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Abstract. Accurate high-resolution actual evapotranspiration (ET) and gross primary production (GPP) infor-
mation is essential for understanding the large-scale water and carbon dynamics. However, substantial uncer-
tainties exist in the current ET and GPP datasets in China because of insufficient local ground measurements
used for model constraint. This study utilizes a water–carbon coupled model, Penman–Monteith–Leuning Ver-
sion 2 (PML-V2), to estimate 500 m ET and GPP at a daily scale. The parameters of PML-V2(China) were well
calibrated against observations of 26 eddy covariance flux towers across nine plant functional types in China,
indicated by a Nash–Sutcliffe efficiency (NSE) of 0.75 and a root mean square error (RMSE) of 0.69 mm d−1 for
daily ET, respectively, and a NSE of 0.82 and a RMSE of 1.71 g C m−2 d−1 for daily GPP. The model estimates
get a small Bias of 6.28 % and a high NSE of 0.82 against water-balance annual ET estimates across 10 major
river basins in China. Further evaluations suggest that the newly developed product is better than other typical
products (MOD16A2, SEBAL, GLEAM, MOD17A2H, VPM, and EC-LUE) in estimating both ET and GPP.
Moreover, PML-V2(China) accurately monitors the intra-annual variations in ET and GPP in the croplands with
a dual-cropping system. The new data showed that, during 2001–2018, the annual GPP and water use efficiency
experienced a significant (p < 0.001) increase (8.99 g C m−2 yr−2 and 0.02 g C mm−1 H2O yr−1, respectively),
but annual ET showed a non-significant (p > 0.05) increase (0.43 mm yr−2). This indicates that vegetation in
China exhibits a huge potential for carbon sequestration with little cost in water resources. The PML-V2(China)
product provides a great opportunity for academic communities and various agencies for scientific studies and
applications, freely available at https://doi.org/10.11888/Terre.tpdc.272389 (Zhang and He, 2022).

1 Introduction

Terrestrial evapotranspiration (ET) and photosynthesis (or
gross primary productivity, GPP) are indispensable processes
in hydrological and carbon cycles at global and regional
scales. Forming the second-largest water flux after precip-
itation in the terrestrial hydrological cycle, ET is the sum
of plant transpiration (Ec), evaporation from the soil (Es),
and canopy evaporation from precipitation interception (Ei).

Photosynthesis rate, tightly coupled to Ec by leaf stomata, is
a key indicator of plant growth and provides food and fiber
for human society.

In recent decades, numerous studies have been carried
out to map ET at regional, continental, and global scales.
Particular credit goes to remote sensing (RS)-based models
that provide diagnostic ET estimates with a relatively high
spatiotemporal continuity and reasonable biophysical signif-
icance. For example, Miralles et al. (2011b) and Martens

Published by Copernicus Publications.

https://doi.org/10.11888/Terre.tpdc.272389


5464 S. He et al.: Daily and 500 m coupled evapotranspiration and gross primary production

et al. (2017) developed a global and daily ET product em-
ploying the Global Land Evaporation Amsterdam Model
3.0a (hereafter GLEAM) based on the Priestley–Taylor (P–
T) equation. Although GLEAM does a good job in temporal
resolution, it has a coarse spatial resolution of 0.25◦. Another
widely used semi-empirical formula is the Penman–Monteith
(PM) equation. Mu et al. (2011) generated the MOD16A2
ET with 500 m and 8 d resolutions based on the PM equation
as one global product of the Moderate-Resolution Imaging
Spectroradiometer (MODIS). Leuning et al. (2008) devel-
oped the Penman–Monteith–Leuning (PML) model that de-
scribed the physical characteristics of canopy–soil water loss
by improving the surface conductance (Gs) formulations,
and Zhang et al. (2010) estimated PML-based ET at 0.05◦

and 8 d resolution across the Australian continent. Cheng et
al. (2021) produced a 1 km and daily ET dataset across China
by the Surface Energy Balance Algorithm for Land (SEBAL)
but only evaluated the SEBAL product at eight eddy covari-
ance (EC) sites of three land cover types.

Apart from the methods and products for the ET esti-
mated above, numerous approaches have been used to esti-
mate GPP, such as the enzyme kinetic (process-based) mod-
els (Houborg et al., 2013; Arain et al., 2006; Grant et al.,
2005; Hanson et al., 2004; Medvigy et al., 2009), the light
use efficiency (LUE) principle (Liu et al., 2003; Turner et al.,
2003; Yuan et al., 2007; Running et al., 2015; Zhang et al.,
2017a; Zheng et al., 2020), statistical methods (Potter et al.,
1993; Hilker et al., 2008; Z. Zhang et al., 2020), and machine
learning methods (Wolanin et al., 2019; Joiner and Yoshida,
2020; Huang et al., 2021). Among them, the LUE principle
is well known because of its simple structure, strong porta-
bility, and relatively high temporal cover of inputs. Running
et al. (2015) recently updated the global GPP product of
MODIS (hereafter MOD17A2H) at 500 m and 8 d resolu-
tions using the LUE principle. Zhang et al. (2017b, 2021)
also mapped global GPP for 2000–2019, dubbed the Vegeta-
tion Photosynthesis Model GPP V20 (hereafter VPM), with
the same spatiotemporal resolution as MOD17A2H using an
improved LUE model adding the energy absorbed by chloro-
phyll. Zheng et al. (2020) generated a global GPP dataset at
0.05◦ and 8 d intervals by a revised LUE model (hereafter
EC-LUE) integrating the atmospheric CO2 concentration.

Although significant efforts have been put into estimating
ET and GPP, there are barely any coupled products avail-
able in China which meet the requirement of high tempo-
ral (≤ 1 d) and high spatial (≤ 500 m) resolutions simulta-
neously that is necessary to detect variations of the eco-
hydrological cycle in diverse and large areas for the long term
precisely (Table 1). For instance, products with low temporal
resolutions are erratic in detecting subtle seasonal changes in
areas seriously affected by human activities and in arid re-
gions, such as irrigated farmland with a dry climate (Bodner
et al., 2015) and an evergreen broadleaf Mediterranean forest
during severe summer drought (Liu et al., 2015). On the other
hand, products with high temporal resolutions like GLEAM

can monitor the diurnal variability of ET, but their low spatial
resolutions limit their effectiveness in fine-scale environment
applications (Gevaert and García-Haro, 2015).

Secondly, the phenomenon of ignoring the water–carbon
coupling process frequently appearing in the existing prod-
ucts has brought systematic errors. The photosynthesis and
transpiration are coupled by the plant stomatal control on
both water and carbon exchange between the land ecosys-
tem and the atmosphere (Xiao et al., 2013; Y. Zhang et al.,
2019). As indicated in Table 1, MODIS ET and MODIS GPP
products are independent of each other and cannot ensure
similar biophysical characteristics of vegetation in the same
place. Furthermore, using ET and GPP from different prod-
ucts can lead to large uncertainty in analyzing the interac-
tion between ET and GPP, such as the water use efficiency
of an ecosystem (WUE is the ratio of GPP to ET). In that
case, it is necessary to build a coupled ET and GPP model
considering the water–carbon coupling process. Y. Zhang et
al. (2019) developed the second generation of PML (i.e., the
PML-V2 model) that estimates Gs using a water–carbon cou-
pled model and mapped global ET and GPP at 500 m and 8 d
resolutions in 2002–2017.

More importantly, previous studies utilized sparse ground
observations in China (as shown in Table 1) that covered few
terrestrial ecosystems for model calibration and validation,
resulting in improper input parameters and making it diffi-
cult to obtain more reliable estimates of ET and GPP in di-
verse land cover types (Heinsch et al., 2006; Anon, 2013).
Although the EC flux sites have provided consecutive mea-
surements of water and carbon fluxes since the early 1990s
(Xiao et al., 2013; Wofsy et al., 1993; Baldocchi et al., 2001),
the EC-observed data in China remain much sparser than
those in North America and Europe, and most of them are
not publicly available, impeding a national-scale constraint
of RS-based models for improving ET and GPP estimates
(Villarreal and Vargas, 2021; Chu et al., 2017). For instance,
GLEAM, which only employed eight EC sites over China,
overestimates ET on a large scale, especially for evergreen
needleleaf forest, evergreen broadleaf forest, and mixed for-
est (Li et al., 2018). Therefore, the uncertainty in estimating
ET and GPP is large, and it requires sufficient EC flux sites
to calibrate and validate ET and GPP models for better local
and regional applications.

