Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4201-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
International Monitoring System infrasound data products for atmospheric studies and civilian applications
B4.3, BGR, 30655 Hanover, Germany
Lars Ceranna
B4.3, BGR, 30655 Hanover, Germany
Alexis Le Pichon
DAM/DIF, CEA, 91297 Arpajon, France
Robin S. Matoza
Department of Earth Science and Earth Research Institute,
University of California, Santa Barbara, CA, USA
Pierrick Mialle
IDC, CTBTO, Vienna, Austria
Related authors
No articles found.
Ekaterina Vorobeva, Marine De Carlo, Alexis Le Pichon, Patrick Joseph Espy, and Sven Peter Näsholm
Ann. Geophys., 39, 515–531, https://doi.org/10.5194/angeo-39-515-2021, https://doi.org/10.5194/angeo-39-515-2021, 2021
Short summary
Short summary
Our approach compares infrasound data and simulated microbarom soundscapes in multiple directions. Data recorded during 2014–2019 at Infrasound Station 37 in Norway were processed and compared to model results in different aspects (directional distribution, signal amplitude, and ability to track atmospheric changes during extreme events). The results reveal good agreement between the model and data. The approach has potential for near-real-time atmospheric and microbarom diagnostics.
Liam Toney, David Fee, Kate E. Allstadt, Matthew M. Haney, and Robin S. Matoza
Earth Surf. Dynam., 9, 271–293, https://doi.org/10.5194/esurf-9-271-2021, https://doi.org/10.5194/esurf-9-271-2021, 2021
Short summary
Short summary
Large avalanches composed of ice and rock are a serious hazard to mountain communities and backcountry travellers. These processes shake the Earth and disturb the atmosphere, generating seismic waves and sound waves which can travel for hundreds of kilometers. In this study, we use the seismic waves and sound waves produced by two massive avalanches on a volcano in Alaska to reconstruct how the avalanches failed. Our method may assist with rapid emergency response to these global hazards.
Alexandr Smirnov, Marine De Carlo, Alexis Le Pichon, Nikolai M. Shapiro, and Sergey Kulichkov
Solid Earth, 12, 503–520, https://doi.org/10.5194/se-12-503-2021, https://doi.org/10.5194/se-12-503-2021, 2021
Short summary
Short summary
Seismic and infrasound methods are techniques used to monitor natural events and explosions. At low frequencies, band signal can be dominated by microbaroms and microseisms. The noise observations in the Kazakh network are performed and compared with source and propagation modeling. The network is dense and well situated for studying very distant source regions of the ambient noise. The prospects are opening for the use of ocean noise in solid Earth and atmosphere tomography.
Cited articles
Alcoverro, B. and Le Pichon, A.: Design and optimization of a noise
reduction system for infrasonic measurements using elements with low
acoustic impedance, J. Acoust. Soc. Am., 117,
1717–1727, https://doi.org/10.1121/1.1804966, 2005.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS
NGDC-24, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009.
Amezcua, J., Näsholm, S., Blixt, E. M., and Charlton-Perez, A. J.:
Assimilation of atmospheric infrasound data to constrain tropospheric and
stratospheric winds, Q. J. Roy. Meteor. Soc., 146, 2634–2653,
https://doi.org/10.1002/qj.3809, 2020.
Arrowsmith, S. J. and Hedlin, M. A. H.: Observations of infrasound from
surf in southern California, Geophys. Res. Lett., 32, L09810,
https://doi.org/10.1029/2005GL022761, 2005.
Arrowsmith, S. J., ReVelle, D., Edwards, W., and Brown, P.: Global Detection
of Infrasonic Signals from Three Large Bolides, Earth Moon Planets, 102,
357–363, https://doi.org/10.1007/s11038-007-9205-z, 2008.
Assink, J., Waxler, R., Smets, P., and Evers, L.: Bidirectional infrasonic
ducts associated with sudden stratospheric warming events, J. Geophys. Res.-Atmos., 119, 1140–1153, https://doi.org/10.1002/2013JD021062, 2014.
Assink, J. D., Averbuch, G., Smets, P. S. M., and Evers, L.G.: On the
infrasound detected from the 2013 and 2016 DPRK's underground nuclear tests,
Geophys. Res. Lett., 43, 3526–3533, https://doi.org/10.1002/2016GL068497, 2016.
