Articles | Volume 14, issue 3
https://doi.org/10.5194/essd-14-1109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Reading Palaeofire Database: an expanded global resource to document changes in fire regimes from sedimentary charcoal records
Sandy P. Harrison
CORRESPONDING AUTHOR
School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AH, UK
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London, SW7 2BW, UK
Roberto Villegas-Diaz
School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AH, UK
Esmeralda Cruz-Silva
School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AH, UK
Daniel Gallagher
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London, SW7 2BW, UK
Department of Geography, Royal Holloway, University of London, Egham,
TW20 0SS, UK
David Kesner
School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AH, UK
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London, SW7 2BW, UK
Paul Lincoln
School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AH, UK
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London, SW7 2BW, UK
Yicheng Shen
School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AH, UK
Luke Sweeney
School of Archaeology, Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AH, UK
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London, SW7 2BW, UK
Daniele Colombaroli
Leverhulme Centre for Wildfires, Environment and Society, Imperial
College London, South Kensington, London, SW7 2BW, UK
Department of Geography, Royal Holloway, University of London, Egham,
TW20 0SS, UK
Adam Ali
Institut des Sciences de l'Evolution de Montpellier (CNRS,
IRD, EPHE), Université de Montpellier, 34090 Montpellier, France
Chéïma Barhoumi
Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Untere
Karspüle 2, 37073 Göttingen, Germany
Yves Bergeron
Forest Research Institute (IRF), Université du Québec en
Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, J9X 5E4, Canada
Department of Biological Sciences, Université du Québec à
Montréal (UQAM), Montréal, QC, H3C 3P8, Canada
Tatiana Blyakharchuk
Institute of Monitoring of Climatic and Ecological Systems of Siberian
branch of the Russian Academy of Sciences (IMCES SB RAS), 634055, Tomsk, Russia
Přemysl Bobek
Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 602 00
Brno, Czech Republic
Richard Bradshaw
Geography and Planning, University of Liverpool, Liverpool, L69 7ZT, UK
Jennifer L. Clear
Department of Geography and Environmental Science, Liverpool Hope
University, Taggart Street, Childwall, Liverpool, L16 9JD, UK
Sambor Czerwiński
Climate Change Ecology Research Unit, Faculty of Geographical and
Geological Sciences, Adam Mickiewicz University Poznań, Bogumiła
Krygowskiego 10, 61-680 Poznań, Poland
Anne-Laure Daniau
Environnements et Paléoenvironnements Océaniques et Continentaux
(EPOC), Unité Mixte de Recherche (UMR) 5805, Centre National de la
Recherche Scientifique (CNRS), Université de Bordeaux, 33615 Pessac,
France
John Dodson
Institute of Earth Environment, Chinese Academy of Sciences, Keji 1st
Rd, Yanta District, Xi'an, Shaanxi, 710061, Shaanxi Province, China
School of Earth, Atmospheric and Life Sciences, University of
Wollongong, Wollongong, NSW 2500, Australia
Kevin J. Edwards
Department of Geography and Environment, University of
Aberdeen, Aberdeen, AB24 3UX, UK
Department of Archaeology, University of Aberdeen, AB24 3UX, UK
McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, CB2 1TN, UK
Scott Polar Research Institute, University of Cambridge, Cambridge, CB2 1TN, UK
Mary E. Edwards
School of Geography and Environmental Science, University of
Southampton, Southampton, SO17 1BJ, UK
Angelica Feurdean
Institute of Physical Geography, Goethe University Frankfurt, Altenhöferallee
1, 60438 Frankfurt am Main, Germany
David Foster
Harvard Forest, Harvard University, Petersham, MA 01366, USA
Konrad Gajewski
Département de Géographie, Environnement et Géomatique,
Université d'Ottawa, Ottawa, ON, K1N 6N5, Canada
Mariusz Gałka
Department of Biogeography, Paleoecology and Nature Protection, Faculty of Biology and Environmental Protection, University of Lodz, 1/3 Banacha
St., 90-237 Łódź, Poland
Michelle Garneau
Geotop, Université du Québec à Montréal,
Montréal, QC, H2X 3Y7, Canada
Thomas Giesecke
Department of Physical Geography, Faculty of Geosciences, Utrecht
University, 2584 CS Utrecht, the Netherlands
Graciela Gil Romera
Instituto Pirenaico de Ecología – CSIC, Avda. Montañana 1005,
50059 Zaragoza, Spain
Plant Ecology and Geobotany, Philipps
University of Marburg, Karl-Von-Frisch-Straße 8, 35037 Marburg, Germany
Martin P. Girardin
Laurentian Forestry
Centre, Canadian Forest Service, Natural Resources Canada, Québec City, QC, G1V V4C, Canada
Dana Hoefer
Senckenberg Research Station of Quaternary Palaeontology, Am
Jakobskirchhof 4, 99423 Weimar, Germany
Kangyou Huang
School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai
519082, China
Jun Inoue
Department of Geosciences, Graduate School of Science, Osaka City
University, Osaka 558-8585, Japan
Eva Jamrichová
Institute of Botany, Czech Academy of Sciences, Lidická 25/27, 602 00
Brno, Czech Republic
Nauris Jasiunas
Department of Geography, University of Latvia, Jelgavas iela 1, Riga,
1004, Latvia
Wenying Jiang
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology
and Geophysics, Chinese Academy of Sciences, No. 19 Beitucheng West Rd, Beijing, 100029, China
Gonzalo Jiménez-Moreno
Departamento de Estratigrafía y Paleontología, Facultad de
Ciencias, Universidad de Granada, Avda. Fuente Nueva S/N, 18002 Granada,
Spain
Monika Karpińska-Kołaczek
Climate Change Ecology Research Unit, Faculty of Geographical and
Geological Sciences, Adam Mickiewicz University Poznań, Bogumiła
Krygowskiego 10, 61-680 Poznań, Poland
Piotr Kołaczek
Climate Change Ecology Research Unit, Faculty of Geographical and
Geological Sciences, Adam Mickiewicz University Poznań, Bogumiła
Krygowskiego 10, 61-680 Poznań, Poland
Niina Kuosmanen
Department of Geosciences and Geography, University of Helsinki, P.O. Box
64, 00014, Helsinki, Finland
Mariusz Lamentowicz
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University Poznań, Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
Martin Lavoie
Département de géographie, Université Laval, Québec City, QC, G1V 0A6,
Canada
International Center for Climate and Environment Sciences, Institute of
Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Jianyong Li
Shaanxi Key Laboratory of Earth Surface System and Environmental
Carrying Capacity, College of Urban and Environmental Sciences, Northwest
University, Xi'an 710127, China
Olga Lisitsyna
Department of Geology, Tallinn University of Technology, Ehitajate tee
5, 19086 Tallinn, Estonia
Russian State Agrarian University, Timiryazevskaya St., 49, 127550,
Moscow, Russia
José Antonio López-Sáez
Environmental Archaeology Research Group, Institute of History, CSIC, 28037
Madrid, Spain
Reyes Luelmo-Lautenschlaeger
Environmental Archaeology Research Group, Institute of History, CSIC, 28037
Madrid, Spain
Gabriel Magnan
Geotop, Université du Québec à Montréal,
Montréal, QC, H2X 3Y7, Canada
Eniko Katalin Magyari
ELKH-MTM-ELTE
Research Group for Paleontology, Department of Environmental and Landscape Geography, Eötvös Loránd university,
Pazmany Peter stny 1/c, 1117 Budapest, Hungary
Alekss Maksims
Department of Geology, University of Latvia, Jelgavas iela 1, Riga,
1004, Latvia
Katarzyna Marcisz
Climate Change Ecology Research Unit, Faculty of Geographical and
Geological Sciences, Adam Mickiewicz University Poznań, Bogumiła
Krygowskiego 10, 61-680 Poznań, Poland
Elena Marinova
Laboratory for Archaeobotany, State Office for Cultural Heritage
Baden-Württemberg, Fischersteig 9, 78343 Gaienhofen-Hemmenhofen, Germany
Jenn Marlon
Yale School of the Environment, New Haven, CT 06511, USA
Scott Mensing
Department of Geography, University of Nevada, Reno, 1664 N Virginia St.,
Reno, NV 89557, USA
Joanna Miroslaw-Grabowska
Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw,
Poland
Wyatt Oswald
Harvard Forest, Harvard University, Petersham, MA 01366, USA
Marlboro Institute for Liberal Arts and Interdisciplinary Studies,
Emerson College, Boston, MA 02116, USA
Sebastián Pérez-Díaz
Department of Geography, Urban and Regional Planning, University of
Cantabria, 39005 Santander, Spain
Ramón Pérez-Obiol
Unitat de Botànica, Facultat de Biociències, Universitat
Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
Sanna Piilo
Ecosystems, Environment Research Programme, Environmental Change Research Unit
(ECRU), Faculty of Biological
and Environmental Sciences, University of
Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
Anneli Poska
Department of Geology, Tallinn University of Technology, Ehitajate tee
5, 19086 Tallinn, Estonia
Department of Physical Geography and Ecosystem Science, Lund University,
Lund, Sweden
Xiaoguang Qin
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology
and Geophysics, Chinese Academy of Sciences, No. 19 Beitucheng West Rd, Beijing, 100029, China
Cécile C. Remy
Institut für Geographie, Universität Augsburg, 86135 Augsburg,
Germany
Pierre J. H. Richard
Département de Géographie, Université
de Montréal, Montréal, QC, H2V 0B3, Canada
Sakari Salonen
Department of Geosciences and Geography, University of Helsinki, P.O. Box
64, 00014, Helsinki, Finland
Naoko Sasaki
Graduate School of Life and Environmental Sciences, Kyoto
Prefectural University, Shimogamo, Sakyo-ku, 1-5 Hangi-cho, 606-8522 Kyoto,
Japan
Hieke Schneider
Institut für Geographie, Friedrich-Schiller-Universität Jena,
Löbdergraben 32, 07743 Jena, Germany
William Shotyk
Department of Renewable Resources, University of Alberta, 348B South
Academic Building, Edmonton, AB, T6G 2H1, Canada
Migle Stancikaite
Institute of Geology and Geography, Nature Research Centre, Akademijos
St. 2, 08412, Vilnius, Lithuania
Dace Šteinberga
Department of Geology, University of Latvia, Jelgavas iela 1, Riga,
1004, Latvia
Normunds Stivrins
Department of Geography, University of Latvia, Jelgavas iela 1, Riga,
1004, Latvia
Department of Geology, Tallinn University of Technology, Ehitajate tee
5, 19086 Tallinn, Estonia
Institute of Latvian History, University of Latvia, Kalpaka blv. 4,
Riga, 1050, Latvia
Hikaru Takahara
Graduate School of Agriculture, Kyoto Prefectural University, Shimogamo,
Sakyo-ku, 1-5, Hangi-cho, 606-8522 Kyoto, Japan
Zhihai Tan
School of Environment and Chemistry Engineering, Xi'an Polytechnic
University, Xi'an, Shaanxi 710048, China
Liva Trasune
Department of Geography, University of Latvia, Jelgavas iela 1, Riga,
1004, Latvia
Department of Geosciences and Geography, University of Helsinki, P.O. Box
64, 00014, Helsinki, Finland
Charles E. Umbanhowar
Department of Biology, St Olaf College, 1520
St Olaf Ave, Northfield, MN 55057, USA
Department of Environmental Studies, St Olaf College, 1520
St Olaf Ave, Northfield, MN 55057, USA
Minna Väliranta
Ecosystems, Environment Research Programme, Environmental Change Research Unit
(ECRU), Faculty of Biological
and Environmental Sciences, University of
Helsinki, Viikinkaari 1, P.O. Box 65, 00014, Helsinki, Finland
Jüri Vassiljev
Department of Geology, Tallinn University of Technology, Ehitajate tee
5, 19086 Tallinn, Estonia
Xiayun Xiao
State Key Laboratory of Lake Science and Environment, Nanjing Institute
of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008,
China
Qinghai Xu
College of Resources and Environment Science, Hebei Normal University,
Shijiazhuang 050024, China
Xin Xu
International Center for Climate and Environment Sciences, Institute of
Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
Edyta Zawisza
Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw,
Poland
Yan Zhao
Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, Beijing 100101, China
Zheng Zhou
School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai
519082, China
Jordan Paillard
Département de Géographie, Université
de Montréal, Montréal, QC, H2V 0B3, Canada
Related authors
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-864, https://doi.org/10.5194/egusphere-2023-864, 2023
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstructed changes in 4 climate variables using fossil pollen samples from the eastern Mediterranean. The reconstructions were expressed as time series that were compared with transient climate model simulations to explore possible causes. The early Holocene was colder-drier than the present, but these conditions improved between 10.3 and 9.3 ka. Changes in winter temperature are consistent with insolation changes, while summer temperature was likely influenced by the relict of polar caps.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2023-506, https://doi.org/10.5194/egusphere-2023-506, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size and intensity under Last Glacial Maximum (LGM) conditions, using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Sarah E. Parker, Sandy P. Harrison, Laia Comas-Bru, Nikita Kaushal, Allegra N. LeGrande, and Martin Werner
Clim. Past, 17, 1119–1138, https://doi.org/10.5194/cp-17-1119-2021, https://doi.org/10.5194/cp-17-1119-2021, 2021
Short summary
Short summary
Regional trends in the oxygen isotope (δ18O) composition of stalagmites reflect several climate processes. We compare stalagmite δ18O records from monsoon regions and model simulations to identify the causes of δ18O variability over the last 12 000 years, and between glacial and interglacial states. Precipitation changes explain the glacial–interglacial δ18O changes in all monsoon regions; Holocene trends are due to a combination of precipitation, atmospheric circulation and temperature changes.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Guangqi Li, Sandy P. Harrison, and I. Colin Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-63, https://doi.org/10.5194/bg-2019-63, 2019
Publication in BG not foreseen
Short summary
Short summary
Current methods of removing age effect from tree-ring are influenced by sampling biases – older trees are more abundantly sampled for recent decades, when the strongest environmental change happens. New technique of extracting environment-driven signals from tree ring is specifically designed to overcome this bias, drawing on theoretical tree growth. It removes sampling-bias effectively and shows consistent relationships between growth and climates through time and across two conifer species.
Dongyang Wei, Penélope González-Sampériz, Graciela Gil-Romera, Sandy P. Harrison, and I. Colin Prentice
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-16, https://doi.org/10.5194/cp-2019-16, 2019
Revised manuscript not accepted
Short summary
Short summary
El Cañizar de Villarquemado provides a pollen record from semi-arid Spain since before the last interglacial. We use modern pollen–climate relationships to reconstruct changes in seasonal temperature and moisture, accounting for CO2 effects on plants, and show coherent climate changes on glacial–interglacial and orbital timescales. The low glacial CO2 means moisture changes are less extreme than suggested by the vegetation shifts, and driven by evapotranspiration rather than rainfall changes.
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Short summary
Weather, humans, and vegetation control the occurrence of fires. In this study we find that global fire–vegetation models underestimate the strong increase of burned area with higher previous-season plant productivity in comparison to satellite-derived relationships.
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
Sandy P. Harrison, Patrick J. Bartlein, Victor Brovkin, Sander Houweling, Silvia Kloster, and I. Colin Prentice
Earth Syst. Dynam., 9, 663–677, https://doi.org/10.5194/esd-9-663-2018, https://doi.org/10.5194/esd-9-663-2018, 2018
Short summary
Short summary
Temperature affects fire occurrence and severity. Warming will increase fire-related carbon emissions and thus atmospheric CO2. The size of this feedback is not known. We use charcoal records to estimate pre-industrial fire emissions and a simple land–biosphere model to quantify the feedback. We infer a feedback strength of 5.6 3.2 ppm CO2 per degree of warming and a gain of 0.09 ± 0.05 for a climate sensitivity of 2.8 K. Thus, fire feedback is a large part of the climate–carbon-cycle feedback.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
A. V. Gallego-Sala, D. J. Charman, S. P. Harrison, G. Li, and I. C. Prentice
Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, https://doi.org/10.5194/cp-12-129-2016, 2016
Short summary
Short summary
It has become a well-established paradigm that blanket bog landscapes in the British Isles are a result of forest clearance by early human populations. We provide a novel test of this hypothesis using results from bioclimatic modelling driven by cimate reconstructions compared with a database of peat initiation dates. Both results show similar patterns of peat initiation over time and space. This suggests that climate was the main driver of blanket bog inception and not human disturbance.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
T.-T. Meng, H. Wang, S. P. Harrison, I. C. Prentice, J. Ni, and G. Wang
Biogeosciences, 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015, https://doi.org/10.5194/bg-12-5339-2015, 2015
Short summary
Short summary
By analysing the quantitative leaf-traits along extensive temperature and moisture gradients with generalized linear models, we found that metabolism-related traits are universally acclimated to environmental conditions, rather than being fixed within plant functional types. The results strongly support a move towards Dynamic Global Vegetation Models in which continuous, adaptive trait variation provides the fundamental mechanism for changes in ecosystem properties along environmental gradients.