In addition, understanding the spatial and temporal pat-
terns of ET and GPP is particularly important for China,
the largest contributor to the absolute growth of greenhouse
gases that has directly induced global warming over the past
decade (Minx et al., 2021). On the other hand, China has
huge carbon sequestration potential of terrestrial ecosystems
to slow accumulation of atmospheric carbon dioxide and
mitigate climate change. Additionally, given China’s water
shortage, it is crucial to clearly understand water budgets
and transportation (Ma et al., 2020). Therefore, it becomes
vital to estimate GPP and ET accurately across China under
changes in climate and land cover types.
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Table 1. Summary of typical ET and GPP products with high temporal and/or high spatial resolutions.

Variable Dataset Spatial Temporal Temporal Principle EC Reference
abbreviation resolution resolution coverage or model evaluation

ET MOD16A2 500 m 8 d 2001–present PM 72 EC sites in
AmeriFlux (0
using sites in
China)

Mu et al. (2011)

ET SEBAL 1000 m Daily 2001–2018 One-source
model of
surface
energy
balance
residual

8 EC sites in China Cheng et al. (2021)

ET GLEAM 0.25◦ Daily 1980–2020 P-T 91 global EC sites
(including 8 sites in
China)

Miralles et al. (2011a) and
Martens et al. (2017)

GPP MOD17A2H 500 m 8 d 2000–present LUE Not performed Running et al. (2015)

GPP VPM 500 m 8 d 2000–2019 LUE 113 global EC sites
(including 8 sites in
China)

Zhang et al. (2017a, b,
2021)

GPP EC-LUE 0.05◦ 8 d 1982–2018 LUE 95 global EC sites
(including 7 sites in
China)

Zheng et al. (2020)

ET, GPP PML-V2 (Global) 500 m 8 d 2000–2020 PML-V2 95 global EC sites
(including 8 sites in
China)

Y. Zhang et al. (2019)

ET, GPP PML-V2 (China) 500 m Daily 2000–2020 PML-V2 26 EC sites in
China

This study

Facing the above challenges, this study utilizes a water–
carbon coupled and remote-sensing-based model, PML-V2,
that is constrained against the most comprehensive observa-
tions in China (i.e., 26 EC observations across nine plant
functional types – PFTs) to generate daily and 500 m ET
and GPP gridded products from 2000 to 2020. We then
test whether the newly developed product for China outper-
forms PML-V2(global) and other mainstream products (i.e.,
MOD16A2, SEBAL, GLEAM, MOD17A2H, VPM, and EC-
LUE) and investigate annual change and spatial pattern in
ET and its components: plant transpiration (Ec), evaporation
from the soil (Es), canopy evaporation from precipitation in-
terception (Ei), GPP, and WUE in 2001–2018 across China.
It is noted that the years of 2019–2020 have not been se-
lected for trend analysis. This is because a different forcing
dataset was used to drive PML-V2 (details are provided in
Sect. 2.2.2).

The novelties of this study mainly include the following.

i. Observation data from 26 EC flux stations in nine PFTs
across China are employed to constrain the PML-V2
calibration for estimating ET and GPP.

ii. The country-specific meteorological forcing, i.e., the
China Meteorological Forcing Dataset (CMFD), is used

to drive the PML-V2 in China, which is more accurate
than those forcings extracted from global forcing prod-
ucts.

iii. The PML-V2(China) product is generated with a daily
resolution compared with the previous global product
with a temporal resolution of 8 d.

iv. It improves intra-annual ET and GPP dynamics for var-
ious ecosystems, particularly for the cropland ecosys-
tem, which provides more accurate estimates and moni-
toring of agricultural water consumption compared with
other mainstream products.

2 Materials and methods

2.1 Description of the PML-V2 model

The PML-V2 model is a water–carbon coupled diagnostic
biophysical model. Compared to the old version that does not
calculate GPP and the effect of CO2 on evapotranspiration,
PML-V2 couples a photosynthesis model (Thornley, 1976)
and an improved canopy stomatal conductance model (Yu et
al., 2004) with the PM equation to estimate GPP and Ec col-
lectively (Gan et al., 2018). Y. Zhang et al. (2019) further im-
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proved PML-V2 by incorporating the vapor pressure deficit
constraint into GPP that is then used to constrain canopy con-
ductance and Ec. The detailed descriptions of PML-V2 are
provided in the Supplement.

2.2 Model input data

2.2.1 Remote sensing data

MODIS collections with 500 m spatial resolutions from
26 February 2000 to 31 December 2020 (hereafter 2000–
2020) are used, which includes the leaf area index (LAI)
from MOD15A2H.006 (Myneni et al., 2015), the albedo
from the MCD43A3.006 product (Schaaf and Wang, 2015),
and the surface emissivity from MOD11A2.006 (Wan et al.,
2015). The smoothed LAI inputs for PML-V2(China) uti-
lized the weighted Whittaker smoother with dynamic lamb-
das instead of a constant lambda to eliminate missing or un-
reliable pixels due to noise contaminations by snow, shadow,
cloud, etc., compared with PML-V2(Global) (Kong et al.,
2019; Y. Zhang et al., 2019). The improved LAI can bet-
ter express peaks and seasonal changes. The albedo and sur-
face emissivity inputs were gap-filled by the linear interpo-
lation of the nearest good-quality points. If there were not
enough good-quality points close to the point with a missing
value, it was filled by the historically averaged values for the
same grid. In addition, the PML-V2 model needs land cover
types to accurately estimate ET and GPP in different terres-
trial ecosystems. Here we used the International Geosphere-
Biosphere Program (IGBP) layer of the MCD12Q1.006 land
cover product (Sulla-Menashe et al., 2019) during 2000–
2020 since IGBP classification is annually continuous and
has acceptable accuracy in China when compared with other
land cover products (Feng and Bai, 2019).

2.2.2 Meteorological data

The meteorological inputs of PML-V2 include specific hu-
midity, air pressure, air temperature, wind speed, precipi-
tation, downward longwave radiation, downward shortwave
radiation, and land surface temperature. In this study, the
main meteorological data came from the CMFD from 2000
to 2018 (He et al., 2020), which has spatial and temporal
resolutions of 0.1◦ and 3 h, respectively. Generated through
the fusion of five RS or reanalysis datasets and 753 China
Meteorological Administration stations, the CMFD dataset
shows the best accuracy among most available meteorologi-
cal datasets and is widely employed in hydrological and land
surface modeling of China (Z. Zhang et al., 2019; Wang et
al., 2020). The Global Land Data Assimilation System Ver-
sion 2.1 (GLDAS-2.1) forcing data with 0.25◦ and 3 h reso-
lutions (Beaudoing and Rodell, 2016) were used for 2019–
2020, as the CMFD was not available during such a period.
Since the CMFD and the GLDAS-2.1 are different meteo-
rological forcing datasets for driving the PML-V2 model,
it is necessary to correct the Bias of 2019–2020. Here, a

widely used methodology, delta change (i.e., DC, also called
the change factor), was selected for bias correction (Anandhi
et al., 2011; Teutschbein and Seibert, 2012; Rasmussen et
al., 2012; Hempel et al., 2013; Beck et al., 2018; Haro-
Monteagudo et al., 2020). The underlying idea of the DC
method is to use simulated future anomalies (i.e., GLDAS-
2.1 in this study) for a perturbation of observed data (i.e.,
CMFD) rather than to use the simulations of future condi-
tions directly. For each grid cell, we bias-corrected the daily
meteorological data during 2019–2020 by monthly scaling
factors. Specifically, a multiplicative approach was applied
for precipitation (Eqs. 1 to 2).