Biguri, A.: Perceptually uniform colormaps, MATLAB Central File Exchange,
https://www.mathworks.com/matlabcentral/fileexchange/51986-perceptually-uniform-colormaps,
last access: 15 December 2020.
Blanc, E., Ceranna, L., Hauchecorne, A., Charlton-Perez, A., Marchetti, E.,
Evers, L. G., Kvaerna, T., Lastovicka, J., Eliasson, L., Crosby, N. B.,
Blanc-Benon, P., Le Pichon, A., Brachet, N., Pilger, C., Keckhut, P.,
Assink, J. D., Smets, P. S. M., Lee, C. F., Kero, J., Sindelarova, T.,
Kämpfer, N., Rüfenacht, R., Farges, T., Millet, C., Näsholm, S.
P., Gibbons, S. J., Espy, P. J., Hibbins, R. E., Heinrich, P., Ripepe, M.,
Khaykin, S., Mze, N., and Chum, J.: Toward an improved representation of the
middle atmospheric dynamics thanks to the ARISE project, Surv. Geophys., 39,
171–225, https://doi.org/10.1007/s10712-017-9444-0, 2018.
Blanc, E., Pol, K., Le Pichon, A., Hauchecorne, A., Keckhut, P., Baumgarten, G., Hildebrand, J., Höffner, J., Stober, G., Hibbins, R., Espy, P., Rapp, M., Kaifler, B., Ceranna, L., Hupe, P., Hagen, J., Rüfenacht, R., Kämpfer, N., and Smets, P.: Middle atmosphere variability and model uncertainties as
investigated in the framework of the ARISE project, in:
Infrasound Monitoring for Atmospheric
Studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., 845–887, Springer, https://doi.org/10.1007/978-3-319-75140-5_28, 2019.
Brachet, N., Brown, D., Le Bras, R., Cansi, Y., Mialle, P., and Coyne, J.:
Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network,
in: Infrasound
Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., 77–118, Springer,
https://doi.org/10.1007/978-1-4020-9508-5_3, 2010.
Brown, P. G., Assink, J. D., Astiz, L., Blaauw, R., Boslough, M. B.,
Borovička, J., Brachet, N., Brown, D., Campbell-Brown, M., Ceranna, L.,
Cooke, W., de Groot-Hedlin, C., Drob, D. P., Edwards, W., Evers, L. G.,
Garces, M., Gill, J., Hedlin, M., Kingery, A., Laske, G., Le Pichon, A.,
Mialle, P., Moser, D. E., Saffer, A., Silber, E., Smets, P., Spalding, R.
E., Spurný, P., Tagliaferri, E., Uren, D., Weryk, R. J., Whitaker, R.,
and Krzeminski, Z.: A 500-kiloton airburst over Chelyabinsk and an enhanced
hazard from small impactors, Nature, 503, 238–241, https://doi.org/10.1038/nature12741,
2013.
Campus, P.: Monitoring volcanic eruptions with the IMS Infrasound Network,
Inframatics, 15, 6–12, 2006.
Cansi, Y.: An automatic seismic event processing for detection and location:
The P.M.C.C. Method, Geophys. Res. Lett., 22, 1021–1024,
https://doi.org/10.1029/95GL00468, 1995.
Cansi, Y. and Le Pichon, A.: Infrasound Event Detection Using the
Progressive Multi-Channel Correlation Algorithm; in: Handbook of signal
processing in acoustics, 1425–1435, Springer,
https://doi.org/10.1007/978-0-387-30441-0_77, 2008.
CEA: DTK GPMCC V5.7.4 User Manual, DTK-GPMCC-MU-1.16, Commissariat à
l'énergie atomique et aux énergies alternatives, Centre
DAM-Île-de-France, Département Analyse, Surveillance, Environment,
Arpajon, France, DTK-GPMCC-MU-1.16, 2018.
Ceranna, L., Le Pichon, A., Green, D. N., and Mialle, P.: The Buncefield
explosion: a benchmark for infrasound analysis across Central Europe,
Geophys. J. Int., 177, 491–508, https://doi.org/10.1111/j.1365-246X.2008.03998.x, 2009.