G. Li, S. P. Harrison, and I. C. Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-4769-2015, https://doi.org/10.5194/bgd-12-4769-2015, 2015
Revised manuscript has not been submitted
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Esmeralda Cruz-Silva, Sandy P. Harrison, I. Colin Prentice, Elena Marinova, Patrick J. Bartlein, Hans Renssen, and Yurui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-864, https://doi.org/10.5194/egusphere-2023-864, 2023
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
We reconstructed changes in 4 climate variables using fossil pollen samples from the eastern Mediterranean. The reconstructions were expressed as time series that were compared with transient climate model simulations to explore possible causes. The early Holocene was colder-drier than the present, but these conditions improved between 10.3 and 9.3 ka. Changes in winter temperature are consistent with insolation changes, while summer temperature was likely influenced by the relict of polar caps.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Mengmeng Liu, Yicheng Shen, Penelope González-Sampériz, Graciela Gil-Romera, Cajo J. F. ter Braak, Iain Colin Prentice, and Sandy P. Harrison
Clim. Past, 19, 803–834, https://doi.org/10.5194/cp-19-803-2023, https://doi.org/10.5194/cp-19-803-2023, 2023
Short summary
Short summary
We reconstructed the Holocene climates in the Iberian Peninsula using a large pollen data set and found that the west–east moisture gradient was much flatter than today. We also found that the winter was much colder, which can be expected from the low winter insolation during the Holocene. However, summer temperature did not follow the trend of summer insolation, instead, it was strongly correlated with moisture.
Olivia Haas, Iain Colin Prentice, and Sandy P. Harrison
EGUsphere, https://doi.org/10.5194/egusphere-2023-506, https://doi.org/10.5194/egusphere-2023-506, 2023
Short summary
Short summary
We quantify the impact of CO2 and climate on global patterns of burnt area, fire size and intensity under Last Glacial Maximum (LGM) conditions, using three climate scenarios. Climate change alone did not produce the observed LGM reduction in burnt area, but low CO2 did through reducing vegetation productivity. Fire intensity was sensitive to CO2 but strongly affected by changes in atmospheric dryness. Low CO2 caused smaller fires; climate had the opposite effect except in the driest scenario.
Antonin Prijac, Laure Gandois, Pierre Taillardat, Marc-André Bourgault, Khawla Riahi, Alex Ponçot, Alain Tremblay, and Michelle Garneau
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-426, https://doi.org/10.5194/hess-2022-426, 2023
Preprint under review for HESS
Short summary
Short summary
The peatland dissolved organic carbon (DOC) lost through aquatic exports can offset a significant proportion of the ecosystem carbon balance. Hence, we propose a new approach to better estimate the DOC exports, based on the specific contribution of a boreal peatland (Canada) during periods of high flow. In addition, we studied the relations between DOC concentrations and stream discharge in order to better understand the DOC export mechanisms under contrasted hydrometeorological conditions.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Matthew Forrest, and Michel Bechtold
EGUsphere, https://doi.org/10.5194/egusphere-2023-281, https://doi.org/10.5194/egusphere-2023-281, 2023
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socio-economic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes are already induced by climate change.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Lucas Bittner, Cindy De Jonge, Graciela Gil-Romera, Henry F. Lamb, James M. Russell, and Michael Zech
Biogeosciences, 19, 5357–5374, https://doi.org/10.5194/bg-19-5357-2022, https://doi.org/10.5194/bg-19-5357-2022, 2022
Short summary
Short summary
With regard to global warming, an understanding of past temperature changes is becoming increasingly important. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids used globally to reconstruct lake water temperatures. In the Bale Mountains lakes, we find a unique composition of brGDGT isomers. We present a modified local calibration and a new high-altitude temperature reconstruction from the Horn of Africa spanning the last 12.5 kyr.
Antonin Prijac, Laure Gandois, Laurent Jeanneau, Pierre Taillardat, and Michelle Garneau
Biogeosciences, 19, 4571–4588, https://doi.org/10.5194/bg-19-4571-2022, https://doi.org/10.5194/bg-19-4571-2022, 2022
Short summary
Short summary
Pools are common features of peatlands. We documented dissolved organic matter (DOM) composition in pools and peat of an ombrotrophic boreal peatland to understand its origin and potential role in the peatland carbon budget. The survey reveals that DOM composition differs between pools and peat, although it is derived from the peat vegetation. We investigated which processes are involved and estimated that the contribution of carbon emissions from DOM processing in pools could be substantial.
Angelica Feurdean, Andrei-Cosmin Diaconu, Mirjam Pfeiffer, Mariusz Gałka, Simon M. Hutchinson, Geanina Butiseaca, Natalia Gorina, Spassimir Tonkov, Aidin Niamir, Ioan Tantau, Hui Zhang, and Sergey Kirpotin
Clim. Past, 18, 1255–1274, https://doi.org/10.5194/cp-18-1255-2022, https://doi.org/10.5194/cp-18-1255-2022, 2022
Short summary
Short summary
We used palaeoecological records from peatlands in southern Siberia. We showed that warmer climate conditions have lowered the water level and increased the fuel amount and flammability, consequently also increasing the frequency and severity of fires as well as the composition of tree types.
Yicheng Shen, Luke Sweeney, Mengmeng Liu, Jose Antonio Lopez Saez, Sebastián Pérez-Díaz, Reyes Luelmo-Lautenschlaeger, Graciela Gil-Romera, Dana Hoefer, Gonzalo Jiménez-Moreno, Heike Schneider, I. Colin Prentice, and Sandy P. Harrison
Clim. Past, 18, 1189–1201, https://doi.org/10.5194/cp-18-1189-2022, https://doi.org/10.5194/cp-18-1189-2022, 2022
Short summary
Short summary
We present a method to reconstruct burnt area using a relationship between pollen and charcoal abundances and the calibration of charcoal abundance using modern observations of burnt area. We use this method to reconstruct changes in burnt area over the past 12 000 years from sites in Iberia. We show that regional changes in burnt area reflect known changes in climate, with a high burnt area during warming intervals and low burnt area when the climate was cooler and/or wetter than today.
Ulrike Herzschuh, Thomas Böhmer, Manuel Chevalier, Anne Dallmeyer, Chenzhi Li, Xianyong Cao, Raphaël Hébert, Odile Peyron, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
EGUsphere, https://doi.org/10.5194/egusphere-2022-127, https://doi.org/10.5194/egusphere-2022-127, 2022
Short summary
Short summary
A mismatch between model- and proxy-based Holocene climate change may partially originate from the poor spatial coverage of climate reconstructions. Here we investigate quantitative reconstructions of mean annual temperature and annual precipitation from 1676 pollen records in the Northern Hemisphere. Trends show strong latitudinal patterns and differ between (sub-)continents. Our work contributes to a better understanding of the global means.
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Huilin Huang, Yongkang Xue, Ye Liu, Fang Li, and Gregory S. Okin
Geosci. Model Dev., 14, 7639–7657, https://doi.org/10.5194/gmd-14-7639-2021, https://doi.org/10.5194/gmd-14-7639-2021, 2021
Short summary
Short summary
This study applies a fire-coupled dynamic vegetation model to quantify fire impact at monthly to annual scales. We find fire reduces grass cover by 4–8 % annually for widespread areas in south African savanna and reduces tree cover by 1 % at the periphery of tropical Congolese rainforest. The grass cover reduction peaks at the beginning of the rainy season, which quickly diminishes before the next fire season. In contrast, the reduction of tree cover is irreversible within one growing season.
Vojtěch Abraham, Sheila Hicks, Helena Svobodová-Svitavská, Elissaveta Bozilova, Sampson Panajiotidis, Mariana Filipova-Marinova, Christin Eldegard Jensen, Spassimir Tonkov, Irena Agnieszka Pidek, Joanna Święta-Musznicka, Marcelina Zimny, Eliso Kvavadze, Anna Filbrandt-Czaja, Martina Hättestrand, Nurgül Karlıoğlu Kılıç, Jana Kosenko, Maria Nosova, Elena Severova, Olga Volkova, Margrét Hallsdóttir, Laimdota Kalniņa, Agnieszka M. Noryśkiewicz, Bożena Noryśkiewicz, Heather Pardoe, Areti Christodoulou, Tiiu Koff, Sonia L. Fontana, Teija Alenius, Elisabeth Isaksson, Heikki Seppä, Siim Veski, Anna Pędziszewska, Martin Weiser, and Thomas Giesecke
Biogeosciences, 18, 4511–4534, https://doi.org/10.5194/bg-18-4511-2021, https://doi.org/10.5194/bg-18-4511-2021, 2021
Short summary
Short summary
We present a continental dataset of pollen accumulation rates (PARs) collected by pollen traps. This absolute measure of pollen rain (grains cm−2 yr−1) has a positive relationship to current vegetation and latitude. Trap and fossil PARs have similar values within one region, so it opens up possibilities for using fossil PARs to reconstruct past changes in plant biomass and primary productivity. The dataset is available in the Neotoma Paleoecology Database.
Alexander Kuhn-Régnier, Apostolos Voulgarakis, Peer Nowack, Matthias Forkel, I. Colin Prentice, and Sandy P. Harrison
Biogeosciences, 18, 3861–3879, https://doi.org/10.5194/bg-18-3861-2021, https://doi.org/10.5194/bg-18-3861-2021, 2021
Short summary
Short summary
Along with current climate, vegetation, and human influences, long-term accumulation of biomass affects fires. Here, we find that including the influence of antecedent vegetation and moisture improves our ability to predict global burnt area. Additionally, the length of the preceding period which needs to be considered for accurate predictions varies across regions.
