Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5387-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5387-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Location, biophysical and agronomic parameters for croplands in northern Ghana
Jose Luis Gómez-Dans
CORRESPONDING AUTHOR
National Centre for Earth Observation, Leicester, UK
Dept. of Geography, University College London, London, UK
Philip Edward Lewis
National Centre for Earth Observation, Leicester, UK
Dept. of Geography, University College London, London, UK
Feng Yin
National Centre for Earth Observation, Leicester, UK
Dept. of Geography, University College London, London, UK
Kofi Asare
Remote Sensing, GIS & Climate Center, Ghana Space Science Technology Institute, Accra, Ghana
Patrick Lamptey
Remote Sensing, GIS & Climate Center, Ghana Space Science Technology Institute, Accra, Ghana
Kenneth Kobina Yedu Aidoo
Remote Sensing, GIS & Climate Center, Ghana Space Science Technology Institute, Accra, Ghana
Dilys Sefakor MacCarthy
Soil and Irrigation Research Centre, University of Ghana, Accra,
Ghana
Hongyuan Ma
Dept. of Geography, University College London, London, UK
Qingling Wu
Dept. of Geography, University College London, London, UK
Martin Addi
Remote Sensing, GIS & Climate Center, Ghana Space Science Technology Institute, Accra, Ghana
Stephen Aboagye-Ntow
Remote Sensing, GIS & Climate Center, Ghana Space Science Technology Institute, Accra, Ghana
Caroline Edinam Doe
Remote Sensing, GIS & Climate Center, Ghana Space Science Technology Institute, Accra, Ghana
Rahaman Alhassan
ADRA Ghana, Tamale, Ghana
Isaac Kankam-Boadu
ADRA Ghana, Tamale, Ghana
Jianxi Huang
Department of Geographical Information Engineering, China Agricultural University, Beijing, China
Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of
Agriculture and Rural Affairs, Beijing 100083, China
Xuecao Li
Department of Geographical Information Engineering, China Agricultural University, Beijing, China
Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of
Agriculture and Rural Affairs, Beijing 100083, China
Related authors
Philip E. Lewis, Feng Yin, Jose Luis Gómez-Dans, Thomas Weiß, and Elhadi Adam
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 199–206, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, 2024
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022, https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
Short summary
The proposed SIAC atmospheric correction method provides consistent surface reflectance estimations from medium spatial-resolution satellites (Sentinel 2 and Landsat 8) with per-pixel uncertainty information. The outputs from SIAC have been validated against a wide range of ground measurements, and it shows that SIAC can provide accurate estimations of both surface reflectance and atmospheric parameters, with meaningful uncertainty information.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
Yizhi Zhang, Yi Wang, Quanhua Dong, Xiao-Jian Chen, Fan Zhang, Xuecao Li, and Yu Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-632, https://doi.org/10.5194/essd-2025-632, 2025
Preprint under review for ESSD
Short summary
Short summary
China’s cities have transformed dramatically over the past 30 years. Using multi-source satellite data and machine learning, this study mapped annual building heights at 30-meter detail from 1990 to 2019, revealing both horizontal and vertical urban growth. The open dataset offers new insights into how Chinese cities expand and renew, supporting research and planning for urban development.
Kaiqi Du, Guilong Xiao, Jianxi Huang, Xiaoyan Kang, Xuecao Li, Yelu Zeng, Quandi Niu, Haixiang Guan, and Jianjian Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-432, https://doi.org/10.5194/essd-2024-432, 2025
Manuscript not accepted for further review
Short summary
Short summary
In this manuscript, we developed a 500-m spatial resolution monthly SIF dataset for the China region (CNSIF) from 2003 to 2022 based on high-resolution apparent reflectance and thermal infrared data. The comparison of CNSIF with tower-based SIF observations, tower-based GPP observations, MODIS GPP products, and other SIF datasets has validated CNSIF's ability to capture photosynthetic activity across different vegetation types and its potential for estimating carbon fluxes.
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024, https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Short summary
Most existing building height products are limited with respect to either spatial resolution or coverage, not to mention the spatial heterogeneity introduced by global building forms. Using Earth Observation (EO) datasets for 2020, we developed a global height dataset at the individual building scale. The dataset provides spatially explicit information on 3D building morphology, supporting both macro- and microanalysis of urban areas.
Philip E. Lewis, Feng Yin, Jose Luis Gómez-Dans, Thomas Weiß, and Elhadi Adam
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 199–206, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, 2024
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022, https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
Short summary
The proposed SIAC atmospheric correction method provides consistent surface reflectance estimations from medium spatial-resolution satellites (Sentinel 2 and Landsat 8) with per-pixel uncertainty information. The outputs from SIAC have been validated against a wide range of ground measurements, and it shows that SIAC can provide accurate estimations of both surface reflectance and atmospheric parameters, with meaningful uncertainty information.