Ceranna, L., Matoza, R., Hupe, P., Le Pichon, A, and Landès, M.:
Systematic array processing of a decade of global IMS infrasound data, in:
Infrasound Monitoring
for Atmospheric Studies – Challenges in Middle-atmosphere Dynamics and
Societal Benefits, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., 471–482, Springer,
https://doi.org/10.1007/978-3-319-75140-5_13, 2019.
Che, I.-Y., Park, J., Kim, T. S., Hayward, C., and Stump, B.: On the Use of
a Dense Network of Seismo-Acoustic Arrays for Near-Regional Environmental
Monitoring, in:
Infrasound Monitoring for Atmospheric Studies – Challenges in
Middle-atmosphere Dynamics and Societal Benefits, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., 409–448, Springer,
https://doi.org/10.1007/978-3-319-75140-5_11, 2019.
Christie, D. R. and Campus, P.: The IMS Infrasound Network: Design and
Establishment of Infrasound Stations, in: Infrasound Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and
Hauchecorne, A.,
29–75, Springer, https://doi.org/10.1007/978-1-4020-9508-5_2, 2010.
Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/zenodo.1243862,
2018.
CTBTO Preparatory Commission: France becomes first Nuclear Weapons State to
complete its IMS segment, https://www.ctbto.org/press-centre/news-stories/2020/france-becomes-first-nuclear-weapons-state-to-complete-its-ims-segment/
(last access: 5 July 2021), 2020.
Dabrowa, A. L., Green, D. N., Rust, A. C., and Phillips, J. C.: A global
study of 559 volcanic infrasound characteristics and the potential for
long-range monitoring, Earth Planet Sc. Lett., 310, 369–379,
https://doi.org/10.1016/j.epsl.2011.08.027, 2011.
Dahlman, O., Mykkeltveit, S., and Haak, H.: Nuclear test ban – converting
political visions to reality, Springer, Dordrecht,
https://doi.org/10.1007/978-1-4020-6885-0, 2009.
De Carlo, M., Ardhuin, F., and Le Pichon, A.: Atmospheric infrasound
generation by ocean waves in finite depth: unified theory and application to
radiation patterns, Geophys. J. Int., 221, 569–585,
https://doi.org/10.1093/gji/ggaa015, 2020.
De Carlo, M., Hupe, P., Le Pichon, A., Ceranna, L., and Ardhuin, F.: Global
microbarom patterns: A first confirmation of the theory for source and
propagation, Geophys. Res. Lett., 48, e2020GL090163,
https://doi.org/10.1029/2020GL090163, 2021.
De Groot-Hedlin, C. D., Hedlin, M. A. H., and Drob, D. P.: Atmospheric
Variability and Infrasound Monitoring, in: Infrasound Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and
Hauchecorne, A.,
475–507, Springer, https://doi.org/10.1007/978-1-4020-9508-5_15, 2010.
De Negri, R. S., Rose, K. M., Matoza, R. S., Hupe, P., and Ceranna, L.:
Long-Range Multi-Year Infrasonic Detection of Eruptive Activity at Mount
Michael Volcano, South Sandwich Islands, Geophys. Res. Lett., 49,
e2021GL096061, https://doi.org/10.1029/2021gl096061, 2022.
Den Ouden, O., Assink, J. D., Smets, P. S. M., Shani-Kadmiel, S., Averbuch,
G., and Evers, L.: CLEAN beamforming for the enhanced detection of multiple
infrasonic sources, Geophys. J. Int., 221, 305–317,
https://doi.org/10.1093/gji/ggaa010, 2020.
Drob, D. P., Picone, J. M., and Garcés, M.: Global morphology of
infrasound propagation, J. Geophys. Res.-Atmos., 108, 4680,
https://doi.org/10.1029/2002JD003307, 2003.
Fisher, R. A.: Statistical Methods for Research Workers, in: Breakthroughs in Statistics: Methodology and
Distribution, edited by: Kotz, S. and
Johnson, N. L., 66–70, Springer,
https://doi.org/10.1007/978-1-4612-4380-9_6, 1992.
Garcés, M. A.: On Infrasound Standards, Part 1 – Time, Frequency, and
Energy Scaling, InfraMatics, 2, 13–35, https://doi.org/10.4236/inframatics.2013.22002,
2013.