Sascha Scherer, Benjamin Höpfer, Katleen Deckers, Elske Fischer, Markus Fuchs, Ellen Kandeler, Jutta Lechterbeck, Eva Lehndorff, Johanna Lomax, Sven Marhan, Elena Marinova, Julia Meister, Christian Poll, Humay Rahimova, Manfred Rösch, Kristen Wroth, Julia Zastrow, Thomas Knopf, Thomas Scholten, and Peter Kühn
SOIL, 7, 269–304, https://doi.org/10.5194/soil-7-269-2021, https://doi.org/10.5194/soil-7-269-2021, 2021
Short summary
Short summary
This paper aims to reconstruct Middle Bronze Age (MBA) land use practices in the northwestern Alpine foreland (SW Germany, Hegau). We used a multi-proxy approach including biogeochemical proxies from colluvial deposits in the surroundings of a MBA settlement, on-site archaeobotanical and zooarchaeological data and off-site pollen data. From our data we infer land use practices such as plowing, cereal growth, forest farming and use of fire that marked the beginning of major colluvial deposition.
Angelica Feurdean
Biogeosciences, 18, 3805–3821, https://doi.org/10.5194/bg-18-3805-2021, https://doi.org/10.5194/bg-18-3805-2021, 2021
Short summary
Short summary
This study characterized the diversity of laboratory-produced charcoal morphological features of various fuel types from Siberia at different temperatures. The results obtained improve the attribution of charcoal particles to fuel types and fire characteristics. This work also provides recommendations for the application of this information to refine the past wildfire history.
Sarah E. Parker, Sandy P. Harrison, Laia Comas-Bru, Nikita Kaushal, Allegra N. LeGrande, and Martin Werner
Clim. Past, 17, 1119–1138, https://doi.org/10.5194/cp-17-1119-2021, https://doi.org/10.5194/cp-17-1119-2021, 2021
Short summary
Short summary
Regional trends in the oxygen isotope (δ18O) composition of stalagmites reflect several climate processes. We compare stalagmite δ18O records from monsoon regions and model simulations to identify the causes of δ18O variability over the last 12 000 years, and between glacial and interglacial states. Precipitation changes explain the glacial–interglacial δ18O changes in all monsoon regions; Holocene trends are due to a combination of precipitation, atmospheric circulation and temperature changes.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Cody C. Routson, Darrell S. Kaufman, Nicholas P. McKay, Michael P. Erb, Stéphanie H. Arcusa, Kendrick J. Brown, Matthew E. Kirby, Jeremiah P. Marsicek, R. Scott Anderson, Gonzalo Jiménez-Moreno, Jessica R. Rodysill, Matthew S. Lachniet, Sherilyn C. Fritz, Joseph R. Bennett, Michelle F. Goman, Sarah E. Metcalfe, Jennifer M. Galloway, Gerrit Schoups, David B. Wahl, Jesse L. Morris, Francisca Staines-Urías, Andria Dawson, Bryan N. Shuman, Daniel G. Gavin, Jeffrey S. Munroe, and Brian F. Cumming
Earth Syst. Sci. Data, 13, 1613–1632, https://doi.org/10.5194/essd-13-1613-2021, https://doi.org/10.5194/essd-13-1613-2021, 2021
Short summary
Short summary
We present a curated database of western North American Holocene paleoclimate records, which have been screened on length, resolution, and geochronology. The database gathers paleoclimate time series that reflect temperature, hydroclimate, or circulation features from terrestrial and marine sites, spanning a region from Mexico to Alaska. This publicly accessible collection will facilitate a broad range of paleoclimate inquiry.
Michal Hájek, Borja Jiménez-Alfaro, Ondřej Hájek, Lisa Brancaleoni, Marco Cantonati, Michele Carbognani, Anita Dedić, Daniel Dítě, Renato Gerdol, Petra Hájková, Veronika Horsáková, Florian Jansen, Jasmina Kamberović, Jutta Kapfer, Tiina Hilkka Maria Kolari, Mariusz Lamentowicz, Predrag Lazarević, Ermin Mašić, Jesper Erenskjold Moeslund, Aaron Pérez-Haase, Tomáš Peterka, Alessandro Petraglia, Eulàlia Pladevall-Izard, Zuzana Plesková, Stefano Segadelli, Yuliya Semeniuk, Patrícia Singh, Anna Šímová, Eva Šmerdová, Teemu Tahvanainen, Marcello Tomaselli, Yuliya Vystavna, Claudia Biţă-Nicolae, and Michal Horsák
Earth Syst. Sci. Data, 13, 1089–1105, https://doi.org/10.5194/essd-13-1089-2021, https://doi.org/10.5194/essd-13-1089-2021, 2021
Short summary
Short summary
We developed an up-to-date European map of groundwater pH and Ca (the major determinants of diversity of wetlands) based on 7577 measurements. In comparison to the existing maps, we included much a larger data set from the regions rich in endangered wetland habitats, filled the apparent gaps in eastern and southeastern Europe, and applied geospatial modelling. The latitudinal and altitudinal gradients were rediscovered with much refined regional patterns, as is associated with bedrock variation.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Angelica Feurdean, Roxana Grindean, Gabriela Florescu, Ioan Tanţău, Eva M. Niedermeyer, Andrei-Cosmin Diaconu, Simon M. Hutchinson, Anne Brigitte Nielsen, Tiberiu Sava, Andrei Panait, Mihaly Braun, and Thomas Hickler
Biogeosciences, 18, 1081–1103, https://doi.org/10.5194/bg-18-1081-2021, https://doi.org/10.5194/bg-18-1081-2021, 2021
Short summary
Short summary
Here we used multi-proxy analyses from Lake Oltina (Romania) and quantitatively examine the past 6000 years of the forest steppe in the lower Danube Plain, one of the oldest areas of human occupation in southeastern Europe. We found the greatest tree cover between 6000 and 2500 cal yr BP. Forest loss was under way by 2500 yr BP, falling to ~20 % tree cover linked to clearance for agriculture. The weak signs of forest recovery over the past 2500 years highlight recurring anthropogenic pressure.
Chen Jinxia, Shi Xuefa, Liu Yanguang, Qiao Shuqing, Yang Shixiong, Yan Shijuan, Lv Huahua, Li Jianyong, Li Xiaoyan, and Li Chaoxin
Clim. Past, 16, 2509–2531, https://doi.org/10.5194/cp-16-2509-2020, https://doi.org/10.5194/cp-16-2509-2020, 2020
Short summary
Short summary
In this study, we present pollen and grain size data obtained from the Bohai Sea. The results reveal that soil development and salinity gradients are the main factors determining the vegetation dynamics of coastal wetland. Moreover, our pollen-based temperature index revealed a warm Early Holocene, a cool Middle Holocene and then a relatively warm Late Holocene. The main driving factors of temperature variation in this region are insolation, greenhouse gases and ENSO.
Huilin Huang, Yongkang Xue, Fang Li, and Ye Liu
Geosci. Model Dev., 13, 6029–6050, https://doi.org/10.5194/gmd-13-6029-2020, https://doi.org/10.5194/gmd-13-6029-2020, 2020
Short summary
Short summary
We developed a fire-coupled dynamic vegetation model that captures the spatial distribution, temporal variability, and especially the seasonal variability of fire regimes. The fire model is applied to assess the long-term fire impact on ecosystems and surface energy. We find that fire is an important determinant of the structure and function of the tropical savanna. By changing the vegetation composition and ecosystem characteristics, fire significantly alters surface energy balance.
Laia Comas-Bru, Kira Rehfeld, Carla Roesch, Sahar Amirnezhad-Mozhdehi, Sandy P. Harrison, Kamolphat Atsawawaranunt, Syed Masood Ahmad, Yassine Ait Brahim, Andy Baker, Matthew Bosomworth, Sebastian F. M. Breitenbach, Yuval Burstyn, Andrea Columbu, Michael Deininger, Attila Demény, Bronwyn Dixon, Jens Fohlmeister, István Gábor Hatvani, Jun Hu, Nikita Kaushal, Zoltán Kern, Inga Labuhn, Franziska A. Lechleitner, Andrew Lorrey, Belen Martrat, Valdir Felipe Novello, Jessica Oster, Carlos Pérez-Mejías, Denis Scholz, Nick Scroxton, Nitesh Sinha, Brittany Marie Ward, Sophie Warken, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 12, 2579–2606, https://doi.org/10.5194/essd-12-2579-2020, https://doi.org/10.5194/essd-12-2579-2020, 2020
Short summary
Short summary
This paper presents an updated version of the SISAL (Speleothem Isotope Synthesis and Analysis) database. This new version contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including their uncertainties, for 512 speleothems.
