

Supplement of

A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020

Shaoyang He et al.

Correspondence to: Yongqiang Zhang (zhangyq@igsnrr.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement I: PML-V2 model description

The second generation of the Penman–Monteith–Leuning model (abbreviated as PML-V2) is a water–carbon coupled diagnostic biophysical model. Compared to the old version that does not calculate gross primary productivity (GPP) and the effect of CO₂ on evapotranspiration (*ET*), PML-V2 couples a photosynthesis model (Thornley, 1976) and an improved canopy

5 stomatal conductance model (Yu et al., 2004) with the Penman–Monteith (PM) equation to estimate GPP and plant transpiration (E_c) collectively (Gan et al., 2018). Zhang et al. (2019) further improved PML-V2 by incorporating the vapor pressure deficit (*VPD*) constraint into GPP that is then used to constrain canopy conductance and E_c . Particularly, GPP is estimated by the gross assimilation rate integrated from leaf level to the canopy scale:

$$GPP = \int_0^{LAI} A_{g,VPD} dl , \qquad (S1)$$

10 where *l* is the unit leaf area from top to full canopy, LAI is the leaf area index for the whole canopy, and $A_{g,VPD}$ is the gross assimilation rate at leaf level with the *VPD* constraint, calculated by the following two equations:

$$A_{g,VPD} = f_{VPD} A_g \tag{S2}$$

$$f_{VPD} = \begin{cases} 1, VPD \le D_{min} \\ \frac{D_{max} - VPD}{D_{max} - D_{min}}, D_{min} < VPD < D_{max} \\ 0, VPD \ge D_{max} \end{cases}$$
(S3)

where $f(D_a)$ is the *VPD* constraint piecewise function, D_{min} is the minimum threshold when there's no vapor pressure 15 constraint, D_{max} the maximum threshold when closing plant stomata leads to non-assimilation, and A_g is the gross assimilation rate at leaf level without the *VPD* constraint.

 A_g is calculated by following Thornley (1976) as $\frac{A_m\beta_I\eta_C_a}{A_m\beta_I+A_m\eta_C_a+\beta_I\eta_C_a}$, where *I* is the flux density of photosynthetically active radiation (*PAR*), β is the initial slope of the light response curve to assimilation rate, and η is the initial slope of the CO₂ response curve to assimilation rate. A_m is the maximum photosynthetic rate obtained when both the flux density of *PAR* and C_a are saturated. Then, we can simplify Eq. S1 as Eq. S4.

$$GPP = f_{VPD} \frac{P_1 C_a}{k(P_2 + P_4)} \Big\{ kLAI + ln \frac{P_2 + P_3 + P_4}{P_2 + P_3 \exp(kLAI) + P_4} \Big\},$$
(S4)

where $P_1 = A_m \beta I_0 \eta$, $P_2 = A_m \beta I_0$, $P_3 = A_m \eta C_a$, $P_4 = \beta I_0 \eta C_a$. I_0 is I at the top of the canopy, $k = k_Q$ is the extinction coefficient.

PML-V2 estimates G_c by integrating the stomatal conductance from the leave level into the canopy scale, as follows:

20

$$25 \quad G_c = \int_0^{LAI} g_s dl \,, \tag{S5}$$

where g_s is the stomatal conductance at the leave-level. The g_s is calculated by an improved Ball model, as $m \frac{A_{g,VPD}}{C_a(1+VPD/D_0)}$ (Ball et al., 1987; Collatz et al., 1991; Yu et al., 2004), in which *m* is stomatal conductance coefficient, C_a is the atmospheric CO₂ concentration, D_0 is a parameter that represents the sensitivity of g_s response to *VPD*. So, G_c can be estimated as: $G_c = \frac{m \, GPP}{C_a(1+D_a/D_0)}$, (S6)

30 PML-V2 derives *ET* by separately estimating its three components, including E_c , evaporation from the soil (E_s), and canopy evaporation from precipitation interception (E_i), as follows:

$$ET = E_c + E_s + E_i, (S7)$$

where E_c is calculated by P-M equation, given by:

$$E_c = \frac{\varepsilon A_c + (\rho c_p / \gamma) D_a G_a}{\varepsilon + 1 + G_a / G_c},\tag{S8}$$

35 where G_c is a variable and couples with the photosynthesis process (Eq. S6); $\varepsilon = (de^*/dT)/\gamma$, in which de^*/dT is the curve slope relating saturation water vapor pressure to temperature and γ is psychrometric constant; the total available energy absorbed by surface is partitioned by leaf area index into canopy absorption (A_c), ρ is the air density; and c_p represents specific heat of air at constant pressure.