Garcés, M., Hetzer, C., Merrifield, M., Willis, M., and Aucan, J.:
Observations of surf infrasound in Hawai`i, Geophys. Res. Lett., 30,
2264, https://doi.org/10.1029/2003GL018614, 2003.
Garcés, M., Aucan, J., Fee, D., Caron, P., Merrifield, M., Gibson, R.,
Bhattacharyya, J., and Shah, S.: Infrasound from large surf, Geophys. Res.
Lett., 33, L05611, https://doi.org/10.1029/2005gl025085, 2006.
Global Volcanism Program: Taal (273070), in: Volcanoes of
the World, v. 4.10.2 (24 August 2021), edited by: Venzke, E., Smithsonian Institution,
https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013.
Green, D. N., Vergoz, J., Gibson, R., Le Pichon, A., and Ceranna, L.:
Infrasound radiated by the Gerdec and Chelopechene explosions: Propagation
along unexpected paths, Geophys. J. Int., 185, 890–910,
https://doi.org/10.1111/j.1365-246X.2011.04975.x, 2011.
Hupe, P.: Global infrasound observations and their relation to atmospheric
tides and mountain waves, PhD thesis, Ludwig-Maximilians-Universität
München, Germany, 189 pp., https://doi.org/10.5282/edoc.23790, 2018.
Hupe, P., Ceranna, L., Pilger, C., De Carlo, M., Le Pichon, A., Kaifler, B.,
and Rapp, M.: Assessing middle atmosphere weather models using infrasound
detections from microbaroms, Geophys. J. Int., 216, 1761–1767, https://doi.org/10.1093/gji/ggy520, 2019.
Hupe, P., Ceranna, L., Pilger, C., Le Pichon, A., Blanc, E., and Rapp, M.:
Mountain-Associated Waves and their relation to Orographic Gravity Waves,
Meteorol. Z., 30, 59–77, https://doi.org/10.1127/metz/2019/0982,
2021.
Hupe, P., Ceranna, L., Le Pichon, A., Matoza, R. S., and Mialle, P.: Very
low frequency data products of the International Monitoring System's
infrasound stations, Federal Institute for Geosciences and Natural Resources
[data set], https://doi.org/10.25928/bgrseis_bblf-ifsd, 2021a.
Hupe, P., Ceranna, L., Le Pichon, A., Matoza, R. S., and Mialle, P.:
Microbarom low-frequency data products of the International Monitoring
System's infrasound stations, Federal Institute for Geosciences and Natural
Resources [data set], https://doi.org/10.25928/bgrseis_mblf-ifsd, 2021b.
Hupe, P., Ceranna, L., Le Pichon, A., Matoza, R. S., and Mialle, P.:
Microbarom high-frequency data products of the International Monitoring
System's infrasound stations, Federal Institute for Geosciences and Natural
Resources [data set], https://doi.org/10.25928/bgrseis_mbhf-ifsd, 2021c.
Hupe, P., Ceranna, L., Le Pichon, A., Matoza, R. S., and Mialle, P.: Higher
frequency data products of the International Monitoring System's infrasound
stations, Federal Institute for Geosciences and Natural Resources [data
set], https://doi.org/10.25928/bgrseis_bbhf-ifsd, 2021d.
Koch, K. and Pilger, C.: Infrasound observations from the site of past
underground nuclear explosions in North Korea, Geophys. J. Int., 216,
182–200, https://doi.org/10.1093/gji/ggy381, 2019.
Kristoffersen, S., Le Pichon, A., Hupe, P., and Matoza, R. S.: Updated
global reference models of broadband coherent infrasound signals for
atmospheric studies and civilian applications, Earth Space Sci., 9,
e2022EA002222, https://doi.org/10.1029/2022EA002222, 2022a.
Kristoffersen, S., Le Pichon, A., Hupe, P., and Matoza, R. S.: Global
reference histograms of the IMS infrasound broadband detection lists,
Federal Institute for Geosciences and Natural Resources [data set],
https://doi.org/10.25928/bgrseis_hist-ifsd, 2022b.
Landès, M., Ceranna, L., Le Pichon, A., and Matoza, R. S.: Localization
of microbarom sources using the IMS infrasound network, J. Geophys. Res.,
117, D06102, https://doi.org/10.1029/2011JD016684, 2012.