P(i,j ) = 1P(j ) ·P
∗

(i,j ); i = 1,2, . . .,31; j = 1,2, . . .,12, (1)

where P(i,j ) is the precipitation corrected by the relative
change factor for day i and month j , and P ∗(i,j ) is the mul-
tiyear daily mean observed precipitation at the ith day, j th
month in the historical or reference period (2000–2018 in
this study). 1P(j ) is the change factor that can be formulated
as

1P(j ) = Pfut / Phis ; j = 1,2, . . .,12, (2)

where Phis is the daily mean precipitation of the j th month
in the historic simulation (i.e., 2000–2018) and Pfut is sim-
ilar but is the average of the future simulation (i.e., 2019 or
2020). The multiplicative approach is also used for the vari-
ables radiation, air pressure, and wind speed, whereas an ad-
ditive approach was used to adjust temperature and specific
humidity (Eqs. 3 to 4).

X(i,j ) = 1X(j )+ X∗(i,j ); i = 1,2, . . .,31; j = 1,2, . . .,12, (3)

in which 1X(j ) is calculated as

1X(j ) = Xfut− Xhis ; j = 1,2, . . .,12. (4)

The land surface temperature during 2000–2020 was from
the Land component of the fifth generation of European Re-
Analysis (i.e., ERA5-Land; Muñoz-Sabater et al., 2021) with
spatial and temporal resolutions of 0.1◦ and 1 h, respectively.
Note that the above meteorological data were first aggregated
into the daily scale, followed by resampling into 500 m by the
bilinear interpolation method (Y. Zhang et al., 2019). The at-
mospheric CO2 concentration data came from the National
Oceanic and Atmospheric Administration (NOAA, 2021).
The preprocessing of remote sensing data and meteorolog-
ical data for model inputs is summarized in Fig. 1.

2.3 ET and GPP from eddy covariance observations

We collated EC flux towers and automatic weather station
(AWS) data from 26 sites across China (Fig. 2 and Ta-
ble 2) and generated the high-quality ET and GPP observed
for calibration and validation of PML-V2. These data came
from the following sources: FLUXNET2015 (Pastorello et
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Figure 1. Flowchart of EC flux and AWS data pre-processing and PML-V2 model processing which is used to convert RS images and
meteorological forcing images into GPP, Ec, Ei, Es, Ew, and ET. For the pre-processing part: NEE (net ecosystem exchange, µmol m−2 s−1),
LE (latent heat, W m−2), Rg (incoming radiation, W m−2), rH (relative humidity, %), Ta (air temperature, ◦C), and QC (quality control).
For the PML-V2 model part: Tmax (daily maximum temperature, ◦C), Tmin (daily minimum temperature, ◦C), Tavg (daily mean temperature,
◦C), Pa (atmosphere pressure, kPa), U (wind speed at 10 m height, m s−1), q (specific humidity, kg kg−1), Prcp (precipitation, mm d−1),
Rl (inward longwave solar radiation, W m−2), Rs (inward shortwave solar radiation, W m−2), Pi (the difference of Prcp and Ei, mm d−1),
Es_eq (equilibrium evaporation, mm d−1), ET_w (evaporation from water body, snow, and ice, mm d−1) and GEE (© Google Earth Engine).

al., 2020), the National Tibetan Plateau Data Center (Ma et
al., 2020), the Heihe Integrated Observatory Network (Liu et
al., 2011, 2018), and the Chinese Terrestrial Ecosystem Flux
Research Network (ChinaFLUX) (Yu et al., 2006). These 26
sites encompass nine major PFTs in China, including two
in evergreen needleleaf forests, one in evergreen broadleaf
forests, one in mixed forests, one in open shrublands, one
in savannas, eight in grasslands, three in wetlands, seven in
croplands, and two in barren sparse vegetation. The observa-
tion variables, including air temperature, relative humidity,
incoming shortwave radiation, latent heat flux, sensible heat
flux, and net ecosystem exchange, were collected from the
interval of 0.5 h or 1 h to prepare for gap filling and flux par-
titioning (Reichstein et al., 2005; Wutzler et al., 2018). Con-
sidering that certain gaps exist in the original half-hourly or
hourly latent heat (LE) and net ecosystem exchange (NEE)

flux data, we employed the marginal distribution sampling
method (Reichstein et al., 2005) to fill these gaps using the
station-observed air temperature, relative humidity, and so-
lar radiation data. Subsequently, we partitioned NEE into
gross carbon uptake (GPP) and respiration of the ecosys-
tem according to the nighttime-based method of Reichstein
et al. (2005). Because any gap filling of EC data may intro-
duce extra uncertainties, we only used the days during which
the percentage of the original observed and good-quality gap-
filled data was no less than 60 % in the present study. Note
that the data of the sites from the ChinaFLUX (i.e., CN-CBF,
CF-HBG_S01, CF-HBG_W01, CF-NMG, CF-QYF, and CF-
YCA) and the FLUXNET2015 (i.e., CN-Cng, CN-Du2, and
CN-HaM) have already been gap-filled by the original data
providers. Therefore, they were used directly in this study.
Note that while energy imbalance does exist at many EC
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sites, correcting such a problem may also introduce more un-
certainties (Foken, 2008). Therefore, we used the observed
LE directly in the present study.

2.4 Basin-scale water-balance-based
evapotranspiration data

The water-balance method is generally regarded as a simple
and accurate approach for calculating land evapotranspira-
tion at the basin scale (Liu et al., 2016). Here we used the
water-balance-based evapotranspiration (ETwb, mm) of 10
major basins across China to evaluate PML-V2 ET estimates
at the basin scale, that is,

ETwb = Prcp−Q−TWSC, (5)

where Prcp, Q, and TWSC (all with a unit of millimeters)
are basin-wide precipitation, runoff, and change in terres-
trial water storage at an annual scale, respectively. Among
them, Prcp and Q are the annual values of 10 major river
basins in China from 2003 to 2013, including the Hai,
Huai, Liao, Northwest, Pearl, Songhua, Southeast, South-
west, Yangtze, and Yellow (Fig. 2), from the National Wa-
ter Resources Bulletin (2021), which is extensively used in
water resource calculation (Miao et al., 2022) and assess-
ment (Yang et al., 2004; Xie et al., 2018). TWSC was quan-
tified using three Gravity Recovery and Climate Experiment
(GRACE) products (Landerer and Swenson, 2012; Landerer,
2021), including the NASA Jet Propulsion Laboratory, the
GeoForschungsZentrum Potsdam, and the Center for Space
Research, which have been available since April 2002 at a
monthly scale. To reduce the uncertainties, this study used
the mean values of these three products. We regarded the dif-
ferences in the terrestrial water storage anomaly between two
consecutive Decembers as the annual TWSC. Note that the
ETwb was only calculated from 2003 to 2013 in the present
study since the December values from GRACE were not
available in 2014.

2.5 Model calibration and model validation

The 11 parameters of the PML-V2 model for each PFT were
calibrated and cross-validated against 26 EC sites by a global
optimization method – the genetic algorithm (GA). The GA
generates a randomly initialized population and then eval-
uates the fitness of solutions according to its objective func-
tion. As generations iterate, the population includes more ap-
propriate solutions, and eventually it will converge (Holland,
1992; Konak et al., 2006). Specifically, we applied the GA
algorithm with a population size of 1000 and number gener-
ations of 50. All EC-observed ET and GPP data within a PFT

are used to minimize the following objective function (Fopt):

Fopt = 2−NSEET−NSEGPP =

N∑
i=1

(ETest−ETobs)2

N∑
i=1

(
ETobs−ETobs

)2

+

N∑
i=1

(GPPest−GPPobs)2

N∑
i=1

(
GPPobs−GPPobs

)2 , (6)

where NSEET and NSEGPP are the Nash–Sutcliffe efficiency
of the daily ET and the daily GPP, respectively. The sub-
scripts est and obs stand for estimated and observed, respec-
tively. In this way, each of the nine PFTs gained a unique set
with 11 calibrated parameter values, illustrated in Table S1
in the Supplement.

The “leave-one-out” cross-validation method was utilized
to evaluate the robustness of the PML-V2 model. For each
PFT, the data from one “ungauged” observation were ex-
cluded from the optimization, while the data from all other
observations at the same PFT were used for model calibra-
tion to obtain the simulated data at the “ungauged” posi-
tion. All nine PFTs were actualized in this way. Note that
the PFT including EBF, MF, OSH, and SAV only has one
ground site (Table 2). Therefore, it is appropriate to divide
the data at each of the four sites into two sub-groups for
cross-validation. The CF-CBF and the CF-HBG_S01 cover-
ing 2003 to 2010 were divided into two sub-groups, each of
which had 4 years: 2003–2006 and 2007–2010, while both
the BNXJL and YJGRHG only covered 1 year and were di-
vided into two sub-groups by a 2 d time step separately. Af-
ter that, the daily estimates in the cross-validation mode were
against the daily observation from the 26 stations to explore
the model transferability from known observations to any lo-
cation.

