.5194/essd-13-5213-2021, 2021.
Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., and Dolman, A. J.: Magnitude and variability of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci., 15, 967–981, https://doi.org/10.5194/hess-15-967-2011, 2011a.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011b.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global
terrestrial evapotranspiration algorithm, Remote Sens. Environ.,
115, 1781–1800, https://doi.org/10.1016/j.rse.2011.02.019, 2011.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Myneni, R., Knyazikhin, Y., Park, T.: MOD15A2H MODIS/Terra Leaf Area
Index/FPAR 8-Day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land
Processes DAAC [data set],
https://doi.org/10.5067/MODIS/MOD15A2H.006, 2015.
National Water Resources Bulletin: http://szy.mwr.gov.cn/gbsj/index.html, last access: 1 December 2021.
NOAA: NOAA CO2 concentration, ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt, last access: 31 May 2021.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., Poindexter, C., Chen, J., Elbashandy, A., Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, C., Arain, M. A., Ardo, J., et al.: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P.
M., Mooney, H. A., and Klooster, S. A.: Terrestrial ecosystem production: a
process model based on global satellite and surface data, Global
Biogeochem. Cy., 7, 811–841, https://doi.org/10.1029/93GB02725, 1993.
Rasmussen, J., Sonnenborg, T. O., Stisen, S., Seaby, L. P., Christensen, B. S. B., and Hinsby, K.: Climate change effects on irrigation demands and minimum stream discharge: impact of bias-correction method, Hydrol. Earth Syst. Sci., 16, 4675–4691, https://doi.org/10.5194/hess-16-4675-2012, 2012.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A.,
Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A.,
Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta,
F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M.,
Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and
Valentini, R.: On the separation of net ecosystem exchange into assimilation
and ecosystem respiration: review and improved algorithm, Glob. Change
Biol., 11, 1424–1439, https://doi.org/10.1111/j.1365-2486.2005.001002.x,
2005.
Ren, G., Zhan, Y., Ren, Y., Chen, Y., Wang, T., Liu, Y., and Sun, X.:
Spatial and temporal patterns of precipitation variability over mainland
China: I: climatology, Adv. Water Sci., 26, 299–310,
https://doi.org/10.14042/j.cnki.32.1309.2015.03.001, 2015.
Running, S., Mu, Q., and Zhao, M.: MOD17A2H MODIS/Terra Gross Primary
Productivity 8-Day L4 Global 500 m SIN Grid V006, NASA EOSDIS Land
Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD17A2H.006,
2015.
Schaaf, C. and Wang, Z.: MCD43A1 MODIS/Terra + Aqua BRDF/Albedo Model
Parameters Daily L3 Global – 500 m V006, NASA EOSDIS Land
Processes DAAC [data set], https://doi.org/10.5067/MODIS/MCD43A1.006, 2015.
Su, T., Feng, T., Huang, B., Han, Z., Qian, Z., Feng, G., Hou, W., and Dong,
W.: Long-term mean changes in actual evapotranspiration over China under
climate warming and the attribution analysis within the Budyko framework,
Int. J. Climatol., 42, 1136–1147,
https://doi.org/10.1002/joc.7293, 2022.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.:
Hierarchical mapping of annual global land cover 2001 to present: The MODIS
Collection 6 Land Cover product, Remote Sens. Environ., 222,
183–194, https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Tang, G., Ma, Y., Long, D., Zhong, L., and Hong, Y.: Evaluation of GPM Day-1
IMERG and TMPA Version-7 legacy products over Mainland China at multiple
spatiotemporal scales, J. Hydrol., 533, 152–167,
https://doi.org/10.1016/j.jhydrol.2015.12.008, 2016.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model
simulations for hydrological climate-change impact studies: Review and
evaluation of different methods, J. Hydrol., 456–457, 12–29,
https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Thornley, J. H. M.: Mathematical models in plant physiology, Academic Press (Inc.) London, Ltd., 1976.
Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., Keersmaecker, W. D.,
Tian, F., Schurgers, G., Xiao, X., Luo, Y., Chen, C., Myneni, R., Shi, Z.,
Chen, H., and Fensholt, R.: Increased vegetation growth and carbon stock in
China karst via ecological engineering, Nat. Sustain., 1, 44–50,
https://doi.org/10.1038/s41893-017-0004-x, 2018.
Turner, D. P., Urbanski, S., Bremer, D., Wofsy, S. C., Meyers, T., Gower, S.
T., and Gregory, M.: A cross-biome comparison of daily light use efficiency
for gross primary production, Glob. Change Biol., 9, 383–395,
https://doi.org/10.1046/j.1365-2486.2003.00573.x, 2003.
Villarreal, S. and Vargas, R.: Representativeness of FLUXNET Sites Across
Latin America, J. Geophys. Res.-Biogeosci., 126, 289–307,
https://doi.org/10.1029/2020JG006090, 2021.
Wan, Z., Hook, S., and Hulley, G.: MYD11A2 MODIS/Aqua Land Surface Temperature/
Emissivity 8-Day L3 Global 1 km SIN Grid V006, NASA EOSDIS Land
Processes DAAC [data set], https://doi.org/10.5067/MODIS/MYD11A2.006, 2015.
Wang, G. Q., Zhang, J. Y., Jin, J. L., Pagano, T. C., Calow, R., Bao, Z. X., Liu, C. S., Liu, Y. L., and Yan, X. L.: Assessing water resources in China using PRECIS projections and a VIC model, Hydrol. Earth Syst. Sci., 16, 231–240, https://doi.org/10.5194/hess-16-231-2012, 2012.
Wang, S., Li, J., Zhang, B., Lee, Z., Spyrakos, E., Feng, L., Liu, C., Zhao,
H., Wu, Y., and Zhu, L.: Changes of water clarity in large lakes and
reservoirs across China observed from long-term MODIS, Remote Sens.
Environ., 247, 111949, https://doi.org/10.1016/j.rse.2020.111949, 2020.
Wen, X., Yu, G., Sun, X., Li, Q., Liu, Y., Zhang, L., Ren, C., Fu, Y., and
Li, Z.: Soil moisture effect on the temperature dependence of ecosystem
respiration in a subtropical Pinus plantation of southeastern China,
Agr. Forest Meteorol., 137, 166–175,
https://doi.org/10.1016/j.agrformet.2006.02.005, 2006.
Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S.,
Daube, B. C., Bassow, S. L., and Bazzaz, F. A.: Net Exchange of CO2 in a
Mid-Latitude Forest, Science, 260, 1314–1317,
https://doi.org/10.1126/science.260.5112.1314, 1993.
Wolanin, A., Camps-Valls, G., Gómez-Chova, L., Mateo-García, G.,
van der Tol, C., Zhang, Y., and Guanter, L.: Estimating crop primary
productivity with Sentinel-2 and Landsat 8 using machine learning methods
trained with radiative transfer simulations, Remote Sens. Environ.,
225, 441–457, https://doi.org/10.1016/j.rse.2019.03.002, 2019.
Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, https://doi.org/10.5194/bg-15-5015-2018, 2018.
Xiao, J., Sun, G., Chen, J., Chen, H., Chen, S., Dong, G., Gao, S., Guo, H.,
Guo, J., Han, S., Kato, T., Li, Y., Lin, G., Lu, W., Ma, M., McNulty, S.,
Shao, C., Wang, X., Xie, X., Zhang, X., Zhang, Z., Zhao, B., Zhou, G., and
Zhou, J.: Carbon fluxes, evapotranspiration, and water use efficiency of
terrestrial ecosystems in China, Agr. Forest Meteorol.,
182–183, 76–90, https://doi.org/10.1016/j.agrformet.2013.08.007, 2013.
Xie, P., Wu, Z., Sang, Y.-F., Gu, H., Zhao, Y., and Singh, V. P.: Evaluation
of the significance of abrupt changes in precipitation and runoff process in
China, J. Hydrol., 560, 451–460,
https://doi.org/10.1016/j.jhydrol.2018.02.036, 2018.
