Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5387-2022
https://doi.org/10.5194/essd-14-5387-2022
Data description paper
 | 
14 Dec 2022
Data description paper |  | 14 Dec 2022

Location, biophysical and agronomic parameters for croplands in northern Ghana

Jose Luis Gómez-Dans, Philip Edward Lewis, Feng Yin, Kofi Asare, Patrick Lamptey, Kenneth Kobina Yedu Aidoo, Dilys Sefakor MacCarthy, Hongyuan Ma, Qingling Wu, Martin Addi, Stephen Aboagye-Ntow, Caroline Edinam Doe, Rahaman Alhassan, Isaac Kankam-Boadu, Jianxi Huang, and Xuecao Li

Related authors

Crop Yield Mapping with ARC using only Optical Remote Sensing
Philip E. Lewis, Feng Yin, Jose Luis Gómez-Dans, Thomas Weiß, and Elhadi Adam
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 199–206, https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024,https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024, 2024
High-resolution (1 km) all-sky net radiation over Europe enabled by the merging of land surface temperature retrievals from geostationary and polar-orbiting satellites
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024,https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Bayesian atmospheric correction over land: Sentinel-2/MSI and Landsat 8/OLI
Feng Yin, Philip E. Lewis, and Jose L. Gómez-Dans
Geosci. Model Dev., 15, 7933–7976, https://doi.org/10.5194/gmd-15-7933-2022,https://doi.org/10.5194/gmd-15-7933-2022, 2022
Short summary
Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1)
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022,https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Theoretical uncertainties for global satellite-derived burned area estimates
James Brennan, Jose L. Gómez-Dans, Mathias Disney, and Philip Lewis
Biogeosciences, 16, 3147–3164, https://doi.org/10.5194/bg-16-3147-2019,https://doi.org/10.5194/bg-16-3147-2019, 2019
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024,https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024,https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary
Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
Jie Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, Xuebin Yang, Xiaocui Wu, Chandrashekhar Biradar, and Yang Hu
Earth Syst. Sci. Data, 16, 4619–4639, https://doi.org/10.5194/essd-16-4619-2024,https://doi.org/10.5194/essd-16-4619-2024, 2024
Short summary
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024,https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary

Cited articles

Abubakar, G. A., Wang, K., Shahtahamssebi, A., Xue, X., Belete, M., Gudo, A. J. A., Mohamed Shuka, K. A., and Gan, M.: Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa, Sustainability, 12, 2539, https://doi.org/10.3390/su12062539, 2020. a, b
Antonaci, L., Demeke, M., and Vezzani, A.: The challenges of managing agricultural price and production risks in sub-Saharan Africa, Tech. Rep. ESA Working Paper 14-09, Agricultural Development Economics Division Food and Agriculture Organization of the United Nations, https://doi.org/10.22004/ag.econ.288979, 2014. a
Atkinson, P. M., Jeganathan, C., Dash, J., and Atzberger, C.: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote Sens. Environ., 123, 400–417, https://doi.org/10.1016/j.rse.2012.04.001, 2012. a
Azzari, G., Jain, M., and Lobell, D. B.: Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries, Remote Sens. Environ., 202, 129–141, https://doi.org/10.1016/j.rse.2017.04.014, 2017. a
Baez-Gonzalez, A. D., Kiniry, J. R., Maas, S. J., Tiscareno, M. L., Macias C., J., Mendoza, J. L., Richardson, C. W., Salinas G., J., and Manjarrez, J. R.: Large-Area Maize Yield Forecasting Using Leaf Area Index Based Yield Model, Agron. J., 97, 418–425, https://doi.org/10.2134/agronj2005.0418, 2005. a
Download
Short summary
We provide a data set to support mapping croplands in smallholder landscapes in Ghana. The data set contains information on crop location on three agroecological zones for 2 years, temporal series of measurements of leaf area index and leaf chlorophyll concentration for maize canopies and yield. We demonstrate the use of these data to validate cropland masks, create a maize mask using satellite data and explore the relationship between satellite measurements and yield.
Altmetrics
Final-revised paper
Preprint