2.6 Model performance metrics

We assessed the performance of calibration and cross-
validation of PML-V2 (and another seven mainstream ET
and GPP products) against the observed sites or water-
balance basins utilizing the following four metrics:
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Figure 2. Geographical locations of 26 EC flux towers for nine major IGBP PFTs, the main rivers, and the 10 major river basins in China.
Overlain are 20-year mean annual aridity index (AI) values during 2001–2020 using GLDAS-2.1, that is, the ratio of annual precipitation to
Penman potential evapotranspiration. PFTs shown in the legend are ENF (evergreen needleleaf forests), EBF (evergreen broadleaf forests),
MF (mixed forests), OSH (open shrublands), SAV (savannas), GRA (grasslands), WET (permanent wetlands), CRO (croplands), and BSV
(barren sparse vegetation).

NSEX = 1−

N∑
i=1

(Xest−Xobs)2

N∑
i=1

(
Xobs−Xobs

)2 , (7)

RX =

N∑
i=1

(
Xest−Xest

)(
Xobs−Xobs

)
√

N∑
i=1

(
Xest−Xest

)2
×

N∑
i=1

(
Xobs−Xobs

)2 , (8)

RMSEX =

√√√√√ N∑
i=1

(Xest−Xobs)2

N
, (9)

BiasX =

N∑
i=1

(Xest−Xobs)

N ×Xobs
, (10)

where NSE, R, RMSE, and Bias are the Nash–Sutcliffe ef-
ficiency, the correlation coefficient, the root mean square er-

ror, and the ratio of the difference between the estimated and
observed values to the observed average. The subscript X

represents ET or GPP; the subscripts est and obs stand for
estimated and observed, respectively.

3 Results

3.1 Model calibration and model validation

The simulated ET and GPP from the calibrated PML-
V2(China) were first evaluated against EC measurements
of 26 flux sites at a daily scale (Fig. 3). Overall, PML-
V2(China) shows an excellent performance in estimating
daily ET and daily GPP, as evidenced by the NSE (0.75 and
0.82, respectively), R (0.88 and 0.90, respectively), RMSE
(0.69 mm d−1 and 1.71 g C m−2 d−1, respectively), and Bias
(−5.81 % and −2.3 %, respectively). For the mean values of
each site, the simulated daily ET and daily GPP show higher
NSE (≥ 0.87) and R (≥ 0.93) values (Fig. 3).
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Table 2. Details of 26 EC flux towers employed in this study. Note that AP indicates mean annual precipitation and AT refers to mean annual
temperature in its observed period.

Site code Site name IGBP Latitude Longitude AP AT Time References
(◦ E) (◦ N) (mm yr−1) (◦C) coverage

ARCJZ Arou GRA 38.0473 100.4643 521 −2.7 2013–2017 Liu et al. (2018)
BNXJL Xishuangbanna rubber EBF 21.9000 101.2667 1765 22.1 2013 Yu et al. (2021)
CF-CBF ChinaFLUX Changbai forest MF 42.4025 128.0958 608 4.3 2003–2010 J.-H. Zhang et al. (2006)
CF-HBG_S01 ChinaFLUX Haibei grassland OSH 37.6653 101.3311 610 −5.9 2003–2010 Hui et al. (2021)
CF-HBG_W01 ChinaFLUX Haibei wetland WET 37.6086 101.3269 616 −3.9 2004–2006 F. Zhang et al. (2020)
CF-NMG ChinaFLUX Neimengu grassland GRA 43.3233 116.4036 387 1.2 2004 Hao et al. (2020)
CF-QYF ChinaFLUX Qianyanzhou forest ENF 26.7414 115.0581 1490 19.3 2004–2006 Wen et al. (2006)
CF-YCA ChinaFLUX Yucheng CRO 36.8290 116.5702 602 14.8 2006–2007 Zhao et al. (2021)
CN-Cng Changling GRA 44.5934 123.5092 364 6.5 2007–2010 Dong et al. (2011)
CN-Du2 Duolun grassland (D01) GRA 42.0467 116.2836 388 3.0 2006–2008 Chen et al. (2009)
CN-HaM Haibei Alpine Tibet site GRA 37.6975 101.2733 534 −4.0 2002–2004 Kato et al. (2006)
DMCJZ Daman CRO 38.8555 100.3722 163 9.2 2017 Liu et al. (2018)
DSLZ Dashalong WET 38.8399 98.9406 346 −8.3 2015–2018 Liu et al. (2018)
DXZ Daxing CRO 39.6213 116.4271 547 12.7 2010 Liu et al. (2013)
DYKGTSLZ Dayekouguantan forest ENF 38.5337 100.2502 228 0.2 2010–2011 Li et al. (2009)
GTZ Guantao CRO 36.5150 115.1274 433 14.0 2008 Liu et al. (2013)
HLZ Huailai CRO 40.3491 115.7880 377 10.2 2014 Liu et al. (2013)
HZZHMZ Huazhaizi desert steppe BSV 38.7659 100.3201 167 8.7 2017 Liu et al. (2018)
MYZ Miyun CRO 40.6308 117.3233 584 9.0 2008 Liu et al. (2013)
QZ-BJ Tibetan Plateau BJ GRA 31.3688 91.8988 460 0.2 2011–2013 Ma et al. (2020)
QZ-NAMORS Tibetan Plateau NAMORS GRA 30.7730 90.9632 405 −0.3 2008–2009 Ma et al. (2020)
QZ-QOMS Tibetan Plateau QOMS BSV 28.3607 86.9491 199 1.2 2015 Ma et al. (2020)
YJGRHG Yuanjiang dry–hot valley SAV 101.2667 21.9000 876 20.2 2014 Yang et al. (2021)
YKGQLZZ Yingke CRO 38.8569 100.4103 85 8.3 2011 Liu et al. (2018)
YKZ Yakou GRA 38.0142 100.2421 484 −1.2 2016–2018 Liu et al. (2018)
ZYSDZ Zhangye wetland WET 38.9751 100.4464 146 8.8 2013–2018 Liu et al. (2018)

PML-V2(China) is only slightly degraded from calibration
to cross-validation, indicated by a slightly declined perfor-
mance in ET and GPP (Fig. 3). For daily ET, the NSE and
R values decreased by 0.06 and 0.04, respectively, from the
calibration mode to the cross-validation mode. Correspond-
ingly, the RMSE and Bias of ET in the cross-validation mode
increase by 0.08 mm d−1 and 3.5 %, respectively. For daily
GPP, the NSE and R values in the cross-validation mode re-
duce by 0.11 and 0.06, respectively; the RMSE and Bias in-
crease by 0.45 g C m−2 d−1 and 1.79 %, respectively. A sim-
ilarly slight degradation is applied to their site means. These
results demonstrate that PML-V2(China) is robust for esti-
mating daily ET and daily GPP across large regions and suit-
able for generating good-quality daily ET and daily GPP data
for China.

Figure 4 further summarizes PML-V2(China) perfor-
mance at 26 flux sites across nine PFTs. The estimates
of ET and GPP from the model calibration show high
consistency with the EC-observed values in all terrestrial
biomes. For daily ET (Fig. 4a), the NSE values vary in
the range 0.36∼ 0.82, the RMSE 0.39 ∼ 0.88 mm d−1, and
Bias −10.09 % ∼−0.21 %. For daily GPP (Fig. 4b), the
ranges of statistical metrics become 0.41–0.91 for NSE, 0.3–
3.19 g C m−2 d−1 for RMSE, and−10.52 %–3.26 % for Bias.
In terms of cross-validation, nine PFTs all showed slight de-
clines in the statistical metrics when compared to those in

the calibration mode. For daily ET, the declines in NSE val-
ues are less than 0.14 in most PFTs except barren sparse
vegetation (BSV) and ENF, whose NSE values decreased by
0.36 and 0.33, respectively. As expected, RMSE values all
increased to some extent in all PFTs (ranging from 0.002
to 0.305 mm d−1) when compared with those in calibration
mode. The Bias values in the cross-validation mode were al-
most identical to those in the calibration mode for most PFTs
except WET and ENF, of which the absolute value of Bias in-
creased by 10.59 % and 17.42 %, respectively (Fig. 4a). From
calibration to cross-validation, the degradation of BSV, ENF,
and WET is more serious than that for the remaining PFTs,
which is mainly caused by the small samples (2, 2, and 3, re-
spectively) for ET estimates. Regarding daily GPP, the NSE
values all degraded by less than 0.04 for most PFTs except
BSV, GRA, and WET, where there exists 0.21–0.32 NSE
degradation. In the meantime, the declines in R values are
all within 0.19. Regarding RMSE, the increases are particu-
larly marginal for most PFTs except WET, with an increase
of 1.58 g C m−2 d−1 (Fig. 4b). The above PFT tests suggest
that the present PML-V2(China), with parameter values be-
ing calibrated against 26 EC flux stations, does perform sat-
isfactorily in estimating both ET and GPP across different
PFTs in China.