Quandi Niu, Xuecao Li, Jianxi Huang, Hai Huang, Xianda Huang, Wei Su, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2851–2864, https://doi.org/10.5194/essd-14-2851-2022, https://doi.org/10.5194/essd-14-2851-2022, 2022
Short summary
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
Min Zhao, Changxiu Cheng, Yuyu Zhou, Xuecao Li, Shi Shen, and Changqing Song
Earth Syst. Sci. Data, 14, 517–534, https://doi.org/10.5194/essd-14-517-2022, https://doi.org/10.5194/essd-14-517-2022, 2022
Short summary
Short summary
We generated a unique dataset of global annual urban extents (1992–2020) using consistent nighttime light observations and analyzed global urban dynamics over the past 3 decades. Evaluations using other urbanization-related ancillary data indicate that the derived urban areas are reliable for characterizing spatial extents associated with intensive human settlement and high-intensity socioeconomic activities. This dataset can provide unique information for studying urbanization and its impacts.
Bowen Cao, Le Yu, Xuecao Li, Min Chen, Xia Li, Pengyu Hao, and Peng Gong
Earth Syst. Sci. Data, 13, 5403–5421, https://doi.org/10.5194/essd-13-5403-2021, https://doi.org/10.5194/essd-13-5403-2021, 2021
Short summary
Short summary
In the study, the first 1 km global cropland proportion dataset for 10 000 BCE–2100 CE was produced through the harmonization and downscaling framework. The mapping result coincides well with widely used datasets at present. With improved spatial resolution, our maps can better capture the cropland distribution details and spatial heterogeneity. The dataset will be valuable for long-term simulations and precise analyses. The framework can be extended to specific regions or other land use types.
Cited articles
Abubakar, G. A., Wang, K., Shahtahamssebi, A., Xue, X., Belete, M., Gudo, A.
J. A., Mohamed Shuka, K. A., and Gan, M.: Mapping Maize Fields by Using
Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi,
Northern Nigeria, Africa, Sustainability, 12, 2539,
https://doi.org/10.3390/su12062539, 2020. a, b
Antonaci, L., Demeke, M., and Vezzani, A.: The challenges of managing
agricultural price and production risks in sub-Saharan Africa, Tech.
Rep. ESA Working Paper 14-09, Agricultural Development Economics Division
Food and Agriculture Organization of the United Nations,
https://doi.org/10.22004/ag.econ.288979, 2014. a
Atkinson, P. M., Jeganathan, C., Dash, J., and Atzberger, C.: Inter-comparison
of four models for smoothing satellite sensor time-series data to estimate
vegetation phenology, Remote Sens. Environ., 123, 400–417,
https://doi.org/10.1016/j.rse.2012.04.001, 2012. a
Azzari, G., Jain, M., and Lobell, D. B.: Towards fine resolution global maps of
crop yields: Testing multiple methods and satellites in three countries,
Remote Sens. Environ., 202, 129–141, https://doi.org/10.1016/j.rse.2017.04.014, 2017. a
Baez-Gonzalez, A. D., Kiniry, J. R., Maas, S. J., Tiscareno, M. L., Macias C.,
J., Mendoza, J. L., Richardson, C. W., Salinas G., J., and Manjarrez, J. R.:
Large-Area Maize Yield Forecasting Using Leaf Area Index Based Yield Model,
Agron. J., 97, 418–425, https://doi.org/10.2134/agronj2005.0418, 2005. a
Baret, F. and Guyot, G.: Potentials and limits of vegetation indices for LAI
and APAR assessment, Remote Sens. Environ., 35, 161–173,
https://doi.org/10.1016/0034-4257(91)90009-u, 1991. a, b
Baruth, B., Royer, A., Klisch, A., and Genovese, G.: The use of remote sensing
within the MARS crop yield monitoring system of the European Commission,
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 37, 935–940, 2008. a
Beck, P. S., Atzberger, C., Høgda, K. A., Johansen, B., and Skidmore, A. K.:
Improved monitoring of vegetation dynamics at very high latitudes: A new