The ET component, E_s , depends on the soil water deficit and the soil absorbed energy flux, shown as:

$$40 \quad E_s = \frac{f \varepsilon A_s}{\varepsilon + 1},\tag{S9}$$

where A_s is the soil absorption and f is a unitless variable that is computed by a function of soil equilibrium evaporation and accumulated precipitation for each grid cell, given by:

$$f = \min\left(\frac{\sum_{i=1}^{N} P_i}{\sum_{i=1}^{N} E_{eq-s,i}}, 1\right),$$
(S10)

in which $E_{eq_s,i}$ is the average equilibrium evaporation rate at the soil surface for the *i*th day and P_i is precipitation for that 45 day. Here the time-span for N can be set as 32 days since 16 to 32 days are reasonable (Morillas et al., 2013; Zhang et al., 2010). The component E_i is calculated by a modified rainfall interception model, Gash model, as shown in Eq. S11 (van Dijk and Bruijnzeel, 2001).

$$E_{i} = \begin{cases} f_{v}P, P < Prcp_{wet} \\ f_{v}Prcp_{wet} + f_{ER}(P - Prcp_{wet}), P \ge Prcp_{wet} \end{cases}$$
(S11)

where f_V is the area ratio covered by intercepting leaves, f_{ER} is the ratio of average evaporation rate over average precipitation 50 and assumes that it does not vary between the storms; *P* is daily precipitation; $Prcp_{wet}$ is the rainfall rate of the reference threshold if the vegetation canopy is wet.

References

65

- Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of
 photosynthesis under different environmental conditions, in: Progress in photosynthesis research, Springer, 221–224, 1987.
 - Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and Environmental-Regulation of Stomatal Conductance, Photosynthesis and Transpiration - a Model That Includes a Laminar Boundary-Layer, Agric. For. Meteorol., 54, 107– 136, https://doi.org/Doi 10.1016/0168-1923(91)90002-8, 1991.
- 60 van Dijk, A. I. J. M. and Bruijnzeel, L. A.: Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description, J. Hydrol., 247, 230–238, https://doi.org/10.1016/S0022-1694(01)00392-4, 2001.
 - Gan, R., Zhang, Y., Shi, H., Yang, Y., Eamus, D., Cheng, L., Chiew, F. H. S., and Yu, Q.: Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems, Ecohydrology, 11, e1974, https://doi.org/10.1002/eco.1974, 2018.
 - Morillas, L., Leuning, R., Villagarcia, L., Garcia, M., Serrano-Ortiz, P., and Domingo, F.: Improving evapotranspiration estimates in Mediterranean drylands: The role of soil evaporation, Water Resour. Res., 49, 6572–6586, https://doi.org/10.1002/wrcr.20468, 2013.

Thornley, J. H. M.: Mathematical models in plant physiology., Academic Press (Inc.) London, Ltd., 1976.

- 70 Yu, Q., Zhang, Y., Liu, Y., and Shi, P.: Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes, Ann. Bot., 93, 435–441, 2004.
 - Zhang, Y., Leuning, R., Hutley, L. B., Beringer, J., McHugh, I., and Walker, J. P.: Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution, Water Resour. Res., 46, W05512, https://doi.org/10.1029/2009wr008716, 2010.
- 75 Zhang, Y., Kong, D., Gan, R., Chiew, F. H. S., McVicar, T. R., Zhang, Q., and Yang, Y.: Coupled estimation of 500 m and 8day resolution global evapotranspiration and gross primary production in 2002–2017, Remote Sens. Environ., 222, 165– 182, https://doi.org/10.1016/j.rse.2018.12.031, 2019.

Table S1. The calibrated parameter values for nine PFTs used in PM								
Parameter	ENF	EBF	MF	OSH				
в	0.0372	0.0389	0.0388	0.0289	0			

L-V2(China).