To investigate the model performance at each EC site, this
study also compares the variations in daily ET and GPP be-
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Figure 3. Scatter plots between the observed ET and GPP against PML-V2(China) simulations in the calibration and cross-validation modes:
daily comparisons in the left panels and site mean comparisons in the right panels.
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Figure 4. Comparison of ET and GPP between PML-V2(China) model calibration and validation across 10 PFTs.

tween PML-V2(China) in calibration mode and the EC ob-
servations (Figs. 5 and 6 and Table S2). Overall, the esti-
mates from PML-V2(China) show a similar amplitude and
phase to the EC observations, indicating that it performs well
in capturing the seasonal phase of ET and GPP at most flux
sites. From Fig. 5, the PML-V2(China) ET reveals a single
peak in each annual cycle for most flux sites, except those
with double-cropping systems such as the CF-YCA, DXZ,
and GTZ cropland sites. In particular, the ET values are con-
sistent with observed data at the desert site (e.g., HZZHMZ
and QZ-NAMORS), with NSE ranging from 0.41 to 0.48,
indicating that the model performs well in the sparse vegeta-
tion area. The measurements fluctuate higher than the PML-
V2(China) ET in peak areas for most sites. For the site mean
ET, the difference values between PML-V2(China) and EC
observations range from−0.46 to 0.21, with the minimum at
QZ-NAMORS and the maximum at CN-HaM.

For daily GPP, the model also performs well in depict-
ing the seasonal variation. However, at certain stations (e.g.,
DMCJZ) the peak GPP values within a year appear to
be underestimated. In terms of the cropland flux sites, the
GPP also shows double peaks within a year because of the
double-cropping system (e.g., winter wheat and maize ro-
tation), which is similar to ET. This is especially apparent
for the GTZ, DXZ, and CF-YCA flux sites located in the
North China Plain. For the site mean GPP, the discrepan-
cies between the model and EC observations mainly range
from −0.66 to 0.96 g C m−2 d−1 for most flux sites except
CF-YCA, MYZ, and DXZ, where the differences exceed
1.3 g C m−2 d−1.

3.2 Comparing with other products

3.2.1 Comparisons at a plot scale using EC-observed
data

To explore whether the ET and GPP of PML-V2(China)
simulations are more accurate than the previous products,
we also evaluated ET and GPP accuracy from its global
version, MOD16A2, MOD17A2H, and another five widely
available ET or GPP products against EC observations from
the 26 sites at a daily or 8 d resolution. In this study, PML-
V2(China) uses its cross-validated simulations to compare
with other products instead of the calibration results to avoid
introducing a priori knowledge. Additionally, to compare at
a consistent time resolution, PML-V2(China) estimates in
cross-validation mode need to be upscaled to an 8 d aver-
age or remain at a daily scale, depending on the temporal
resolution of the comparison products. Specifically, PML-
V2(China) is compared with GLEAM and SEBAL at the
daily scale compared with PML-V2(Global), MOD16A2,
MOD17A2H, EC-LUE, and VPM at the 8 d scale.

Table 3 provides a direct comparison of model perfor-
mances among varieties of ET or GPP products against
observations overall from 26 ground stations. It is evi-
dent that PML-V2(China) excels over other state-of-the-
art ET or GPP products, presented by NSE being 0.12–
7.76 higher for ET and 0.07–0.79 higher for GPP, R be-
ing 0.07–0.68 higher for ET and 0.0–0.51 higher for GPP,
and RMSE being 0.15–3.62 mm d−1 lower for ET and 0.24–
1.98 g C m−2 d−1 lower for GPP. Specifically, at a daily
scale, PML-V2(China) ET exhibits the highest NSE value
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Figure 5. The daily ET simulated by PML-V2(China) in calibration mode and the observed daily ET variation in time series from 26 EC
sites (see Fig. 2) across China. “ALL” represents the site mean value for each EC site.

of 0.66, followed by GLEAM (0.44) and SEBAL (−7.10).
PML-V2(China) daily ET achieves the highest R (0.84), fol-
lowed by GLEAM (0.69) and SEBAL (0.16); correspond-
ingly it obtains the smallest RMSE (0.33 mm d−1), followed
by GLEAM (1.04 mm d−1) and SEBAL (3.94 mm d−1). SE-
BAL is the worst performer, although its Bias is closest to
0 (Table 3) because it is far away from the observed values,
significantly yielding a Bias value of over 50 % or less than
−50 % among the five PFTs (Fig. 7). At the 8 d scale, PML-
V2(China) outperforms PML-V2(Global) and MOD16A2
for estimating ET, with the highest values of NSE (0.74) and

R (0.87) and the lowest RMSE (0.66 mm d−1). Moreover,
PML-V2(China) also has the best performance in estimating
8-daily GPP, followed by PML-V2(Global), MOD17A2H,
VPM, and EC-LUE, indicated by three statistics: NSE, R,

and RMSE. In summary, PML-V2(China) performs well
when compared with other mainstream ET or GPP products
in China.

Figure 7 displays the performance comparison of four ET
products with PML-V2(China) under nine PFTs. The sim-
ulated ET by PML-V2(China) has greater NSE and R and
fewer RMSE values than the other four products in most
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Figure 6. The daily GPP simulated by PML-V2(China) in calibration mode and the observed daily GPP variation in time series from 26 EC
(see Fig. 2) sites over China. “ALL” represents the site mean value for each EC site.

PFTs, especially in EBF, SAV, and WET. All the mod-
els have poor performance, with NSE being lower than
0 except for PML-V2(China) in EBF and SAV. However,
PML-V2(China) is not the best in both ENF and BSV. In
BSV, most models perform poorly, rendered by NSE be-
ing lower than 0 except for GLEAM (0.50) and PML-
V2(China) (0.07 for the daily scale, 0.11 for the 8 d scale).
Only SEBAL achieves worse results than PML-V2(China)
in ENF. As shown in Fig. 8, PML-V2(China) performs sig-
nificantly better than other advanced products in simulating
the GPP of CRO, MF, ENF, EBF, SAV, and BSV, produc-

ing higher NSE, R, and lower RMSE and Bias. While PML-
V2(China) ranked second in GRA (following MOD17A2H),
OSH (following PML-V2(Global)), and WET (following
PML-V2(Global)). Synthetically, PML-V2(China) success-
fully captures the sites’ seasonality in most PFTs compared
to the high-resolution ET/GPP datasets currently available.

3.2.2 Comparisons at the basin scale using ETwb

In addition to testing the model at a plot scale, Fig. 9a–e
presents the ET validations from PML-V2(China) and four
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Figure 7. Statistical indicators of PML-V2(China) and other models for estimating ET at each PFT. Open and solid dots represent PML-
V2(China)-estimated ET in cross-validation mode and other models. For the daily temporal resolution of GLEAM and SEBAL, PML-
V2(China) is also daily scale, while for 8 d resolution of PML-V2(Global) and MOD16A2, the referred PML-V2(China) is upscaled to 8 d.
Note that “(+)” indicates that the model’s simulation statistics dot is more than the upper bound, while “(–)” indicates that the model’s
simulation statistics dot is less than the lower bound.