Basil A. S. Davis, Manuel Chevalier, Philipp Sommer, Vachel A. Carter, Walter Finsinger, Achille Mauri, Leanne N. Phelps, Marco Zanon, Roman Abegglen, Christine M. Åkesson, Francisca Alba-Sánchez, R. Scott Anderson, Tatiana G. Antipina, Juliana R. Atanassova, Ruth Beer, Nina I. Belyanina, Tatiana A. Blyakharchuk, Olga K. Borisova, Elissaveta Bozilova, Galina Bukreeva, M. Jane Bunting, Eleonora Clò, Daniele Colombaroli, Nathalie Combourieu-Nebout, Stéphanie Desprat, Federico Di Rita, Morteza Djamali, Kevin J. Edwards, Patricia L. Fall, Angelica Feurdean, William Fletcher, Assunta Florenzano, Giulia Furlanetto, Emna Gaceur, Arsenii T. Galimov, Mariusz Gałka, Iria García-Moreiras, Thomas Giesecke, Roxana Grindean, Maria A. Guido, Irina G. Gvozdeva, Ulrike Herzschuh, Kari L. Hjelle, Sergey Ivanov, Susanne Jahns, Vlasta Jankovska, Gonzalo Jiménez-Moreno, Monika Karpińska-Kołaczek, Ikuko Kitaba, Piotr Kołaczek, Elena G. Lapteva, Małgorzata Latałowa, Vincent Lebreton, Suzanne Leroy, Michelle Leydet, Darya A. Lopatina, José Antonio López-Sáez, André F. Lotter, Donatella Magri, Elena Marinova, Isabelle Matthias, Anastasia Mavridou, Anna Maria Mercuri, Jose Manuel Mesa-Fernández, Yuri A. Mikishin, Krystyna Milecka, Carlo Montanari, César Morales-Molino, Almut Mrotzek, Castor Muñoz Sobrino, Olga D. Naidina, Takeshi Nakagawa, Anne Birgitte Nielsen, Elena Y. Novenko, Sampson Panajiotidis, Nata K. Panova, Maria Papadopoulou, Heather S. Pardoe, Anna Pędziszewska, Tatiana I. Petrenko, María J. Ramos-Román, Cesare Ravazzi, Manfred Rösch, Natalia Ryabogina, Silvia Sabariego Ruiz, J. Sakari Salonen, Tatyana V. Sapelko, James E. Schofield, Heikki Seppä, Lyudmila Shumilovskikh, Normunds Stivrins, Philipp Stojakowits, Helena Svobodova Svitavska, Joanna Święta-Musznicka, Ioan Tantau, Willy Tinner, Kazimierz Tobolski, Spassimir Tonkov, Margarita Tsakiridou, Verushka Valsecchi, Oksana G. Zanina, and Marcelina Zimny
Earth Syst. Sci. Data, 12, 2423–2445, https://doi.org/10.5194/essd-12-2423-2020, https://doi.org/10.5194/essd-12-2423-2020, 2020
Short summary
Short summary
The Eurasian Modern Pollen Database (EMPD) contains pollen counts and associated metadata for 8134 modern pollen samples from across the Eurasian region. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives. The purpose of the EMPD is to provide calibration datasets and other data to support palaeoecological research on past climates and vegetation cover over the Quaternary period.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue
Geosci. Model Dev., 13, 3299–3318, https://doi.org/10.5194/gmd-13-3299-2020, https://doi.org/10.5194/gmd-13-3299-2020, 2020
Short summary
Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.
Benjamin Andrieux, David Paré, Julien Beguin, Pierre Grondin, and Yves Bergeron
SOIL, 6, 195–213, https://doi.org/10.5194/soil-6-195-2020, https://doi.org/10.5194/soil-6-195-2020, 2020
Short summary
Short summary
Our study aimed to disentangle the contribution of several drivers to explaining the proportion of soil carbon that can be released to CO2 through microbial respiration. We found that boreal-forest soil chemistry is an important driver of the amount of carbon that microbes can process. Our results emphasize the need to include the effects of soil chemistry into models of carbon cycling to better anticipate the role played by boreal-forest soils in carbon-cycle–climate feedbacks.
Sean F. Cleator, Sandy P. Harrison, Nancy K. Nichols, I. Colin Prentice, and Ian Roulstone
Clim. Past, 16, 699–712, https://doi.org/10.5194/cp-16-699-2020, https://doi.org/10.5194/cp-16-699-2020, 2020
Short summary
Short summary
We present geographically explicit reconstructions of seasonal temperature and annual moisture variables at the Last Glacial Maximum (LGM), 21 000 years ago. The reconstructions use existing site-based estimates of climate, interpolated in space and time in a physically consistent way using climate model simulations. The reconstructions give a much better picture of the LGM climate and will provide a robust evaluation of how well state-of-the-art climate models simulate large climate changes.
Benjamin D. Stocker, Han Wang, Nicholas G. Smith, Sandy P. Harrison, Trevor F. Keenan, David Sandoval, Tyler Davis, and I. Colin Prentice
Geosci. Model Dev., 13, 1545–1581, https://doi.org/10.5194/gmd-13-1545-2020, https://doi.org/10.5194/gmd-13-1545-2020, 2020
Short summary
Short summary
Estimating terrestrial photosynthesis relies on satellite data of vegetation cover and models simulating the efficiency by which light absorbed by vegetation is used for CO2 assimilation. This paper presents the P-model, a light use efficiency model derived from a carbon–water optimality principle, and evaluates its predictions of ecosystem-level photosynthesis against globally distributed observations. The model is implemented and openly accessible as an R package (rpmodel).
Angelica Feurdean, Boris Vannière, Walter Finsinger, Dan Warren, Simon C. Connor, Matthew Forrest, Johan Liakka, Andrei Panait, Christian Werner, Maja Andrič, Premysl Bobek, Vachel A. Carter, Basil Davis, Andrei-Cosmin Diaconu, Elisabeth Dietze, Ingo Feeser, Gabriela Florescu, Mariusz Gałka, Thomas Giesecke, Susanne Jahns, Eva Jamrichová, Katarzyna Kajukało, Jed Kaplan, Monika Karpińska-Kołaczek, Piotr Kołaczek, Petr Kuneš, Dimitry Kupriyanov, Mariusz Lamentowicz, Carsten Lemmen, Enikö K. Magyari, Katarzyna Marcisz, Elena Marinova, Aidin Niamir, Elena Novenko, Milena Obremska, Anna Pędziszewska, Mirjam Pfeiffer, Anneli Poska, Manfred Rösch, Michal Słowiński, Miglė Stančikaitė, Marta Szal, Joanna Święta-Musznicka, Ioan Tanţău, Martin Theuerkauf, Spassimir Tonkov, Orsolya Valkó, Jüri Vassiljev, Siim Veski, Ildiko Vincze, Agnieszka Wacnik, Julian Wiethold, and Thomas Hickler
Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, https://doi.org/10.5194/bg-17-1213-2020, 2020
Short summary
Short summary
Our study covers the full Holocene (the past 11 500 years) climate variability and vegetation composition and provides a test on how vegetation and climate interact to determine fire hazard. An important implication of this test is that percentage of tree cover can be used as a predictor of the probability of fire occurrence. Biomass burned is highest at ~ 45 % tree cover in temperate forests and at ~ 60–65 % tree cover in needleleaf-dominated forests.
Sandy P. Harrison, Marie-José Gaillard, Benjamin D. Stocker, Marc Vander Linden, Kees Klein Goldewijk, Oliver Boles, Pascale Braconnot, Andria Dawson, Etienne Fluet-Chouinard, Jed O. Kaplan, Thomas Kastner, Francesco S. R. Pausata, Erick Robinson, Nicki J. Whitehouse, Marco Madella, and Kathleen D. Morrison
Geosci. Model Dev., 13, 805–824, https://doi.org/10.5194/gmd-13-805-2020, https://doi.org/10.5194/gmd-13-805-2020, 2020
Short summary
Short summary
The Past Global Changes LandCover6k initiative will use archaeological records to refine scenarios of land use and land cover change through the Holocene to reduce the uncertainties about the impacts of human-induced changes before widespread industrialization. We describe how archaeological data are used to map land use change and how the maps can be evaluated using independent palaeoenvironmental data. We propose simulations to test land use and land cover change impacts on past climates.
Antonio García-Alix, Jaime L. Toney, Gonzalo Jiménez-Moreno, Carmen Pérez-Martínez, Laura Jiménez, Marta Rodrigo-Gámiz, R. Scott Anderson, Jon Camuera, Francisco J. Jiménez-Espejo, Dhais Peña-Angulo, and María J. Ramos-Román
Clim. Past, 16, 245–263, https://doi.org/10.5194/cp-16-245-2020, https://doi.org/10.5194/cp-16-245-2020, 2020
Short summary
Short summary
In this paper we identify warming thresholds, rates, and forcing mechanisms from a novel alpine temperature record of the southern Iberian Peninsula during the Common Era in order to contextualize the modern warming and its potential impact on these vulnerable alpine ecosystems. To do so, we have developed and applied the first lacustrine temperature calibration in alpine lakes for algal compounds, called long-chain alkyl diols, which is a significant advance in biomarker paleothermometry.