Parameter	ENF	EBF	MF	OSH	SAV	GRA	WET	CRO	BSV
β	0.0372	0.0389	0.0388	0.0289	0.0392	0.0499	0.0281	0.0391	0.0125
η	0.0429	0.0092	0.0223	0.0627	0.0151	0.0687	0.0312	0.0599	0.0416
m_s	3.7259	7.9996	7.7992	6.3180	6.3644	13.7067	21.8661	4.9718	5.5359
$A_{m_{25}}$	46.3662	9.6550	9.6552	12.8114	2.3992	6.8200	46.3697	29.9989	46.3572
Da	1.9870	0.9779	0.7992	0.8987	0.8828	0.5161	1.6043	1.9924	1.9952
kQ	1.0000	0.5447	0.5058	0.5362	0.4231	0.9981	0.1054	0.2030	0.9954
k_A	0.6829	0.8002	0.8878	0.1426	0.8890	0.8972	0.8900	0.8856	0.6936
S _{sls}	0.1674	0.1155	0.0587	0.1598	0.0546	0.1276	0.0005	0.0091	0.1697
f_{ER}	0.0074	0.0156	0.0171	0.0696	0.1459	0.0031	0.0054	0.0106	0.1469
D_{min}	0.6503	0.6501	0.7307	0.7891	1.4103	1.4846	0.6517	1.3936	1.4895
D_{max}	5.3248	4.9345	5.4764	3.5021	6.4998	6.4721	5.5137	4.9973	6.4963

	ET					GPP			
Site code	NSE	RMSE (mm d ⁻¹)	R	Bias (%)	NSE	RMSE (g C m ⁻² d ⁻¹)	R	Bias (%)	
ARCJZ	0.83	0.59	0.92	-13.39	0.87	1.03	0.94	17.66	
BNXJL	0.42	0.72	0.65	-0.81	0.41	1.23	0.65	0.28	
CF-CBF	0.82	0.49	0.91	-0.21	0.89	1.41	0.94	-2.26	
CF- HBG_S01	0.81	0.57	0.91	-10.09	0.91	0.86	0.96	-10.52	
CF- HBG_W01	0.78	0.73	0.90	-8.17	0.85	2.76	0.96	-12.26	
CF-NMG	0.58	0.58	0.82	12.20	0.80	0.67	0.91	25.77	
CF-QYF	0.70	0.71	0.85	-7.86	0.74	1.33	0.88	-2.55	
CF-YCA	0.39	1.22	0.70	-18.05	0.60	4.59	0.82	-25.63	
CN-Cng	0.70	0.65	0.85	-12.81	0.70	1.22	0.90	-28.22	
CN-Du2	0.55	0.75	0.78	1.41	0.71	0.67	0.90	29.99	
CN-HaM	0.81	0.45	0.94	19.01	0.78	1.42	0.92	-18.93	
DMCJZ	0.84	0.77	0.94	-22.94	0.82	2.34	0.91	3.03	
DSLZ	0.76	0.69	0.89	4.49	0.25	1.49	0.92	32.13	
DXZ	0.41	0.90	0.79	-3.41	0.43	2.49	0.83	45.37	
DYKGTSLZ	0.55	0.63	0.84	16.49	0.55	1.78	0.81	-16.85	
GTZ	0.63	0.68	0.87	12.62	0.45	2.67	0.91	25.94	
HLZ	0.65	0.74	0.87	7.96	0.82	2.66	0.92	-10.58	
HZZHMZ	0.48	0.70	0.74	-27.03	0.41	0.33	0.74	-9.97	
MYZ	0.74	0.61	0.92	12.47	0.29	2.39	0.91	60.83	
QZ-BJ	0.68	0.70	0.84	-13.13	0.38	0.76	0.66	12.98	
QZ- NAMORS	0.41	1.04	0.73	-27.81	0.44	0.60	0.67	-6.51	
QZ-QOMS	0.05	0.50	0.69	39.42	0.64	0.26	0.80	-3.96	
YJGRHG	0.36	0.39	0.67	-6.79	0.67	0.80	0.82	-3.03	
YKGQLZZ	0.87	0.62	0.94	-15.74	0.85	2.48	0.92	-3.16	
YKZ	0.39	0.77	0.74	-2.06	0.54	0.47	0.76	3.30	
ZYSDZ	0.83	1.04	0.94	-2.68	0.77	1.77	0.91	29.44	

Table S2. Model performance for daily ET and GPP estimates at the 26 flux sites.

Figure S1. Spatial patterns of the PML-V2(China) ET with double peaks in 2015 (a1) and the double-cropping croplands in 2015 from a crop phenological dataset (ChinaCropPhen1km) (b1); spatial patterns of the first peak dates (a2) and the second peak dates (a3) from the PML-V2(China) ET in 2015; and spatial patterns of the heading dates of winter wheat (b2) and those of summer maize (b3) from the crop phenological dataset in 2015.