ET products based on RS against the annual ETwb in the
10 major river basins of China during 2003–2013. It il-
lustrates that PML-V2(China) shows the best performance
among them, as indicated by the highest NSE (0.82) and
lowest RMSE (69.59 mm yr−1) and Bias (6.28 %) values.
This is closely followed by GLEAM and PML-V2(global)
with NSE values of 0.36 and 0.26, respectively. However,
MOD16A2 and SEBAL tend to overestimate ET in the ma-
jority of basins, with much smaller NSE values of−0.21 and
0.02, respectively, which are consistent with the performance
evaluations using the EC observation shown in Fig. 7. The
above basin-wide evaluations, together with the plot-scale
validations against EC observation data, demonstrate PML-

V2(China) overall performing best among the tested products
selected in this study.

Figure 9f illustrates an inter-basin comparison of the 11-
year mean ET of 2003–2013 within the five ET products.
PML-V2(China) performs well in most basins (Biases within
±15 %) except for the Northwest and Southwest river basins,
where ET is overestimated by 24.96 % and 61.57 %, respec-
tively. Even so, PML-V2(China) performs best in the South-
east River Basin, with a Bias of −3.80 %, which is still bet-
ter than the five ET products selected herewith, Bias ranging
from 15.93 % to 62.42 %. Although PML-V2(China) over-
estimates ET in the Northwest basin to a large extent, it per-

https://doi.org/10.5194/essd-14-5463-2022 Earth Syst. Sci. Data, 14, 5463–5488, 2022



5476 S. He et al.: Daily and 500 m coupled evapotranspiration and gross primary production

Table 3. Statistical indicators of PML-V2(China) and other models for simulating ET and GPP at 26 EC flux towers. NSE and R values are
unitless. The unit of RMSE for ET is mm d−1, while it is g C m−2 d−1 for GPP. The unit of Bias is %.

Scale Variable Models NSE R RMSE Bias

Daily ET PML-V2(China) 0.66 0.84 0.33 −7.97
GLEAM 0.44 0.69 1.04 −14.45
SEBAL −7.10 0.16 3.95 5.31

8 d ET PML-V2(China) 0.74 0.87 0.66 −11.54
PML-V2(Global) 0.62 0.80 0.81 −5.05
MOD16A2 0.37 0.63 1.07 −10.90

Daily GPP PML-V2(China) 0.76 0.87 0.87 −0.82

8 d GPP PML-V2(China) 0.75 0.87 1.93 −6.51
PML-V2(Global) 0.68 0.82 2.17 −1.74
MOD17A2H 0.49 0.78 2.74 −38.79
EC-LUE −0.04 0.35 3.91 −41.91
VPM 0.21 0.60 3.41 −8.21

forms best relative to its global version (84.88 %) and another
ET product, MOD16A2 (152.70 %).

3.3 Spatial patterns and annual variations of ET, Ec, Ei,
Es, GPP, and WUE

Figure 10 illustrates the spatial distribution of the multi-
year (2001–2018) mean annual ET and three components
(i.e., Ec, Ei, and Es) from PML-V2(China) across China.
In general, the ET shows an increasing gradient from the
northwest to the southeast (Fig. 10a). High annual ET
(> 900 mm yr−1) is mainly located in the water bodies,
Hainan, and western Taiwan, while most parts of the North-
west River Basin exist with low annual ET (< 100 mm yr−1),
especially in western Inner Mongolia and Gansu and south-
ern Xinjiang. Annual ET experiences a statistically insignif-
icant increasing trend during 2001–2018 with a tendency of
0.43 mm yr−2 (p > 0.05). On the whole, the mean annual ET
over China is 392.12± 10.67 mm yr−1 (mean± standard de-
viation) over the last 18 years. For the three components,
Ec and Ei products display a similar spatial distribution
to annual ET, while high Es values (> 400 mm yr−1) are
mainly scattered in higher soil moisture content areas, in-
cluding the Tibet Plateau, Pearl River Delta, and Yangtze
River Delta (Fig. 10b–d). High Ec (> 600 mm yr−1) and Ei
(> 80 mm yr−1) values overall occur in the tropical and sub-
tropical forests (e.g., Southwest River and Pearl River basins)
but low Ec (< 50 mm yr−1) and Ei (< 5 mm yr−1) values in
the Northwest River Basin except for the Tianshan, Altai, and
Qilian Mountains. In particular, low Ei values also appear in
the cropland areas, such as the Northeast Plain, North China
Plain, and Sichuan Basin (Fig. 10c). For annual variation
over China, Ec and Ei increase significantly during 2001–
2018 with rates of 0.91 and 0.16 mm yr−2 (p < 0.001), re-
spectively. However, annual Es shows a declining trend with
an insignificant rate of −0.69 mm yr−2 (p < 0.05).

The mean annual GPP shows similar spatial patterns com-
pared to the mean annual ET, as indicated by Figs. 10a and
11a. A high annual GPP (> 2000 g C m−2 yr−1) mainly oc-
curs in the tropical and subtropical forests and the North
China Plain, where there exists a double-cropping sys-
tem but low annual GPP (< 100 g C m−2 yr−1) in the arid
zones such as the Northwest River Basin. On average, the
multiyear GPP over China is 721.62± 51.83 g C m−2 yr−1,
and interannual change displays a steady rising trend with
a rate of 8.99 g C m−2 yr−2 (p < 0.001) since 2001. Us-
ing the coupled estimation of the PML-V2(China) model,
we study WUE (GPP divided by ET) during 2001–2018
across China (Fig. 11b). This result indicates the high an-
nual WUE (> 3 g C mm−1 H2O) occurring in the forests and
cropland, particularly in Northeast China and the North
China Plain. The annual variation of WUE is similar to
that of GPP, with a significant increasing trend (slope =
0.02 g C mm−1 H2O yr−1, p < 0.001).

4 Discussion

4.1 Magnitude and trend in annual ET and GPP over
China

For annual ET over China, the multiyear (2001–2018) mean
annual ET from PML-V2(China) is 392.12± 10.67 mm yr−1

(Fig. 10a). This result is overall consistent with the country-
wide averaged annual ET estimated by the machine learning
method (Yin et al., 2021: 397.65 mm yr−1 for 2000–2018)
and land surface models (N. Ma et al., 2019: 395.34 mm yr−1

for 2001–2012) and slightly higher than MOD16A2 ET
at about 359.61± 59.52 mm yr−1 for 2001–2018 (Cheng et
al., 2021). However, they are all less than the annual ET
of about 482.27± 192.31 mm yr−1 from SEBAL for 2001–
2018 (Cheng et al., 2021). Furthermore, previous studies by
Ren et al. (2015) and G. Q. Wang et al. (2012) show that the
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Figure 8. Statistical indicators of PML-V2(China) and other models for estimating GPP at each PFT. Open and solid dots represent PML-
V2(China)-estimated GPP in cross-validation mode and other models. PML-V2(China) is upscaled to 8 d to compare with the 8 d resolution
of PML-V2(Global), MOD17A2H, EC-LUE, and VPM. Note that “(+)” indicates that the model’s simulation statistics dot is more than the
upper bound, while “(–)” indicates that the model’s simulation statistics dot is less than the lower bound.

long-term mean precipitation and runoff in China are about
720 mm yr−1 and 280 mm yr−1, respectively. Hence, it is be-
lieved that an annual ET of less than 440 mm could be rea-
sonable in China (N. Ma et al., 2019). The annual mean GPP
over China from our results is 721.62± 51.83 g C m−2 yr−1

during 2001–2018 (Fig. 11a), which is lower than that of
Jia et al. (2020) (771 g C m−2 yr−1) and higher than those
of Yao et al. (2018) and J. Ma et al. (2019) (690 and
710 g C m−2 yr−1, respectively). These differences may be
associated with the distinctions in the time window and data
sources (Jia et al., 2020).