Jon Camuera, Gonzalo Jiménez-Moreno, María J. Ramos-Román, Antonio García-Alix, Francisco Jiménez-Espejo, Jaime L. Toney, R. Scott Anderson, and Cole Webster
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-130, https://doi.org/10.5194/cp-2019-130, 2019
Preprint withdrawn
Short summary
Short summary
This study presents a unique high-resolution terrestrial paleoclimate record between 20,000 and 11,000 cal yr BP from the Padul wetland (S Spain) that allowed the identification of 3 main phases within the cold and arid Heinrich Stadial 1 (HS1) and, for the first time, a further subdivision of HS1 in 7 centennial-scale sub-phases.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Lina Teckentrup, Sandy P. Harrison, Stijn Hantson, Angelika Heil, Joe R. Melton, Matthew Forrest, Fang Li, Chao Yue, Almut Arneth, Thomas Hickler, Stephen Sitch, and Gitta Lasslop
Biogeosciences, 16, 3883–3910, https://doi.org/10.5194/bg-16-3883-2019, https://doi.org/10.5194/bg-16-3883-2019, 2019
Short summary
Short summary
This study compares simulated burned area of seven global vegetation models provided by the Fire Model Intercomparison Project (FireMIP) since 1900. We investigate the influence of five forcing factors: atmospheric CO2, population density, land–use change, lightning and climate.
We find that the anthropogenic factors lead to the largest spread between models. Trends due to climate are mostly not significant but climate strongly influences the inter-annual variability of burned area.
Laia Comas-Bru, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, Cristina Veiga-Pires, and SISAL working group members
Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, https://doi.org/10.5194/cp-15-1557-2019, 2019
Short summary
Short summary
We use an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled climate model to provide a protocol for using speleothem isotopic data for model evaluation, including screening the observations and the optimum period for the modern observational baseline. We also illustrate techniques through which the absolute isotopic values during any time period could be used for model evaluation.
Xianyong Cao, Fang Tian, Furong Li, Marie-José Gaillard, Natalia Rudaya, Qinghai Xu, and Ulrike Herzschuh
Clim. Past, 15, 1503–1536, https://doi.org/10.5194/cp-15-1503-2019, https://doi.org/10.5194/cp-15-1503-2019, 2019
Short summary
Short summary
The high-quality pollen records (collected from lakes and peat bogs) of the last 40 ka cal BP form north Asia are homogenized and the plant abundance signals are calibrated by the modern relative pollen productivity estimates. Calibrated plant abundances for each site are generally consistent with in situ modern vegetation, and vegetation changes within the regions are characterized by minor changes in the abundance of major taxa rather than by invasions of new taxa during the last 40 ka cal BP.
Liisa Ilvonen, José Antonio López-Sáez, Lasse Holmström, Francisca Alba-Sánchez, Sebastián Pérez-Díaz, José S. Carrión, and Heikki Seppä
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-33, https://doi.org/10.5194/cp-2019-33, 2019
Revised manuscript not accepted
Short summary
Short summary
In the Iberian Peninsula, precipitation is a key driver of vegetation changes. Here, we use a pollen-climate calibration set and fossil pollen data from seven sites in Spain to reconstruct annual precipitation values for the last 15 000 years using two different quantitative methods. The results suggest that the precipitation changes have occurred in pace with the temperature changes in northern Europe, with warm periods in the North corresponding with humid periods in the Iberian Peninsula.
Guangqi Li, Sandy P. Harrison, and I. Colin Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-63, https://doi.org/10.5194/bg-2019-63, 2019
Publication in BG not foreseen
Short summary
Short summary
Current methods of removing age effect from tree-ring are influenced by sampling biases – older trees are more abundantly sampled for recent decades, when the strongest environmental change happens. New technique of extracting environment-driven signals from tree ring is specifically designed to overcome this bias, drawing on theoretical tree growth. It removes sampling-bias effectively and shows consistent relationships between growth and climates through time and across two conifer species.
Dongyang Wei, Penélope González-Sampériz, Graciela Gil-Romera, Sandy P. Harrison, and I. Colin Prentice
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-16, https://doi.org/10.5194/cp-2019-16, 2019
Revised manuscript not accepted
Short summary
Short summary
El Cañizar de Villarquemado provides a pollen record from semi-arid Spain since before the last interglacial. We use modern pollen–climate relationships to reconstruct changes in seasonal temperature and moisture, accounting for CO2 effects on plants, and show coherent climate changes on glacial–interglacial and orbital timescales. The low glacial CO2 means moisture changes are less extreme than suggested by the vegetation shifts, and driven by evapotranspiration rather than rainfall changes.
Matthias Forkel, Niels Andela, Sandy P. Harrison, Gitta Lasslop, Margreet van Marle, Emilio Chuvieco, Wouter Dorigo, Matthew Forrest, Stijn Hantson, Angelika Heil, Fang Li, Joe Melton, Stephen Sitch, Chao Yue, and Almut Arneth
Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, https://doi.org/10.5194/bg-16-57-2019, 2019
Short summary
Short summary
Weather, humans, and vegetation control the occurrence of fires. In this study we find that global fire–vegetation models underestimate the strong increase of burned area with higher previous-season plant productivity in comparison to satellite-derived relationships.
Jose M. Mesa-Fernández, Gonzalo Jiménez-Moreno, Marta Rodrigo-Gámiz, Antonio García-Alix, Francisco J. Jiménez-Espejo, Francisca Martínez-Ruiz, R. Scott Anderson, Jon Camuera, and María J. Ramos-Román
Clim. Past, 14, 1687–1706, https://doi.org/10.5194/cp-14-1687-2018, https://doi.org/10.5194/cp-14-1687-2018, 2018
Kamolphat Atsawawaranunt, Laia Comas-Bru, Sahar Amirnezhad Mozhdehi, Michael Deininger, Sandy P. Harrison, Andy Baker, Meighan Boyd, Nikita Kaushal, Syed Masood Ahmad, Yassine Ait Brahim, Monica Arienzo, Petra Bajo, Kerstin Braun, Yuval Burstyn, Sakonvan Chawchai, Wuhui Duan, István Gábor Hatvani, Jun Hu, Zoltán Kern, Inga Labuhn, Matthew Lachniet, Franziska A. Lechleitner, Andrew Lorrey, Carlos Pérez-Mejías, Robyn Pickering, Nick Scroxton, and SISAL Working Group Members
Earth Syst. Sci. Data, 10, 1687–1713, https://doi.org/10.5194/essd-10-1687-2018, https://doi.org/10.5194/essd-10-1687-2018, 2018
Short summary
Short summary
This paper is an overview of the contents of the SISAL database and its structure. The database contains oxygen and carbon isotope measurements from 371 individual speleothem records and 10 composite records from 174 cave systems from around the world. The SISAL database is created by a collective effort of the members of the Past Global Changes SISAL working group, which aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation.
Gustaf Granath, Håkan Rydin, Jennifer L. Baltzer, Fia Bengtsson, Nicholas Boncek, Luca Bragazza, Zhao-Jun Bu, Simon J. M. Caporn, Ellen Dorrepaal, Olga Galanina, Mariusz Gałka, Anna Ganeva, David P. Gillikin, Irina Goia, Nadezhda Goncharova, Michal Hájek, Akira Haraguchi, Lorna I. Harris, Elyn Humphreys, Martin Jiroušek, Katarzyna Kajukało, Edgar Karofeld, Natalia G. Koronatova, Natalia P. Kosykh, Mariusz Lamentowicz, Elena Lapshina, Juul Limpens, Maiju Linkosalmi, Jin-Ze Ma, Marguerite Mauritz, Tariq M. Munir, Susan M. Natali, Rayna Natcheva, Maria Noskova, Richard J. Payne, Kyle Pilkington, Sean Robinson, Bjorn J. M. Robroek, Line Rochefort, David Singer, Hans K. Stenøien, Eeva-Stiina Tuittila, Kai Vellak, Anouk Verheyden, James Michael Waddington, and Steven K. Rice
Biogeosciences, 15, 5189–5202, https://doi.org/10.5194/bg-15-5189-2018, https://doi.org/10.5194/bg-15-5189-2018, 2018
Short summary
Short summary
Peat constitutes a long-term archive for climate reconstruction by using the isotopic composition of carbon and oxygen. We analysed isotopes in two peat moss species across North America and Eurasia. Peat (moss tissue) isotope composition was predicted by soil moisture and isotopic composition of the rainwater but differed between species. Our results suggest that isotope composition can be used on a large scale for climatic reconstructions but that such models should be species-specific.
Sandy P. Harrison, Patrick J. Bartlein, Victor Brovkin, Sander Houweling, Silvia Kloster, and I. Colin Prentice
Earth Syst. Dynam., 9, 663–677, https://doi.org/10.5194/esd-9-663-2018, https://doi.org/10.5194/esd-9-663-2018, 2018
Short summary
Short summary
Temperature affects fire occurrence and severity. Warming will increase fire-related carbon emissions and thus atmospheric CO2. The size of this feedback is not known. We use charcoal records to estimate pre-industrial fire emissions and a simple land–biosphere model to quantify the feedback. We infer a feedback strength of 5.6 3.2 ppm CO2 per degree of warming and a gain of 0.09 ± 0.05 for a climate sensitivity of 2.8 K. Thus, fire feedback is a large part of the climate–carbon-cycle feedback.