Landès, M., Le Pichon, A., Shapiro, N. M., Hillers, G., and Campillo,
M.: Explaining global patterns of microbarom observations with wave action
models, Geophys. J. Int., 199, 1328–1337, https://doi.org/10.1093/gji/ggu324, 2014.
Le Pichon, A. and Cansi, Y.: PMCC for Infrasound Data Processing,
InfraMatics, 2, 1–9, 2003.
Le Pichon, A., Maurer, V., Raymond, D., and Hyvernaud, O.: Infrasound from
ocean waves observed in Tahiti, Geophys. Res. Lett., 31, L19103,
https://doi.org/10.1029/2004GL020676, 2004.
Le Pichon, A., Blanc, E., Drob, D., Lambotte, S., Dessa, J., Lardy, M., and
Vergniolle, S.: Infrasound monitoring of volcanoes to probe high-altitude
winds, J. Geophy. Res., 110, D13106, https://doi.org/10.1029/2004JD005587, 2005.
Le Pichon, A., Blanc, E., and Hauchecorne, A. (Eds.): Infrasound Monitoring
for Atmospheric Studies, 1st Edn., Springer, Netherlands, 735 pp.,
https://doi.org/10.1007/978-1-4020-9508-5, 2009.
Le Pichon, A., Matoza, R. S., Brachet, N., and Cansi, Y.: Recent Enhancements
of the PMCC Infrasound Signal Detector, InfraMatics, 26, 5–8, 2010.
Le Pichon, A., Ceranna, L., and Vergoz, J.: Incorporating numerical modeling
into estimates of the detection capability of the IMS infrasound network, J.
Geophys. Res., 117, D05121, https://doi.org/10.1029/2011JD016670, 2012.
Le Pichon, A., Ceranna, L., Pilger, C., Mialle, P., Brown, D., Herry, P.,
and Brachet, N.: The 2013 Russian fireball largest ever detected by CTBTO
infrasound sensors, Geophys. Res. Lett., 40, 1–6, https://doi.org/10.1002/grl.50619,
2013.
Le Pichon, A., Assink, J. D., Heinrich, P., Blanc, E., Charlton-Perez, A., Lee, C. F., Keckhut, P., Hauchecorne, A., Rüfenacht, R., Kämpfer, N., Drob, D. P., Smets, P. S. M., Evers, L. G., Ceranna, L., Pilger, C., Ross, O., and Claud, C.: Comparison of co-located independent ground-based middle
atmospheric wind and temperature measurements with numerical weather
prediction models, J. Geophys. Res.-Atmos., 120, 8318–8331,
https://doi.org/10.1002/2015JD023273, 2015.
Le Pichon, A., Blanc, E., and Hauchecorne, A. (Eds.): Infrasound Monitoring
for Atmospheric Studies – Challenges in Middle Atmosphere Dynamics and
Societal Benefits, 2nd Edn., Springer Int., 1167 pp.,
https://doi.org/10.1007/978-3-319-75140-5, 2019a.
Le Pichon, A., Ceranna, L., Vergoz, J., and Tailpied, D.: Modeling the
Detection Capability of the Global IMS Infrasound Network, in: Infrasound Monitoring for
Atmospheric Studies – Challenges in Middle-atmosphere Dynamics and Societal
Benefits, edited by: Le Pichon,
A., Blanc, E., and Hauchecorne, A., 2nd Edn., 593–604, Springer,
https://doi.org/10.1007/978-3-319-75140-5_17, 2019b.
Le Pichon, A., Pilger, C., Ceranna, L., Marchetti, E., Lacanna, G., Souty,
V., Vergoz, J., Listowski, C., Hernandez, B., Mazet-Roux, G., Dupont, A.,
and Hereil, P.: Using dense seismo-acoustic network to provide timely
warning of the 2019 paroxysmal Stromboli eruptions, Sci. Rep.-UK, 11,
14464, https://doi.org/10.1038/s41598-021-93942-x, 2021.
Lonzaga, J. B.: A theoretical relation between the celerity and trace
velocity of infrasonic phases, J. Acoust. Soc.