method using MODIS NDVI, Remote Sens. Environ., 100, 321–334,
https://doi.org/10.1016/j.rse.2005.10.021, 2006. a
Becker-Reshef, I., Vermote, E., Lindeman, M., and Justice, C.: A generalized
regression-based model for forecasting winter wheat yields in Kansas and
Ukraine using MODIS data, Remote Sens. Environ., 114, 1312–1323,
https://doi.org/10.1016/j.rse.2010.01.010, 2010. a, b
Becker-Reshef, I., Franch, B., Barker, B., Murphy, E., Santamaria-Artigas, A.,
Humber, M., Skakun, S., and Vermote, E.: Prior Season Crop Type Masks for
Winter Wheat Yield Forecasting: A US Case Study, Remote Sensing, 10,
1659, https://doi.org/10.3390/rs10101659, 2018. a
Becker-Reshef, I., Justice, C., Barker, B., Humber, M., Rembold, F., Bonifacio,
R., Zappacosta, M., Budde, M., Magadzire, T., Shitote, C., Pound, J.,
Constantino, A., Nakalembe, C., Mwangi, K., Sobue, S., Newby, T., Whitcraft,
A., Jarvis, I., and Verdin, J.: Strengthening agricultural decisions in
countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early
Warning, Remote Sens. Environ., 237, 111553,
https://doi.org/10.1016/j.rse.2019.111553, 2020. a
Benami, E., Jin, Z., Carter, M. R., Ghosh, A., Hijmans, R. J., Hobbs, A.,
Kenduiywo, B., and Lobell, D. B.: Uniting remote sensing, crop modelling and
economics for agricultural risk management, Nature Reviews Earth &
Environment, 2, 140–159, https://doi.org/10.1038/s43017-020-00122-y, 2021. a
Beveridge, L., Whitfield, S., and Challinor, A.: Crop modelling: Towards
locally relevant and climate-informed adaptation, Climatic Change, 147,
475–489, https://doi.org/10.1007/s10584-018-2160-z, 2018. a
Brown, L. A., Fernandes, R., Djamai, N., Meier, C., Gobron, N., Morris, H.,
Canisius, F., Bai, G., Lerebourg, C., Lanconelli, C., Clerici, M., and Dash,
J.: Validation of baseline and modified Sentinel-2 Level 2 Prototype
Processor leaf area index retrievals over the United States, ISPRS J.
Photogramm. Remote Sens., 175, 71–87, https://doi.org/10.1016/j.isprsjprs.2021.02.020,
2021. a
Brown, M. E.: Remote sensing technology and land use analysis in food security
assessment, Journal of Land Use Science, 11, 623–641,
https://doi.org/10.1080/1747423x.2016.1195455, 2016. a
Burton, C., Yuan, F., Ee-Faye, C., Halabisky, M., Ongo, D., Mar, F., Addabor, V., Mamane, B., and Adimou, S.: Co-Production of a 10-m Cropland Extent Map for Continental Africa using Sentinel-2, Cloud Computing, and the Open-Data-Cube, AGU 2021 Fall Meeting, New Orleans, LA, 13–17 December 2021, 10, https://doi.org/10.1002/essoar.10510081.1, 2022. a, b, c, d, e, f, g
Cairns, J. E., Hellin, J., Sonder, K., Araus, J. L., MacRobert, J. F.,
Thierfelder, C., and Prasanna, B. M.: Adapting maize production to climate
change in sub-Saharan Africa, Food Secur., 5, 345–360,
https://doi.org/10.1007/s12571-013-0256-x, 2013. a
Carletto, C., Jolliffe, D., and Banerjee, R.: The Emperor has no data! Agricultural statistics in sub-Saharan Africa, https://www.mortenjerven.com/wp-content/uploads/2013/04/Panel-3-Carletto.pdf (last access: 22 November 2022), 2013. a
Carletto, C., Jolliffe, D., and Banerjee, R.: From Tragedy to Renaissance:
Improving Agricultural Data for Better Policies, J. Dev. Stud., 51, 133–148,
https://doi.org/10.1080/00220388.2014.968140, 2015. a
Carlson, T. N. and Ripley, D. A.: On the relation between NDVI, fractional
vegetation cover, and leaf area index, Remote Sens. Environ., 62, 241–252,
https://doi.org/10.1016/s0034-4257(97)00104-1, 1997. a
Chemura, A., Schauberger, B., and Gornott, C.: Impacts of climate change on
agro-climatic suitability of major food crops in Ghana, PLoS One, 15,
e0229881, https://doi.org/10.1371/journal.pone.0229881, 2020. a
Clevers, J. and Gitelson, A.: Remote estimation of crop and grass chlorophyll
and nitrogen content using red-edge bands on Sentinel-2 and -3, Int. J. Appl.