Hans W. Linderholm, Marie Nicolle, Pierre Francus, Konrad Gajewski, Samuli Helama, Atte Korhola, Olga Solomina, Zicheng Yu, Peng Zhang, William J. D'Andrea, Maxime Debret, Dmitry V. Divine, Björn E. Gunnarson, Neil J. Loader, Nicolas Massei, Kristina Seftigen, Elizabeth K. Thomas, Johannes Werner, Sofia Andersson, Annika Berntsson, Tomi P. Luoto, Liisa Nevalainen, Saija Saarni, and Minna Väliranta
Clim. Past, 14, 473–514, https://doi.org/10.5194/cp-14-473-2018, https://doi.org/10.5194/cp-14-473-2018, 2018
Short summary
Short summary
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000 years. We discuss the current state, look into the future, and describe various archives and proxies used to infer past hydroclimate variability. We also provide regional overviews and discuss the potential of furthering our understanding of Arctic hydroclimate in the past. This paper summarises the hydroclimate-related activities of the Arctic 2k group.
Masa Kageyama, Pascale Braconnot, Sandy P. Harrison, Alan M. Haywood, Johann H. Jungclaus, Bette L. Otto-Bliesner, Jean-Yves Peterschmitt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Chris Brierley, Michel Crucifix, Aisling Dolan, Laura Fernandez-Donado, Hubertus Fischer, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Daniel J. Lunt, Natalie M. Mahowald, W. Richard Peltier, Steven J. Phipps, Didier M. Roche, Gavin A. Schmidt, Lev Tarasov, Paul J. Valdes, Qiong Zhang, and Tianjun Zhou
Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018, https://doi.org/10.5194/gmd-11-1033-2018, 2018
Short summary
Short summary
The Paleoclimate Modelling Intercomparison Project (PMIP) takes advantage of the existence of past climate states radically different from the recent past to test climate models used for climate projections and to better understand these climates. This paper describes the PMIP contribution to CMIP6 (Coupled Model Intercomparison Project, 6th phase) and possible analyses based on PMIP results, as well as on other CMIP6 projects.
Emeline Chaste, Martin P. Girardin, Jed O. Kaplan, Jeanne Portier, Yves Bergeron, and Christelle Hély
Biogeosciences, 15, 1273–1292, https://doi.org/10.5194/bg-15-1273-2018, https://doi.org/10.5194/bg-15-1273-2018, 2018
Short summary
Short summary
A vegetation model was used to reconstruct fire activity from 1901 to 2012 in relation to changes in lightning ignition, climate, and vegetation in eastern Canada's boreal forest. The model correctly simulated the history of fire activity. The results showed that fire activity is ignition limited but is also greatly affected by both climate and vegetation. This research aims to develop a vegetation model that could be used to predict the future impacts of climate changes on fire activity.
María J. Ramos-Román, Gonzalo Jiménez-Moreno, Jon Camuera, Antonio García-Alix, R. Scott Anderson, Francisco J. Jiménez-Espejo, and José S. Carrión
Clim. Past, 14, 117–137, https://doi.org/10.5194/cp-14-117-2018, https://doi.org/10.5194/cp-14-117-2018, 2018
Short summary
Short summary
In this study we carried out a multiproxy high-resolution analysis on a sediment record from the Padul Basin in the Sierra Nevada (southern Iberian Peninsula). Padul is a classical and very unique site from the Mediterranean area as it contains a very long and continuous Quaternary sedimentary record. However, the uppermost part of the record was never recovered. In this study we focus on the last 4700 cal yr BP of Holocene climate variability and human activity in the Mediterranean area.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Jennifer R. Marlon, Neil Pederson, Connor Nolan, Simon Goring, Bryan Shuman, Ann Robertson, Robert Booth, Patrick J. Bartlein, Melissa A. Berke, Michael Clifford, Edward Cook, Ann Dieffenbacher-Krall, Michael C. Dietze, Amy Hessl, J. Bradford Hubeny, Stephen T. Jackson, Jeremiah Marsicek, Jason McLachlan, Cary J. Mock, David J. P. Moore, Jonathan Nichols, Dorothy Peteet, Kevin Schaefer, Valerie Trouet, Charles Umbanhowar, John W. Williams, and Zicheng Yu
Clim. Past, 13, 1355–1379, https://doi.org/10.5194/cp-13-1355-2017, https://doi.org/10.5194/cp-13-1355-2017, 2017
Short summary
Short summary
To improve our understanding of paleoclimate in the northeastern (NE) US, we compiled data from pollen, tree rings, lake levels, testate amoeba from bogs, and other proxies from the last 3000 years. The paleoclimate synthesis supports long-term cooling until the 1800s and reveals an abrupt transition from wet to dry conditions around 550–750 CE. Evidence suggests the region is now becoming warmer and wetter, but more calibrated data are needed, especially to capture multidecadal variability.
María Fernanda Sánchez Goñi, Stéphanie Desprat, Anne-Laure Daniau, Frank C. Bassinot, Josué M. Polanco-Martínez, Sandy P. Harrison, Judy R. M. Allen, R. Scott Anderson, Hermann Behling, Raymonde Bonnefille, Francesc Burjachs, José S. Carrión, Rachid Cheddadi, James S. Clark, Nathalie Combourieu-Nebout, Colin. J. Courtney Mustaphi, Georg H. Debusk, Lydie M. Dupont, Jemma M. Finch, William J. Fletcher, Marco Giardini, Catalina González, William D. Gosling, Laurie D. Grigg, Eric C. Grimm, Ryoma Hayashi, Karin Helmens, Linda E. Heusser, Trevor Hill, Geoffrey Hope, Brian Huntley, Yaeko Igarashi, Tomohisa Irino, Bonnie Jacobs, Gonzalo Jiménez-Moreno, Sayuri Kawai, A. Peter Kershaw, Fujio Kumon, Ian T. Lawson, Marie-Pierre Ledru, Anne-Marie Lézine, Ping Mei Liew, Donatella Magri, Robert Marchant, Vasiliki Margari, Francis E. Mayle, G. Merna McKenzie, Patrick Moss, Stefanie Müller, Ulrich C. Müller, Filipa Naughton, Rewi M. Newnham, Tadamichi Oba, Ramón Pérez-Obiol, Roberta Pini, Cesare Ravazzi, Katy H. Roucoux, Stephen M. Rucina, Louis Scott, Hikaru Takahara, Polichronis C. Tzedakis, Dunia H. Urrego, Bas van Geel, B. Guido Valencia, Marcus J. Vandergoes, Annie Vincens, Cathy L. Whitlock, Debra A. Willard, and Masanobu Yamamoto
Earth Syst. Sci. Data, 9, 679–695, https://doi.org/10.5194/essd-9-679-2017, https://doi.org/10.5194/essd-9-679-2017, 2017
Short summary
Short summary
The ACER (Abrupt Climate Changes and Environmental Responses) global database includes 93 pollen records from the last glacial period (73–15 ka) plotted against a common chronology; 32 also provide charcoal records. The database allows for the reconstruction of the regional expression, vegetation and fire of past abrupt climate changes that are comparable to those expected in the 21st century. This work is a major contribution to understanding the processes behind rapid climate change.
Margreet J. E. van Marle, Silvia Kloster, Brian I. Magi, Jennifer R. Marlon, Anne-Laure Daniau, Robert D. Field, Almut Arneth, Matthew Forrest, Stijn Hantson, Natalie M. Kehrwald, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stéphane Mangeon, Chao Yue, Johannes W. Kaiser, and Guido R. van der Werf
Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017, https://doi.org/10.5194/gmd-10-3329-2017, 2017
Short summary
Short summary
Fire emission estimates are a key input dataset for climate models. We have merged satellite information with proxy datasets and fire models to reconstruct fire emissions since 1750 AD. Our dataset indicates that, on a global scale, fire emissions were relatively constant over time. Since roughly 1950, declining emissions from savannas were approximately balanced by increased emissions from tropical deforestation zones.
Carole Bastianelli, Adam A. Ali, Julien Beguin, Yves Bergeron, Pierre Grondin, Christelle Hély, and David Paré
Biogeosciences, 14, 3445–3459, https://doi.org/10.5194/bg-14-3445-2017, https://doi.org/10.5194/bg-14-3445-2017, 2017
Short summary
Short summary
Our analyses showed that soil biogeochemistry could distinguish two forest ecosystems that coexist in Quebec: open lichen woodlands and closed-canopy black spruce–moss forests. Variations in carbon stocks, base cation concentrations and crystallinity of aluminium and iron were related to the different vegetation covers. This research was carried out as a first step to identify geochemical indicators of canopy cover types that could be useful in further palaeoecological studies.