Am., 138, EL242–EL247, https://doi.org/10.1121/1.4929628, 2015.
Marchetti, E., Ripepe, M., Campus, P., Le Pichon, A., Vergoz, J., Lacanna,
G., Mialle, P., Hereil, P., and Husson, P.: Long range infrasound monitoring
of Etna volcano, Sci. Rep.-UK, 9, 18015, https://doi.org/10.1038/s41598-019-54468-5, 2019.
Marty, J.: The IMS Infrasound Network: Current Status and Technological
Developments, in:
Infrasound Monitoring for Atmospheric Studies – Challenges in
Middle-atmosphere Dynamics and Societal Benefits, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., 3–62, Springer,
https://doi.org/10.1007/978-3-319-75140-5_1, 2019.
Marty, J., Doury, B., and Kramer, A.: Low and High Broadband Spectral Models
of Atmospheric Pressure Fluctuation,
J. Atmos. Ocean. Tech., 38, 1813–1822, https://doi.org/10.1175/jtech-d-21-0006.1, 2021.
Matoza, R. S., Le Pichon, A., Vergoz, J., Herry, P., Lalande, J.-M., Lee,
H., Che, I.-Y., and Rybin, A.: Infrasonic observations of the June 2009
Sarychev Peak eruption, Kuril Islands: Implications for infrasonic
monitoring of remote explosive volcanism, J. Volcanol.
Geoth. Res., 200, 35–48, https://doi.org/10.1016/j.jvolgeores.2010.11.022,
2011a.
Matoza, R. S., Vergoz, J., Le Pichon, A., Ceranna, L., Green, D. N., Evers,
L. G., Ripepe, M., Campus, P., Liszka, L., Kvaerna, T., Kjartansson, E., and
Höskuldsson, Á.: Long-range acoustic observations of the
Eyjafjallajökull eruption, Iceland, April–May 2010, Geophys. Res. Lett.,
38, L06308, https://doi.org/10.1029/2011gl047019, 2011b.
Matoza, R. S., Landès, M., Le Pichon, A., Ceranna, L., and Brown, D.:
Coherent ambient infrasound recorded by the International Monitoring System,
Geophys. Res. Lett., 40, 429–433, https://doi.org/10.1029/2012GL054329, 2013.
Matoza, R. S., Green, D. N., Pichon, A. Le, Shearer, P. M., Fee, D., Mialle,
P., and Ceranna, L.: Automated detection and cataloging of global explosive
volcanism using the International Monitoring System infrasound network, J.
Geophys. Res.-Sol. Ea., 122, 2946–2971, https://doi.org/10.1002/2016JB013356, 2017.
Matoza, R. S., Fee, D., Green, D. N., Le Pichon, A., Vergoz, J., Haney, M.
M., Mikesell, T. D., Franco, L., Valderrama, O. A., Kelley, M. R., McKee,
K., and Ceranna, L.: Local, Regional, and Remote Seismo-acoustic
Observations of the April 2015 VEI 4 Eruption of Calbuco Volcano, Chile, J.
Geophys. Res.-Sol. Ea., 123, 3814–3827, https://doi.org/10.1002/2017JB015182, 2018.
Matoza, R., Fee, D., Green, D., and Mialle, P.: Volcano Infrasound and the
International Monitoring System; in: Infrasound Monitoring for Atmospheric Studies –
Challenges in Middle-atmosphere Dynamics and Societal Benefits, edited by: Le Pichon, A., Blanc, E., and
Hauchecorne, A., 1023–1077,
Springer, https://doi.org/10.1007/978-3-319-75140-5_33, 2019.