Earth Obs., 23, 344–351, https://doi.org/10.1016/j.jag.2012.10.008, 2013. a
Croft, H., Arabian, J., Chen, J. M., Shang, J., and Liu, J.: Mapping
within-field leaf chlorophyll content in agricultural crops for nitrogen
management using Landsat-8 imagery, Precis. Agric., 21, 856–880,
https://doi.org/10.1007/s11119-019-09698-y, 2019. a
Deines, J. M., Patel, R., Liang, S.-Z., Dado, W., and Lobell, D. B.: A million
kernels of truth: Insights into scalable satellite maize yield mapping and
yield gap analysis from an extensive ground dataset in the US Corn Belt,
Remote Sens. Environ., 253, 112174, https://doi.org/10.1016/j.rse.2020.112174, 2021. a
Delegido, J., Verrelst, J., Alonso, L., and Moreno, J.: Evaluation of
Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and
Chlorophyll Content, Sensors-Basel, 11, 7063–7081,
https://doi.org/10.3390/s110707063, 2011. a
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: Esa's Optical
High-Resolution Mission for GMES Operational Services, Remote Sens.
Environ., 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012. a
Eilers, P. H. C.: A Perfect Smoother, Anal. Chem., 75, 3631–3636,
https://doi.org/10.1021/ac034173t, 2003. a
Estes, L. D., Ye, S., Song, L., Luo, B., Eastman, J. R., Meng, Z., Zhang, Q.,
McRitchie, D., Debats, S. R., Muhando, J., Amukoa, A. H., Kaloo, B. W.,
Makuru, J., Mbatia, B. K., Muasa, I. M., Mucha, J., Mugami, A. M., Mugami,
J. M., Muinde, F. W., Mwawaza, F. M., Ochieng, J., Oduol, C. J., Oduor, P.,
Wanjiku, T., Wanyoike, J. G., Avery, R. B., and Caylor, K. K.: High
Resolution, Annual Maps of Field Boundaries for Smallholder-Dominated
Croplands at National Scales, Frontiers in Artificial Intelligence, 4,
744863, https://doi.org/10.3389/frai.2021.744863, 2022. a, b, c
Falconnier, G. N., Corbeels, M., Boote, K. J., Affholder, F., Adam, M.,
MacCarthy, D. S., Ruane, A. C., Nendel, C., Whitbread, A. M., Justes, E.,
Ahuja, L. R., Akinseye, F. M., Alou, I. N., Amouzou, K. A., Anapalli, S. S.,
Baron, C., Basso, B., Baudron, F., Bertuzzi, P., Challinor, A. J., Chen, Y.,
Deryng, D., Elsayed, M. L., Faye, B., Gaiser, T., Galdos, M., Gayler, S.,
Gerardeaux, E., Giner, M., Grant, B., Hoogenboom, G., Ibrahim, E. S., Kamali,
B., Kersebaum, K. C., Kim, S.-H., Laan, M., Leroux, L., Lizaso, J. I.,
Maestrini, B., Meier, E. A., Mequanint, F., Ndoli, A., Porter, C. H.,
Priesack, E., Ripoche, D., Sida, T. S., Singh, U., Smith, W. N., Srivastava,
A., Sinha, S., Tao, F., Thorburn, P. J., Timlin, D., Traore, B., Twine, T.,
and Webber, H.: Modelling climate change impacts on maize yields under low
nitrogen input conditions in sub-Saharan Africa, Global Change Biol., 26,
5942–5964, https://doi.org/10.1111/gcb.15261, 2020. a
Fang, H., Baret, F., Plummer, S., and Schaepman-Strub, G.: An Overview of
Global Leaf Area Index (LAI): Methods, Products, Validation, and
Applications, Rev. Geophys., 57, 739–799, https://doi.org/10.1029/2018rg000608, 2019. a, b, c
Ferwerda, J. G. and Skidmore, A. K.: Can nutrient status of four woody plant
species be predicted using field spectrometry?, ISPRS J. Photogramm. Remote
Sens., 62, 406–414, https://doi.org/10.1016/j.isprsjprs.2007.07.004, 2007. a
Franch, B., Vermote, E., Becker-Reshef, I., Claverie, M., Huang, J., Zhang, J.,
Justice, C., and Sobrino, J.: Improving the timeliness of winter wheat
production forecast in the United States of America, Ukraine and China
using MODIS data and NCAR Growing Degree Day information, Remote Sens.