The annual ET displays a statistically insignificant increas-
ing trend from 2001 to 2018, which is consistent with the
calculated ET using the Budyko equation (Feng et al., 2018;

Su et al., 2022). In terms of annual GPP, we found that there
is a significant (p < 0.001) increasing trend with a rate of
8.99 g C m−2 yr−2 during 2001–2018, in line with some other
studies (J. Ma et al., 2019, 2018; Yao et al., 2018). The most
likely reason for the remarkable rise in GPP is the effect of
ecological restoration projects in China (Tong et al., 2018).
In fact, a large number of ecological restoration projects have
been conducted since the 1990s, such as the Grain for Green
Project (Cao et al., 2009). These findings also confirmed that
a significant increase in vegetation growth occurred in China
over the past years, which agreed well with Ma et al. (2018).
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Figure 9. Annual evapotranspiration (ET) of (a) PML-V2(China), (b) PML-V2(Global), (c) MOD16A2, (d) GLEAM, and (e) SEBAL
plotted against the water-balanced derived ET (ETwb) values for 10 major river basins over China during 2003–2013. The boxplot in panel
(f) shows a multiyear mean of the five ET products above per river basin.

4.2 Advantages of this new dataset

The multiscale testing using EC observations and water bal-
ance showed that the accuracy in ET and GPP by the present
PML-V2(China) is better than the global product of PML-V2
and other mainstream ET or GPP models (Table 3). The rea-
sons may be twofold. The first is that the water–carbon cou-
pled process is particularly important for estimating ET and
GPP since the water and carbon processes are highly coupled
by the stomatal aperture at the leaf level. This result was also
supported by Xiao et al. (2013) and Y. Zhang et al. (2019)
in their recent studies. Second, this study employed 26 EC
observations to calibrate the PML-V2 in China, which shows
better accuracy than the previous global-scale ET and GPP
estimates that were obtained using few EC observations to
constrain the parameters. This indicates that more local ob-
servations will facilitate the improvement of ET and GPP es-
timates at regional and national scales. In fact, although the
EC sites of MOD16A2 (72 EC sites), GLEAM (91 EC sites),
and PML-V2(Global) (95 EC sites) are more than in this
study, there are only 0, 8, and 8 sites in China, respectively
(Table 1). In particular, the SEBAL model only used eight EC
sites for three PFTs (i.e., forests, cropland, and grassland).

In addition to the advantages of the overall accuracy in ET
and GPP in the present study, PML-V2(China) showed its
strong ability to reveal the characteristics of the water con-
sumption from the croplands that have a double-cropping
system. The GTZ in Hebei, DXZ in Beijing, and CF-YCA
in Shandong are the only three observed sites with winter
wheat–summer maize rotation cropping systems. We com-
pared the intra-annual variation of the simulated ET and
GPP between PML-V2(China) and other products against
the EC-observed values at the three cropland sites (Fig. 12).
In theory, when the winter wheat is harvested, the ET or
GPP should decline to their valley values in June, which
often occur between the two peaks (i.e., the reproductive
growth stage of winter wheat and summer maize, respec-
tively) within a given year. With this in mind, it can be seen
that PML-V2(China) has improved its ability when com-
pared to its global version, as has been indicated by its bet-
ter performance in capturing the time when the lowest ET
and GPP values emerged. This is mainly because an im-
proved weighted Whittaker smoother was carried out to get
better quality of LAI, as described in Sect. 2.2.1. While
GLEAM is also able to detect the time when the valley
values appeared, it underestimates ET evidently during the

Earth Syst. Sci. Data, 14, 5463–5488, 2022 https://doi.org/10.5194/essd-14-5463-2022



S. He et al.: Daily and 500 m coupled evapotranspiration and gross primary production 5479

Figure 10. Spatial pattern of mean annual ET, Ec, Ei, Es, and their annual variation during 2001–2018. In all the insets, the shaded areas rep-
resent the 95 % confidence interval based on the linear regression modeling. The number in the parentheses of each inset is mean± standard
deviation of the annual simulated variables during the 18 years.

Figure 11. Spatial pattern of mean annual GPP, WUE and their annual variation during 2001–2018. In all the insets, the shaded areas repre-
sent the 95 % confidence interval based on the linear regression modeling. The number in the parentheses of each inset is mean± standard
deviation of the annual simulated variables during the 18 years.
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wheat growing season. In terms of SEBAL and MOD16A2,
both have much poorer performances in detecting such intra-
annual variations in ET. Regarding the other GPP models,
only MOD17A2H can catch the time when the valley values
appear. However, it substantially underestimates GPP in both
the winter wheat and summer maize growing seasons. More-
over, this study also estimated the ability of the simulated ET
to identify the crop phenology at the regional scale (Fig. S1).
We extracted the cropland with peaks and identified the dates
of peaks appearing within a year at each pixel by a faster
peak detection algorithm (Liu et al., 2020). Taking the typ-
ical double-cropping system as an example, we quantified
the cropping intensity in croplands (Fig. S1a1) and identified
the dates of the first peak and the second peak appearing in 1
year (Fig. S1a2, a3). To verify the reliability of the results, we
mapped the double-cropping cropland areas of winter wheat
and summer maize rotations (Fig. S1b1) and the heading date
distribution of winter wheat and summer maize (Fig. S1b2,
b3) in 2015 based on the crop phenological dataset (Luo et
al., 2020). The croplands with double cropping show similar
spatial patterns, as indicated by Fig. S1a1 and b1. In partic-
ular, we also compared the first ET peak date (Fig. S1a2)
with the heading date of winter wheat (Fig. S1b2) in 2015.
The first ET peak date (i.e., day of year – DOY) is mainly
between DOY 120 and 150, occurring after the heading date
of winter wheat at about DOY 100 to 130. During the entire
growth period of winter wheat, the ET intensity was highest
from the heading date to the filling date, although the critical
periods of water demand for winter wheat are the “jointing
date-heading date-filling date” (He et al., 2022). This is con-
sistent with our result that the ET peak appears slightly later
than the crop heading date. Similarly, the heading date of
summer maize also occurs earlier than the second ET peak
date (Fig. S1a3, b3), which further proves the ability of the
simulated ET in evaluating crop phenology.

4.3 Implications of PML-V2(China)

Based on the substantial advantages discussed above, PML-
V2(China) has great implications and application prospects.
For instance, daily outputs from PML-V2(China) can be bet-
ter used by the agricultural and water sectors for operational
applications. Timely access to daily data at the regional or na-
tional scale helps the Ministry of Agriculture and Water Re-
sources to develop better policies. Indeed, there is a remark-
able relationship between soil water content and ET (Graf et
al., 2014; Brust et al., 2021), so getting daily ET informa-
tion accurately is of great significance for soil water deple-
tion assessment, irrigation system design, and water resource
management in agricultural areas, such as in the North China
Plain. On the other hand, this dataset has better simulations of
carbon consequences and water use efficiency, which is im-
portant for carbon–neutron policy (Yang et al., 2022). Specif-
ically, for 2001–2018, the annual GPP and water use effi-
ciency experienced a significant increase (8.99 g C m−2 yr−2

and 0.02 g C mm−1 H2O yr−1, respectively), but annual ET
showed a non-significant increase (0.43 mm yr−2). This in-
dicates that vegetation in China exhibits a huge potential
for carbon sequestration with little cost in water resources,
which plays an important role in the global carbon cycle.

4.4 Uncertainties

4.4.1 Eddy covariance method and water-balance
formula

Although PML-V2(China) showed relatively good perfor-
mance when compared to the EC sites and water-balance-
based evapotranspiration (ETwb), there exist several uncer-
tainties related to the observed data (i.e., flux sites and ETwb).
First, the EC technique, considered a standard way to mea-
sure surface fluxes (Aubinet et al., 1999; Liu et al., 2011;
Baldocchi, 2014), meets some issues and includes correc-
tions when processing the turbulence data from the energy
non-closure problem. The corrections, such as the spike de-
tection, lag correction of H2O and CO2 based on the verti-
cal wind, coordinating rotation, corrections for density fluc-
tuation, and frequency response correction, had been pre-
processed before the investigators shared data. Nevertheless,
there is evidence that diverse data processing designs may
lead to errors of 10 %–15 % (Mauder et al., 2007). In addi-
tion, systematic bias in the device, the loss from the contri-
bution of low-frequency eddies to energy transmission, and
the ability to capture larger eddies and the secondary circula-
tions could cause the energy-imbalance problem (Liu et al.,
2011). Hence, there are usually two schemes to deal with
the energy non-closure issue for EC users, that is, to perform
energy closure correction (Cheng et al., 2021) or to main-
tain the original four-component data including latent heat
(LE), sensible heat (H ), soil heat flux (G), and net radiation
(Rn) (Y. Zhang et al., 2019; Ma and Zhang, 2022). We chose
the second method in this study, considering that (i) forc-
ing energy closure will introduce new errors artificially and
(ii) most Chinese EC observation towers lack G and Rn. The
observed ET calculated from the latent heat flux of the site
without energy closure correction will be slightly less than
the real value, resulting in a smaller ET simulated by the
model determined by calibration using the sites. This phe-
nomenon is not fully reflected in comparisons with the basin
ET based on the water-balance calculation that only in the
Pearl and Southeast river basins does PML-V2(China) un-
derestimate multiyear mean ET (Fig. 9f), because the ETwb
used for assessing the simulation performance of models also
needs to be explored in its accuracy.