Matoza, R. S., Fee, D., Assink, J. D., Iezzi, A. M., Green, D. N., Kim, K., Toney, L., Lecocq, T., Krishnamoorthy, S., Lalande, J.-M., Nishida, K., Gee, K. L., Haney, M. M., Ortiz, H. D., Brissaud, Q., Martire, L., Rolland, L., Vergados, P., Nippress, A., Park, J., Shani-Kadmiel, S., Witsil, A., Arrowsmith, S., Caudron, C., Watada, S., Perttu, A. B., Taisne, B., Mialle, P., Le Pichon, A., Vergoz, J., Hupe, P., Blom, P. S., Waxler, R., De Angelis, S., Snively, J. B., Ringler, A. T., Anthony, R. E., Jolly, A. D., Kilgour, G., Averbuch, G., Ripepe, M., Ichihara, M., Arciniega-Ceballos, A., Astafyeva, E., Ceranna, L., Cevuard, S., Che, I.-Y., De Negri, R., Ebeling, C. W., Evers, L. G., Franco-Marin, L. E., Gabrielson, T. B., Hafner, K., Harrison, R. G., Komjathy, A., Lacanna, G., Lyons, J., Macpherson, K. A., Marchetti, E., McKee, K. F., Mellors, R. J., Mendo-Pérez, G., Mikesell, T. D., Munaibari, E., Oyola-Merced, M., Park, I., Pilger, C., Ramos, C., Ruiz, M. C., Sabatini, R., Schwaiger, H. F., Tailpied, D., Talmadge, C., Vidot, J., Webster, J., and Wilson, D. C.: Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga, Science, 377, 95–100, https://doi.org/10.1126/science.abo7063, 2022.
McKee, K., Smith, C., Reath, K., Snee, E., Maher, S., Matoza, R. S., Carn,
S., Mastin, L., Anderson, K., Damby, D., Roman, D., Degterev, A., Rybin, A.,
Chibisova, M., Assink, J., de Negri Leiva, R., and Perttu, A.: Evaluating
the state-of-the-art in remote volcanic eruption characterization Part I:
Raikoke volcano, Kuril Islands, J. Volcanol. Geoth.
Res., 419, 107354, https://doi.org/10.1016/j.jvolgeores.2021.107354, 2021.
Melton, B. S. and Bailey, L. F.: Multiple Signal Correlators, Geophysics,
22, 565–588, https://doi.org/10.1190/1.1438390, 1957.
Mialle, P., Brown, D., and Arora, N.: Advances in Operational Processing at
the International Data Centre, in: Infrasound Monitoring for Atmospheric Studies –
Challenges in Middle-atmosphere Dynamics and Societal Benefits, edited by: Le Pichon, A., Blanc, E., and
Hauchecorne, A., 209–248,
Springer, https://doi.org/10.1007/978-3-319-75140-5_6, 2019.
NOAA National Geophysical Data Center: ETOPO1 1 Arc-Minute Global Relief
Model, NOAA National Centers for Environmental Information [data set], https://doi.org/10.7289/V5C8276M, 2009.
Ott, T., Drolshagen, E., Koschny, D., Mialle, P., Pilger, C., Vaubaillon,
J., Drolshagen, G., and Poppe, B.: Combination of infrasound signals and
complementary data for the analysis of bright fireballs, Planet. Space Sci.,
179, 104715, https://doi.org/10.1016/j.pss.2019.104715, 2019.
Perttu, A., Taisne, B., De Angelis, S., Assink, J. D., Tailpied, D., and
Williams, R. A.: Estimates of plume height from infrasound for regional
volcano monitoring, J. Volcanol. Geoth. Res., 402,
106997, https://doi.org/10.1016/j.jvolgeores.2020.106997, 2020.
Pilger, C., Ceranna, L., Ross, J.O., Le Pichon, A., Mialle, P., and
Garcés, M.: CTBT infrasound network performance to detect the 2013
Russian fireball event, Geophys. Res. Lett., 42, 2523–2531,
https://doi.org/10.1002/2015GL063482, 2015.
Pilger, C., Ceranna, L., and Bönnemann, C. (Eds.): Monitoring Compliance
with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) – Contributions by
the German National Data Center, Geolog. Jahrbuch B 105, Bundesanstalt
für Geowissenschaften und Rohstoffe, Hannover, Germany, 325 pp., ISBN 978-3-510-96858-9, 2017.
Pilger, C., Gaebler, P., Hupe, P., Ott, T., and Drolshagen, E.: Global
Monitoring and Characterization of Infrasound Signatures by Large Fireballs,
Atmosphere, 11, 83, https://doi.org/10.3390/atmos11010083, 2020.
Pilger, C., Gaebler, P., Hupe, P., Kalia, A. C., Schneider, F. M.,
Steinberg, A., Sudhaus, H., and Ceranna, L.: Yield estimation of the 2020
Beirut explosion using open access waveform and remote sensing data, Sci.