Environ., 161, 131–148, https://doi.org/10.1016/j.rse.2015.02.014, 2015. a
Freduah, B., MacCarthy, D., Adam, M., Ly, M., Ruane, A., Timpong-Jones, E.,
Traore, P., Boote, K., Porter, C., and Adiku, S.: Sensitivity of Maize Yield
in Smallholder Systems to Climate Scenarios in Semi-Arid Regions of West
Africa: Accounting for Variability in Farm Management Practices, Agronomy,
9, 639, https://doi.org/10.3390/agronomy9100639, 2019. a, b
Garcia, D.: Robust smoothing of gridded data in one and higher dimensions with
missing values, Comput. Stat. Data An., 54,
1167–1178, https://doi.org/10.1016/j.csda.2009.09.020, 2010. a, b, c
Giller, K. E., Delaune, T., Silva, J. a. V., van Wijk, M., Hammond, J.,
Descheemaeker, K., van de Ven, G., Schut, A. G. T., Taulya, G., Chikowo, R.,
and Andersson, J. A.: Small farms and development in sub-Saharan Africa:
Farming for food, for income or for lack of better options?, Food Secur.,
13, 1431–1454, https://doi.org/10.1007/s12571-021-01209-0, 2021. a
Gitelson, A. A., Viña, A., Verma, S. B., Rundquist, D. C., Arkebauer, T. J.,
Keydan, G., Leavitt, B., Ciganda, V., Burba, G. G., and Suyker, A. E.:
Relationship between gross primary production and chlorophyll content in
crops: Implications for the synoptic monitoring of vegetation productivity,
J. Geophys. Res., 111, D08S11, https://doi.org/10.1029/2005jd006017, 2006. a
Gomez-Dans, J. L., Lewis, P., Yin, F., Asare, K., Lamptey, P., Aidoo, K.,
MacCarthy, D., Ma, H., Wu, Q., Addi, M., Aboagye-Ntow, S., Doe, C. E.,
Alhassan, R., Kankam-Boadu, I., Huang, J., and Li, X.: Location, biophysical
and agronomic parameters for croplands in Northern Ghana, Zenodo [data set],
https://doi.org/10.5281/zenodo.6632083, 2022. a, b, c
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
Hay, R. and Gilbert, R.: Variation in the harvest index of tropical maize:
Evaluation of recent evidence from Mexico and Malawi, Ann. Appl. Biol.,
138, 103–109, https://doi.org/10.1111/j.1744-7348.2001.tb00090.x, 2001. a
Heiberger, R. M. and Becker, R. A.: Design of an S Function for Robust
Regression Using Iteratively Reweighted Least Squares, J. Comput. Graph.
Stat., 1, 181–196, https://doi.org/10.2307/1390715, 1992. a
Hird, J. N. and McDermid, G. J.: Noise reduction of NDVI time series: An
empirical comparison of selected techniques, Remote Sens. Environ., 113,
248–258, https://doi.org/10.1016/j.rse.2008.09.003, 2009. a
Houborg, R. and McCabe, M.: High-Resolution NDVI from
Planet's Constellation of Earth Observing Nano-Satellites:
A New Data Source for Precision Agriculture, Remote Sensing, 8, 768,
https://doi.org/10.3390/rs8090768, 2016. a
Huang, J., Gómez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E., Liang,
S., Chen, Z., Xue, J.-H., Wu, Y., Zhao, F., Wang, J., and Xie, X.:
Assimilation of remote sensing into crop growth models: Current status and
perspectives, Agr. Forest Meteorol., 276–277, 107609,
https://doi.org/10.1016/j.agrformet.2019.06.008, 2019. a
Ibrahim, E. S., Rufin, P., Nill, L., Kamali, B., Nendel, C., and Hostert, P.:
Mapping Crop Types and Cropping Systems in Nigeria with Sentinel-2 Imagery,
Remote Sensing, 13, 3523, https://doi.org/10.3390/rs13173523, 2021. a
Jain, M., Srivastava, A. K., Balwinder-Singh, Joon, R. K., McDonald, A., Royal,
K., Lisaius, M. C., and Lobell, D. B.: Mapping Smallholder Wheat Yields and
Sowing Dates Using Micro-Satellite Data, Remote Sensing, 8, 860,
https://doi.org/10.3390/rs8100860, 2016. a
Jin, Z., Azzari, G., and Lobell, D. B.: Improving the accuracy of
satellite-based high-resolution yield estimation: A test of multiple
scalable approaches, Agr. Forest Meteorol., 247, 207–220,
https://doi.org/10.1016/j.agrformet.2017.08.001, 2017. a, b
Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., and Lobell,
D. B.: Smallholder maize area and yield mapping at national scales with
Google Earth Engine, Remote Sens. Environ., 228, 115–128,
https://doi.org/10.1016/j.rse.2019.04.016, 2019. a
Jolivot, A., Lebourgeois, V., Leroux, L., Ameline, M., Andriamanga, V., Bellón, B., Castets, M., Crespin-Boucaud, A., Defourny, P., Diaz, S., Dieye, M., Dupuy, S., Ferraz, R., Gaetano, R., Gely, M., Jahel, C., Kabore, B., Lelong, C., le Maire, G., Lo Seen, D., Muthoni, M., Ndao, B., Newby, T., de Oliveira Santos, C. L. M., Rasoamalala, E., Simoes, M., Thiaw, I., Timmermans, A., Tran, A., and Bégué, A.: Harmonized in situ datasets for agricultural land use mapping and monitoring in tropical countries, Earth Syst. Sci. Data, 13, 5951–5967, https://doi.org/10.5194/essd-13-5951-2021, 2021. a, b
Jönsson, P. and Eklundh, L.: Seasonality extraction by function fitting to
time-series of satellite sensor data, IEEE T. Geosci. Remote, 40,
1824–1832, 2002. a
Kang, Y. and Özdoğan, M.: Field-level crop yield mapping with Landsat
using a hierarchical data assimilation approach, Remote Sens. Environ., 228,
144–163, https://doi.org/10.1016/j.rse.2019.04.005, 2019. a
Kang, Y., Özdoğan, M., Zipper, S., Román, M., Walker, J., Hong, S., Marshall, M., Magliulo, V., Moreno, J., Alonso, L., Miyata, A., Kimball, B., and Loheide, S.: How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment, Remote Sensing, 8, 597, https://doi.org/10.3390/rs8070597, 2016. a
Karlson, M., Ostwald, M., Bayala, J., Bazié, H. R., Ouedraogo, A. S., Soro,
B., Sanou, J., and Reese, H.: The Potential of Sentinel-2 for Crop Production
Estimation in a Smallholder Agroforestry Landscape, Burkina Faso, Front.