Xu, F., Wang, W., Wang, J., Xu, Z., Qi, Y., and Wu, Y.: Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis, Hydrol. Earth Syst. Sci., 21, 4037–4051, https://doi.org/10.5194/hess-21-4037-2017, 2017.
Yang, D., Li, C., Hu, H., Lei, Z., Yang, S., Kusuda, T., Koike, T., and
Musiake, K.: Analysis of water resources variability in the Yellow River of
China during the last half century using historical data, Water Resour.
Res., 40, W06502, https://doi.org/10.1029/2003wr002763, 2004.
Yang, F., Sarathchandra, C., Liu, J., Huang, H., Gou, J.-Y., Li, Y., Mao,
X., Wen, H., Zhao, J., Yang, M., Homya, S., and Prueksakorn, K.: How fern
and fern allies respond to heterogeneous habitat – a case in Yuanjiang
dry-hot valley, Communicative and Integrative Biology, 14, 248–260,
https://doi.org/10.1080/19420889.2021.2007591, 2021.
Yang, Y., Shi, Y., Sun, W., Chang, J., Zhu, J., Chen, L., Wang, X., Guo, Y.,
Zhang, H., Yu, L., Zhao, S., Xu, K., Zhu, J., Shen, H., Wang, Y., Peng, Y.,
Zhao, X., Wang, X., Hu, H., Chen, S., Huang, M., Wen, X., Wang, S., Zhu, B.,
Niu, S., Tang, Z., Liu, L., and Fang, J.: Terrestrial carbon sinks in China
and around the world and their contribution to carbon neutrality, Sci. China
Life Sci., 65, 861–895, https://doi.org/10.1007/s11427-021-2045-5, 2022.
Yao, Y., Wang, X., Li, Y., Wang, T., Shen, M., Du, M., He, H., Li, Y., Luo,
W., Ma, M., Ma, Y., Tang, Y., Wang, H., Zhang, X., Zhang, Y., Zhao, L.,
Zhou, G., and Piao, S.: Spatiotemporal pattern of gross primary productivity
and its covariation with climate in China over the last thirty years, Glob.
Change Biol., 24, 184–196, https://doi.org/10.1111/gcb.13830, 2018.
Yin, L., Tao, F., Chen, Y., Liu, F., and Hu, J.: Improving terrestrial
evapotranspiration estimation across China during 2000–2018 with machine
learning methods, J. Hydrol., 600,
https://doi.org/10.1016/j.jhydrol.2021.126538, 2021.
Yu, G.-R., Wen, X.-F., Sun, X.-M., Tanner, B. D., Lee, X., and Chen, J.-Y.:
Overview of ChinaFLUX and evaluation of its eddy covariance measurement,
Agr. Forest Meteorol., 137, 125–137,
https://doi.org/10.1016/j.agrformet.2006.02.011, 2006.
Yu, H., Qi, D., Zhang, Y., Sha, L., Liu, Y., Zhou, W., Deng, Y., and Song,
Q.: An observation dataset of carbon and water fluxes in Xishuangbanna
rubber plantations from 2010 to 2014, Science Data Bank [data set],
https://cstr.cn/31253.11.sciencedb.j00001.00123 (last access: 1 April 2022), 2021.
Yu, Q., Zhang, Y., Liu, Y., and Shi, P.: Simulation of the Stomatal
Conductance of Winter Wheat in Response to Light, Temperature and CO2
Changes, Ann. Botany, 93, 435–441, https://doi.org/10.1093/aob/mch023,
2004.
Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D.,
Bernhofer, C., Gholz, H., Goldstein, A. H., and Goulden, M. L.: Deriving a light
use efficiency model from eddy covariance flux data for predicting daily
gross primary production across biomes, Agr. Forest Meteorol.,
143, 189–207, https://doi.org/10.1016/j.agrformet.2006.12.001, 2007.