Second, the inconsistency of the grid cell and EC footprint
could also result in uncertainty when compared rudely to the
measurements. Generally, the EC towers have a footprint of
100–1000 m2, which is usually decided by the tower height
and heterogeneity of the underlying surface (Liu et al., 2016;
Xu et al., 2017). For example, the footprint of the forest sites
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Figure 12. The intra-annual variation of (a) ET at three crop-rotation stations between those observed and simulated by PML-V2(China) in
validation mode, PML-V2(Global), SEBAL, GLEAM, and MOD16A2, respectively; (b) GPP at three crop-rotation stations between those
observed and simulated by PML-V2(China) in validation mode, PML-V2(Global), EC-LUE, VPM, and MOD17A2H, respectively. The blue
dotted lines above pass through the lowest values between the two peaks of the observed ET or GPP per year. Note that all variables are
averages every 8 d, although units are per day.

is larger than the grassland and wetland sites (Chen et al.,
2012). In this study, the PML-V2(China) model is first cali-
brated at a 500 m grid cell, avoiding the inconsistency issue
to some extent. However, there still exists a mismatch be-
tween the grid cell center and EC sites. In this regard, higher
spatial resolution products or additional ground observations

at relevant scales would be beneficial for the cross-validation
of the modeling grid cell (N. Ma et al., 2019). Note also
that the limited flux sites for some PFTs may introduce ex-
tra uncertainties for model parameters since only one site
was available for the OSH, SAV, EBF, and MF in this study.
In fact, we artificially construct multiple site samples in the

https://doi.org/10.5194/essd-14-5463-2022 Earth Syst. Sci. Data, 14, 5463–5488, 2022



5482 S. He et al.: Daily and 500 m coupled evapotranspiration and gross primary production

above PFT sites, utilizing the characteristics of the long time
series of these sites. Nevertheless, the terrestrial biome of the
sole flux site may not be typical in other climate zones for
the same PFTs (Cheng et al., 2021). Therefore, more flux
sites for the same PFTs are necessary to calibrate the model.

Third, ET derived from water balance over China was in-
vested as a reference at the basin scale, although the re-
sults may be affected by some sources of uncertainty. For
instance, the applicability of the water balance relies on its
formula composition. In this paper, the water storage change
(in Eq. 5) from GRACE was included for the purpose of re-
ducing the uncertainties in estimating annual ETwb. Those
studies not using TWSC in ETwb may not explain the de-
creasing groundwater such as in the Hai River Basin due to
the human water extraction, which is not conducive to the
credibility of the verification results (Cheng et al., 2021). In
addition, the precision of its input data also affects the reli-
ability of ETwb (Mao and Wang, 2017). Precipitation, as the
main source of ET, impacts ETwb to varying extents. Nev-
ertheless, precipitation data are derived from observations of
the field rain gauge network, and their usability relies on the
intensive and high-quality ground observations, which makes
the Prcp estimates from statistics of stations worse in the less-
populated remote regions or areas with highly various topog-
raphy, particularly in western China (Immerzeel et al., 2015;
Tang et al., 2016; Zhong et al., 2019). Zhong et al. (2019)
evaluated three precipitation products in China and found
that there was a slight overestimation in the west of China
and an obvious underestimation in the western Tibet Plateau.
Accordingly, it could be stated that ETwb was overestimated
in the Pearl River Basin and the Southeast River Basin and
underestimated in the Southwest River Basin using Eq. (7).

4.4.2 Input data

While the daily ET and GPP of the PML-V2(China) product
(in the calibration mode) simulated well against 26 flux sites
overall (Fig. 3) and in most PFTs (Fig. 4), PML-V2(China)
in calibration is degraded compared to its cross-validation
(Fig. 4), such as in GRA. In this study, we got one parame-
ter set for the GRA type by employing eight sites, including
the sparse grassland (QZ-BJ) and the dense grassland (QZ-
NAMORS). Although it may be appropriate to use diverse
parameter values for estimating ET and GPP by further divid-
ing the grassland type into finer land types, this comes at the
expense of ignoring the possible interannual changes in land
types because of few land cover maps with fine classifica-
tions and annual resolutions simultaneously (Ma and Zhang,
2022).

PML-V2(China) mainly used the remote sensing and me-
teorological data (e.g., MODIS, CMFD, GLDAS-2.1, and
ERA5) as the inputs (see Sect. 2.2). However, there are
still some uncertainties in these data. For example, we used
the land cover datasets (MCD12Q1.006) as the PFT data
across China. However, there exist misclassification issues

for MCD12Q1 because of spectral confusion (e.g., savannas
and grasslands) and coarse resolution (e.g., the mixed pixel
of cropland and natural vegetation) (Y. Zhang et al., 2019;
Liang et al., 2015; Adzhar et al., 2022). Moreover, LAI is a
critical variable describing vegetation growth, and its tempo-
ral changes affect stomatal conductance and further affect the
transpiration rate from the vegetation canopy. Using LAI, the
PML-V2(China) model simulated Ec and Ei components at
the canopy scale. To avoid noise issues caused by clouds,
shadows, snow, and so on, MODIS LAI in this study has
been smoothed by the weighted Whittaker smoother which
can deal with underestimation and inefficiency issues (Kong
et al., 2019). However, there are still underestimates in the
sparse vegetation areas. This may explain why the ET and
GPP estimates are poor in BSV (Figs. 7 and 8).

Additionally, downscaling uncertainties could also be in-
troduced by the bilinear interpolation method which has been
applied to minimize the footprint impact of coarse meteoro-
logical inputs, such as CMFD (Fig. 1). This approach de-
pends only on nearby grid cells to downscale, which could
neglect the other relative supports. For instance, precipita-
tion is not only related to the surrounding precipitation, but
also location and terrain (e.g., elevation and aspect) (Yue et
al., 2020). Chao et al. (2018) found that gridded precipitation
products in the high-altitude regions are far below what is in-
versely inferred by glacier mass balances. Consequently, the
geographically weighted regression method coupled with a
weighting function could work well to interpolate meteoro-
logical data (Chao et al., 2018).

5 Data availability

The product named PML-V2(China) with daily and 500 m
resolutions from 26 February 2000 to 31 December 2020 is
freely available at the National Tibetan Plateau Data Center
(https://doi.org/10.11888/Terre.tpdc.272389, Zhang and He,
2022).

6 Code availability

The core source code of PML-V2(China) is available on re-
quest.

7 Conclusions

This study developed a daily, 500 m ET and GPP data prod-
uct (PML-V2(China)) using the locally calibrated water–
carbon coupled model, PML-V2. The model has been well-
calibrated against observations at 26 flux sites across nine
plant functional types, and it performs satisfactorily in the
cross-validation mode. More importantly, the plot- and basin-
scale evaluations suggest that the newly developed product
outperforms not only the global version of PML-V2, but
also other mainstream RS-based ET and/or GPP products.
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With such a new product, we investigated spatial patterns and
trends in ET and its components (Ec, Ei, Es), GPP, and WUE
from 2001 to 2018 across China. In short, the present PML-
V2(China) product has the following advantages. (i) The wa-
ter output is tightly constrained by carbon flux. (ii) It has
high spatial and temporal resolutions simultaneously. (iii) It
obtains the improved accuracy in ET and GPP across dif-
ferent plant functional types because of the optimal param-
eter sets for China by exploiting 26 EC sites. (iv) It shows
the better ability to reveal the ET and GPP for the croplands
with the double-cropping system. In summary, we provide a
novel daily and 500 m resolution ET and GPP product across
China, which can be used by research communities and var-
ious water and ecological departments for operational appli-
cations.
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