Environ. Sci., 8, 85, https://doi.org/10.3389/fenvs.2020.00085, 2020. a
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., and
Brumby, S. P.: Global land use/land cover with Sentinel 2 and deep
learning, in: 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS, Brussels, Belgium, 4704–4707, 11–16 July 2021, https://doi.org/10.1109/igarss47720.2021.9553499, 2021. a
Kganyago, M., Mhangara, P., Alexandridis, T., Laneve, G., Ovakoglou, G., and
Mashiyi, N.: Validation of sentinel-2 leaf area index (LAI) product derived
from SNAP toolbox and its comparison with global LAI products in an
African semi-arid agricultural landscape, Remote Sens. Lett., 11, 883–892,
https://doi.org/10.1080/2150704x.2020.1767823, 2020. a
Kouadio, L., Duveiller, G., Djaby, B., El Jarroudi, M., Defourny, P., and
Tychon, B.: Estimating regional wheat yield from the shape of decreasing
curves of green area index temporal profiles retrieved from MODIS data,
Int. J. Appl. Earth Obs., 18, 111–118, https://doi.org/10.1016/j.jag.2012.01.009,
2012. a, b
Lambert, M.-J., Traoré, P. C. S., Blaes, X., Baret, P., and Defourny, P.:
Estimating smallholder crops production at village level from Sentinel-2 time
series in Mali's cotton belt, Remote Sens. Environ., 216, 647–657,
https://doi.org/10.1016/j.rse.2018.06.036, 2018. a, b, c
le Maire, G., François, C., and Dufrêne, E.: Towards universal broad leaf
chlorophyll indices using PROSPECT simulated database and hyperspectral
reflectance measurements, Remote Sens. Environ., 89, 1–28,
https://doi.org/10.1016/j.rse.2003.09.004, 2004. a
le Maire, G., François, C., Soudani, K., Berveiller, D., Pontailler, J.-Y., Bréda, N., Genet, H., Davi, H., and Dufrêne, E.: Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass, Remote Sens. Environ., 112, 3846–3864, https://doi.org/10.1016/j.rse.2008.06.005, 2008. a
Lewis, P., Gómez-Dans, J., Kaminski, T., Settle, J., Quaife, T., Gobron, N.,
Styles, J., and Berger, M.: An Earth Observation Land Data Assimilation
System (EO-LDAS), Remote Sens. Environ., 120, 219–235,
https://doi.org/10.1016/j.rse.2011.12.027, 2012. a
Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X.,
Donner, R. V., Ghent, D., Gruber, A., Kaminski, T., Kinzel, J., Klepp, C.,
Lambert, J.-C., Schaepman-Strub, G., Schröder, M., and Verhoelst, T.:
Validation practices for satellite-based Earth observation data across
communities, Rev. Geophys., 55, 779–817, https://doi.org/10.1002/2017rg000562, 2017. a
Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J.,
Mueller-Wilm, U., Cadau, E., and Gascon, F.: Sentinel-2 Sen2Cor: L2a
processor for users, in: Proceedings of the Living Planet Symposium, Proceedings of the conference held 9–13 May 2016 in Prague,
Czech Republic, edited by: Ouwehand, L., ESA-SP Volume 740, ISBN 978-92-9221-305-3, 91, https://elib.dlr.de/107381/1/LPS2016_sm10_3louis.pdf (last access: 22 November 2022), 2016. a
MacCarthy, D. S., Akponikpe, P. B. I., Narh, S., and Tegbe, R.: Modeling the
effect of seasonal climate variability on the efficiency of mineral
fertilization on maize in the coastal savannah of Ghana, Nutr. Cycl.