Yue, T., Zhao, N., Liu, Y., Wang, Y., Zhang, B., Du, Z., Fan, Z., Shi, W.,
Chen, C., and Zhao, M.: A fundamental theorem for eco-environmental surface
modelling and its applications, Sci. China Earth Sci., 63, 1092–1112,
https://doi.org/10.1007/s11430-019-9594-3, 2020.
Zhang, F., Li, H., Zhao, L., Zhang, L., Chen, Z., Zhu, J., Xu, S., Yang, Y.,
Zhao, X., and Yu, G.: An observation dataset of carbon, water and heat
fluxes of alpine wetland in Haibei (2004–2009), Science Data
Bank [data set], https://doi.org/10.11922/sciencedb.1010, 2020.
Zhang, J.-H., Han, S.-J., and Yu, G.-R.: Seasonal variation in carbon dioxide
exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest,
Agr. Forest Meteorol., 137, 150–165,
https://doi.org/10.1016/j.agrformet.2006.02.004, 2006.
Zhang, Y. and He, S.: PML-V2(China): evapotranspiration and gross primary
production (2000.02.26–2020.12.31), National Tibetan Plateau Data
Center [data set], https://doi.org/10.11888/Terre.tpdc.272389, 2022.
Zhang, Y., Leuning, R., Hutley, L. B., Beringer, J., McHugh, I., and Walker, J. P.: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution, Water Resour. Res., 46, W05512, https://doi.org/10.1029/2009wr008716, 2010.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A
global moderate resolution dataset of gross primary production of vegetation
for 2000–2016, Sci. Data, 4, 170165, https://doi.org/10.1038/sdata.2017.165,
2017a.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.:
Global gross primary production from vegetation photosynthesis model for
2000–2016, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.879560, 2017b.
Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q.,
and Yang, Y.: Coupled estimation of 500 m and 8 d resolution global
evapotranspiration and gross primary production in 2002–2017, Remote
Sens. Environ., 222, 165–182,
https://doi.org/10.1016/j.rse.2018.12.031, 2019.
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., Dong, J., and
Doughty, R.: Global gross primary production from vegetation photosynthesis
model for 2017–2019, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.928381, 2021.
Zhang, Z., Arnault, J., Wagner, S., Laux, P., and Kunstmann, H.: Impact of
lateral terrestrial water flow on land-atmosphere interactions in the Heihe
River Basin in China: Fully coupled modeling and precipitation recycling
analysis, J. Geophys. Res.-Atmos., 124, 8401–8423,
https://doi.org/10.1029/2018JD030174, 2019.
Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., and
Li, Z.: The potential of satellite FPAR product for GPP estimation: An
indirect evaluation using solar-induced chlorophyll fluorescence, Remote
Sens. Environ., 240, 111686,
https://doi.org/10.1016/j.rse.2020.111686, 2020.
Zhao, F., Li, F., Zhan, C., Zhang, L., and Chen, Z.: A carbon and water
fluxes dataset over farmland ecosystem of winter wheat and summer corn in
Yucheng (2003–2010), Science Data Bank [data set],
https://doi.org/10.11922/sciencedb.j00001.20002, 2021.
Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., Chen, J. M., Ju, W., Zhang, L., and Yuan, W.: Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017, Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, 2020.
Zhong, R., Chen, X., Lai, C., Wang, Z., Lian, Y., Yu, H., and Wu, X.:
Drought monitoring utility of satellite-based precipitation products across
mainland China, J. Hydrol., 568, 343–359,
https://doi.org/10.1016/j.jhydrol.2018.10.072, 2019.
Short summary
This study developed a daily, 500 m evapotranspiration and gross primary production product (PML-V2(China)) using a locally calibrated water–carbon coupled model, PML-V2, which was well calibrated against observations at 26 flux sites across nine land cover types. PML-V2 (China) performs satisfactorily in the plot- and basin-scale evaluations compared with other mainstream products. It improved intra-annual ET and GPP dynamics, particularly in the cropland ecosystem.
This study developed a daily, 500 m evapotranspiration and gross primary production product...
Altmetrics
Final-revised paper
Preprint