Rep.-UK, 11, 14144, https://doi.org/10.1038/s41598-021-93690-y, 2021a.
Pilger, C., Hupe, P., Gaebler, P., and Ceranna, L.: 1001 Rocket Launches for
Space Missions and Their Infrasonic Signature, Geophys. Res. Lett., 48,
e2020GL092262, https://doi.org/10.1029/2020GL092262, 2021b.
ReVelle, D. O.: Historical detection of atmospheric impacts by large bolides
using acoustic-gravity waves, Annals New York Acad. Sci., 822, 284–302,
1997.
Ripepe, M., Marchetti, E., Delle Donne, D., Genco, R., Innocenti, L.,
Lacanna, G., and Valade, S.: Infrasonic Early Warning System for Explosive
Eruptions, J. Geophys. Res.-Sol. Ea., 123, 9570–9585,
https://doi.org/10.1029/2018jb015561, 2018.
Runco Jr., A., Louthain, J., and Clauter, D.: Optimizing the PMCC Algorithm
for Infrasound and Seismic Nuclear Treaty Monitoring,
Open Journal of Acoustics, 4, 204–213, https://doi.org/10.4236/oja.2014.44020, 2014.
Smets, P. S. M. and Evers, L. G.: The life cycle of a sudden stratospheric
warming from infrasonic ambient noise observations, J. Geophys. Res.,
119, 12084–12099, https://doi.org/10.1002/2014JD021905, 2014.
Sutherland, L. C. and Bass, H. E.: Atmospheric absorption in the atmosphere
up to 160 km, J. Acoust. Soc. Am., 115, 1012–1032, https://doi.org/10.1121/1.1631937,
2004.
Tillman, N. T.: Fireball over the Bering Sea, Eos, 100, https://doi.org/10.1029/2019eo119503,
2019.
Vergoz, J., Hupe, P., Listowski, C., Le Pichon, A., Garcés, M. A., Marchetti, E., Labazuy, P., Ceranna, L., Pilger, C., Gaebler, P., Näsholm, S. P., Brissaud, Q., Poli, P., Shapiro, N., De Negri, R., and Mialle, P.: IMS observations of infrasound and acoustic-gravity waves produced by the January 2022 volcanic eruption of Hunga, Tonga: A global analysis, Earth Planet. Sc. Lett., 591, 117639, https://doi.org/10.1016/j.epsl.2022.117639, 2022.
Vorobeva, E., De Carlo, M., Le Pichon, A., Espy, P. J., and Näsholm, S. P.: Benchmarking microbarom radiation and propagation model against infrasound recordings: a vespagram-based approach, Ann. Geophys., 39, 515–531, https://doi.org/10.5194/angeo-39-515-2021, 2021.
Whitaker, R. W., Sondoval, T., and Mutschlecner, J. P.: Recent infrasound
analysis; in Proceedings of the 25th Seismic Research Review-Nuclear
Explosion Monitoring: Building the Knowledge Base, 646–654, Natl. Nucl.
Security Admin., Washington, DC, 1027445, 2003.
Wilson, D. K.: The sound-speed gradient and refraction in the near-ground
atmosphere, J. Acoust. Soc. Am., 113, 750–757, https://doi.org/10.1121/1.1532028,
2003.
Wilson, C. R., Szuberla, C. A. L., and Olson, J. V.: High-latitude
Observations of Infrasound from Alaska and Antarctica: Mountain-Associated
Waves and Geomagnetic/Auroral Infrasonic Signals, in: Infrasound Monitoring for Atmospheric
Studies, edited by: Le Pichon, A., Blanc,
E., and Hauchecorne, A., 415–454, Springer, https://doi.org/10.1007/978-1-4020-9508-5_13, 2010.
Short summary
Sound waves with frequencies below the human hearing threshold can travel long distances through the atmosphere. A global network of sensors records such infrasound to detect clandestine nuclear tests in the atmosphere. These data are generally not public. This study provides four data products based on global infrasound signal detections to make infrasound data available to a broad community. This will advance the use of infrasound observations for scientific studies and civilian applications.
Sound waves with frequencies below the human hearing threshold can travel long distances through...
Altmetrics
Final-revised paper
Preprint