Agroecosys., 102, 45–64, https://doi.org/10.1007/s10705-015-9701-x, 2015. a
MacCarthy, D. S., Adiku, S. G. K., Freduah, B. S., Gbefo, F., and Kamara,
A. Y.: Using CERES-Maize and ENSO as Decision Support Tools to Evaluate
Climate-Sensitive Farm Management Practices for Maize Production in the
Northern Regions of Ghana, Front. Plant Sci., 8, 31,
https://doi.org/10.3389/fpls.2017.00031, 2017. a
Mkhabela, M. S., Bullock, P., Raj, S., Wang, S., and Yang, Y.: Crop yield
forecasting on the Canadian Prairies using MODIS NDVI data, Agric. For. Meteorol., 151, 385–393,
https://doi.org/10.1016/j.agrformet.2010.11.012, 2011. a, b
Moser, S. B., Feil, B., Jampatong, S., and Stamp, P.: Effects of pre-anthesis
drought, nitrogen fertilizer rate, and variety on grain yield, yield
components, and harvest index of tropical maize, Agr. Water Manage., 81,
41–58, https://doi.org/10.1016/j.agwat.2005.04.005, 2006. a
Nakalembe, C., Becker-Reshef, I., Bonifacio, R., Hu, G., Humber, M. L.,
Justice, C. J., Keniston, J., Mwangi, K., Rembold, F., Shukla, S., Urbano,
F., Whitcraft, A. K., Li, Y., Zappacosta, M., Jarvis, I., and Sanchez, A.: A
review of satellite-based global agricultural monitoring systems available
for Africa, Global Food Security, 29, 100543,
https://doi.org/10.1016/j.gfs.2021.100543, 2021. a
Nations, U.: Ensuring food and nutrition security, in: World economic and
social survey 2013, United Nations, 85–119, https://doi.org/10.18356/0e3c4bbb-en,
2013. a
Nguy-Robertson, A., Gitelson, A., Peng, Y., Viña, A., Arkebauer, T., and
Rundquist, D.: Green Leaf Area Index Estimation in Maize and Soybean:
Combining Vegetation Indices to Achieve Maximal Sensitivity, Agron. J.,
104, 1336–1347, https://doi.org/10.2134/agronj2012.0065, 2012. a
Nyantakyi-Frimpong, H. and Bezner-Kerr, R.: The relative importance of climate
change in the context of multiple stressors in semi-arid Ghana, Glob.
Environ. Change, 32, 40–56, https://doi.org/10.1016/j.gloenvcha.2015.03.003, 2015. a
Petersen, L.: Real-Time Prediction of Crop Yields From MODIS Relative
Vegetation Health: A Continent-Wide Analysis of Africa, Remote Sensing,
10, 1726, https://doi.org/10.3390/rs10111726, 2018. a, b
Pritchard, R., Alexandridis, T., Amponsah, M., Ben Khatra, N., Brockington, D.,
Chiconela, T., Ortuño Castillo, J., Garba, I., Gómez-Giménez, M.,
Haile, M., Kagoyire, C., Kganyago, M., Kleine, D., Korme, T., Manni, A. A.,
Mashiyi, N., Massninga, J., Mensah, F., Mugabowindekwe, M., Meta, V., Noort,
M., Pérez Ramirez, P., Suárez Beltrán, J., and Zoungrana, E.:
Developing capacity for impactful use of Earth Observation data: Lessons
from the AfriCultuReS project, Environmental Development, 42, 100695,
https://doi.org/10.1016/j.envdev.2021.100695, 2022. a
Ragasa, C., Chapoto, A., and Kolavalli, S.: Maize productivity in Ghana, GSSP
Policy Note 5, International Food Policy Research Institute (IFPRI),
Washington, D. C.,
http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/128263 (last access: 22 November 2022),
2014. a
Rustowicz, R., Cheong, R., Wang, L., Ermon, S., Burke, M., and Lobell, D.:
Semantic Segmentation of Crop Type in Africa: A Novel Dataset and Analysis
of Deep Learning Methods, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 75–82, Long Beach (CA), 16–20 June 2019, http://openaccess.thecvf.com/content_CVPRW_2019/papers/cv4gc/Rustowicz_Semantic_Segmentation_of_Crop_Type_in_Africa_A_Novel_Dataset_CVPRW_2019_paper.pdf (last access: 22 November 2022), 2019. a
Sánchez, P. A.: Tripling crop yields in tropical Africa, Nat. Geosci., 3,
299–300, https://doi.org/10.1038/ngeo853, 2010. a
Smith, M.-L., Ollinger, S. V., Martin, M. E., Aber, J. D., Hallett, R. A., and
Goodale, C. L.: Direct Estimation Of Aboveground Forest Productivity Through
Hyperspectral Remote Sensing Of Canopy Nitrogen, Ecol. Appl., 12, 1286–1302,
https://doi.org/10.1890/1051-0761(2002)012[1286:deoafp]2.0.co;2, 2002. a
Srivastava, A. K., Mboh, C. M., Gaiser, T., Webber, H., and Ewert, F.: Effect
of sowing date distributions on simulation of maize yields at regional scale
– A case study in Central Ghana, West Africa, Agr. Syst., 147,
10–23, https://doi.org/10.1016/j.agsy.2016.05.012, 2016. a
Sultan, B. and Gaetani, M.: Agriculture in West Africa in the Twenty-First
Century: Climate Change and Impacts Scenarios, and Potential for
Adaptation, Front. Plant Sci., 7, 1262, https://doi.org/10.3389/fpls.2016.01262, 2016. a
Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., and Briggs,
J. M.: Relationships between Leaf Area Index and Landsat TM Spectral
Vegetation Indices across Three Temperate Zone Sites, Remote Sens. Environ.,
70, 52–68, https://doi.org/10.1016/s0034-4257(99)00057-7, 1999. a
Unganai, L. S. and Kogan, F. N.: Drought Monitoring and Corn Yield Estimation
in Southern Africa from AVHRR Data, Remote Sens. Environ., 63, 219–232,
https://doi.org/10.1016/s0034-4257(97)00132-6, 1998. a
van Loon, M. P., Adjei-Nsiah, S., Descheemaeker, K., Akotsen-Mensah, C., van
Dijk, M., Morley, T., van Ittersum, M. K., and Reidsma, P.: Can yield
variability be explained? Integrated assessment of maize yield gaps across
smallholders in Ghana, Field Crop. Res., 236, 132–144,
https://doi.org/10.1016/j.fcr.2019.03.022, 2019. a, b
Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G.,
Gastellu-Etchegorry, J.-P., Lewis, P., North, P., and Moreno, J.: Quantifying
Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review
on Retrieval Methods, Surv. Geophys., 40, 589–629,
https://doi.org/10.1007/s10712-018-9478-y, cited By :131, 2018. a
Wang, S., Guan, K., Wang, Z., Ainsworth, E. A., Zheng, T., Townsend, P. A., Li,
K., Moller, C., Wu, G., and Jiang, C.: Unique contributions of chlorophyll
and nitrogen to predict crop photosynthetic capacity from leaf spectroscopy,
J. Exp. Bot., 72, 341–354, https://doi.org/10.1093/jxb/eraa432, 2020.
a
Whitcraft, A. K., Becker-Reshef, I., Justice, C. O., Gifford, L., Kavvada, A.,
and Jarvis, I.: No pixel left behind: Toward integrating Earth Observations
for agriculture into the United Nations Sustainable Development Goals
framework, Remote Sens. Environ., 235, 111470,
https://doi.org/10.1016/j.rse.2019.111470, 2019. a, b
Xiong, J., Thenkabail, P., Tilton, J., Gumma, M., Teluguntla, P., Oliphant, A.,
Congalton, R., Yadav, K., and Gorelick, N.: Nominal 30-m Cropland Extent Map
of Continental Africa by Integrating Pixel-Based and Object-Based
Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine, Remote
Sensing, 9, 1065, https://doi.org/10.3390/rs9101065, 2017. a, b
Yang, Y., Luo, J., Huang, Q., Wu, W., and Sun, Y.: Weighted Double-Logistic
Function Fitting Method for Reconstructing the High-Quality Sentinel-2 NDVI
Time Series Data Set, Remote Sensing, 11, 2342, https://doi.org/10.3390/rs11202342,
2019. a
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao,
F., Reed, B. C., and Huete, A.: Monitoring vegetation phenology using
MODIS, Remote Sens. Environ., 84, 471–475,
https://doi.org/10.1016/s0034-4257(02)00135-9, 2003. a
Short summary
We provide a data set to support mapping croplands in smallholder landscapes in Ghana. The data set contains information on crop location on three agroecological zones for 2 years, temporal series of measurements of leaf area index and leaf chlorophyll concentration for maize canopies and yield. We demonstrate the use of these data to validate cropland masks, create a maize mask using satellite data and explore the relationship between satellite measurements and yield.
We provide a data set to support mapping croplands in smallholder landscapes in Ghana. The data...
Altmetrics
Final-revised paper
Preprint