Xiayun Xiao, Simon G. Haberle, Ji Shen, Bin Xue, Mark Burrows, and Sumin Wang
Clim. Past, 13, 613–627, https://doi.org/10.5194/cp-13-613-2017, https://doi.org/10.5194/cp-13-613-2017, 2017
Short summary
Short summary
Knowledge of the past fire activity is a key for making sustainable management policies for forest ecosystems. A high-resolution macroscopic charcoal record from southwestern China reveals the postglacial fire history. Combined with the regional climate records and vegetation histories, it is concluded that fire was mainly controlled by climate before 4.3 ka and by combined action of climate and humans after 4.3 ka, and the relationship between fire activity and vegetation were also examined.
Sam S. Rabin, Joe R. Melton, Gitta Lasslop, Dominique Bachelet, Matthew Forrest, Stijn Hantson, Jed O. Kaplan, Fang Li, Stéphane Mangeon, Daniel S. Ward, Chao Yue, Vivek K. Arora, Thomas Hickler, Silvia Kloster, Wolfgang Knorr, Lars Nieradzik, Allan Spessa, Gerd A. Folberth, Tim Sheehan, Apostolos Voulgarakis, Douglas I. Kelley, I. Colin Prentice, Stephen Sitch, Sandy Harrison, and Almut Arneth
Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, https://doi.org/10.5194/gmd-10-1175-2017, 2017
Short summary
Short summary
Global vegetation models are important tools for understanding how the Earth system will change in the future, and fire is a critical process to include. A number of different methods have been developed to represent vegetation burning. This paper describes the protocol for the first systematic comparison of global fire models, which will allow the community to explore various drivers and evaluate what mechanisms are important for improving performance. It also includes equations for all models.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Jennifer R. Marlon, Ryan Kelly, Anne-Laure Daniau, Boris Vannière, Mitchell J. Power, Patrick Bartlein, Philip Higuera, Olivier Blarquez, Simon Brewer, Tim Brücher, Angelica Feurdean, Graciela Gil Romera, Virginia Iglesias, S. Yoshi Maezumi, Brian Magi, Colin J. Courtney Mustaphi, and Tonishtan Zhihai
Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, https://doi.org/10.5194/bg-13-3225-2016, 2016
Short summary
Short summary
We reconstruct spatiotemporal variations in biomass burning since the Last Glacial Maximum (LGM) using the Global Charcoal Database version 3 (including 736 records) and a method to grid the data. LGM to late Holocene burning broadly tracks global and regional climate changes over that interval. Human activities increase fire in the 1800s and then reduce it for most of the 20th century. Burning is now rapidly increasing, particularly in western North America and southeastern Australia.
Kimberley L. Davies, Richard D. Pancost, Mary E. Edwards, Katey M. Walter Anthony, Peter G. Langdon, and Lidia Chaves Torres
Biogeosciences, 13, 2611–2621, https://doi.org/10.5194/bg-13-2611-2016, https://doi.org/10.5194/bg-13-2611-2016, 2016
A. V. Gallego-Sala, D. J. Charman, S. P. Harrison, G. Li, and I. C. Prentice
Clim. Past, 12, 129–136, https://doi.org/10.5194/cp-12-129-2016, https://doi.org/10.5194/cp-12-129-2016, 2016
Short summary
Short summary
It has become a well-established paradigm that blanket bog landscapes in the British Isles are a result of forest clearance by early human populations. We provide a novel test of this hypothesis using results from bioclimatic modelling driven by cimate reconstructions compared with a database of peat initiation dates. Both results show similar patterns of peat initiation over time and space. This suggests that climate was the main driver of blanket bog inception and not human disturbance.
B. A. A. Hoogakker, R. S. Smith, J. S. Singarayer, R. Marchant, I. C. Prentice, J. R. M. Allen, R. S. Anderson, S. A. Bhagwat, H. Behling, O. Borisova, M. Bush, A. Correa-Metrio, A. de Vernal, J. M. Finch, B. Fréchette, S. Lozano-Garcia, W. D. Gosling, W. Granoszewski, E. C. Grimm, E. Grüger, J. Hanselman, S. P. Harrison, T. R. Hill, B. Huntley, G. Jiménez-Moreno, P. Kershaw, M.-P. Ledru, D. Magri, M. McKenzie, U. Müller, T. Nakagawa, E. Novenko, D. Penny, L. Sadori, L. Scott, J. Stevenson, P. J. Valdes, M. Vandergoes, A. Velichko, C. Whitlock, and C. Tzedakis
Clim. Past, 12, 51–73, https://doi.org/10.5194/cp-12-51-2016, https://doi.org/10.5194/cp-12-51-2016, 2016
Short summary
Short summary
In this paper we use two climate models to test how Earth’s vegetation responded to changes in climate over the last 120 000 years, looking at warm interglacial climates like today, cold ice-age glacial climates, and intermediate climates. The models agree well with observations from pollen, showing smaller forested areas and larger desert areas during cold periods. Forests store most terrestrial carbon; the terrestrial carbon lost during cold climates was most likely relocated to the oceans.
P. J. Bartlein, M. E. Edwards, S. W. Hostetler, S. L. Shafer, P. M. Anderson, L. B. Brubaker, and A. V. Lozhkin
Clim. Past, 11, 1197–1222, https://doi.org/10.5194/cp-11-1197-2015, https://doi.org/10.5194/cp-11-1197-2015, 2015
Short summary
Short summary
The ongoing warming of the Arctic is producing changes in vegetation and hydrology that, coupled with rising sea level, could mediate global changes. We explored this possibility using regional climate model simulations of a past interval of warming in Beringia and found that the regional-scale changes do strongly mediate the responses to global changes, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in climate change.
T.-T. Meng, H. Wang, S. P. Harrison, I. C. Prentice, J. Ni, and G. Wang
Biogeosciences, 12, 5339–5352, https://doi.org/10.5194/bg-12-5339-2015, https://doi.org/10.5194/bg-12-5339-2015, 2015
Short summary
Short summary
By analysing the quantitative leaf-traits along extensive temperature and moisture gradients with generalized linear models, we found that metabolism-related traits are universally acclimated to environmental conditions, rather than being fixed within plant functional types. The results strongly support a move towards Dynamic Global Vegetation Models in which continuous, adaptive trait variation provides the fundamental mechanism for changes in ecosystem properties along environmental gradients.
G. Li, S. P. Harrison, and I. C. Prentice
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-4769-2015, https://doi.org/10.5194/bgd-12-4769-2015, 2015
Revised manuscript has not been submitted
P. Zennaro, N. Kehrwald, J. R. McConnell, S. Schüpbach, O. J. Maselli, J. Marlon, P. Vallelonga, D. Leuenberger, R. Zangrando, A. Spolaor, M. Borrotti, E. Barbaro, A. Gambaro, and C. Barbante
Clim. Past, 10, 1905–1924, https://doi.org/10.5194/cp-10-1905-2014, https://doi.org/10.5194/cp-10-1905-2014, 2014
T. Brücher, V. Brovkin, S. Kloster, J. R. Marlon, and M. J. Power
Clim. Past, 10, 811–824, https://doi.org/10.5194/cp-10-811-2014, https://doi.org/10.5194/cp-10-811-2014, 2014
G. Strandberg, E. Kjellström, A. Poska, S. Wagner, M.-J. Gaillard, A.-K. Trondman, A. Mauri, B. A. S. Davis, J. O. Kaplan, H. J. B. Birks, A. E. Bjune, R. Fyfe, T. Giesecke, L. Kalnina, M. Kangur, W. O. van der Knaap, U. Kokfelt, P. Kuneš, M. Lata\l owa, L. Marquer, F. Mazier, A. B. Nielsen, B. Smith, H. Seppä, and S. Sugita
Clim. Past, 10, 661–680, https://doi.org/10.5194/cp-10-661-2014, https://doi.org/10.5194/cp-10-661-2014, 2014
F. Li, B. Bond-Lamberty, and S. Levis
Biogeosciences, 11, 1345–1360, https://doi.org/10.5194/bg-11-1345-2014, https://doi.org/10.5194/bg-11-1345-2014, 2014
F. Li, S. Levis, and D. S. Ward
Biogeosciences, 10, 2293–2314, https://doi.org/10.5194/bg-10-2293-2013, https://doi.org/10.5194/bg-10-2293-2013, 2013
D. J. Charman, D. W. Beilman, M. Blaauw, R. K. Booth, S. Brewer, F. M. Chambers, J. A. Christen, A. Gallego-Sala, S. P. Harrison, P. D. M. Hughes, S. T. Jackson, A. Korhola, D. Mauquoy, F. J. G. Mitchell, I. C. Prentice, M. van der Linden, F. De Vleeschouwer, Z. C. Yu, J. Alm, I. E. Bauer, Y. M. C. Corish, M. Garneau, V. Hohl, Y. Huang, E. Karofeld, G. Le Roux, J. Loisel, R. Moschen, J. E. Nichols, T. M. Nieminen, G. M. MacDonald, N. R. Phadtare, N. Rausch, Ü. Sillasoo, G. T. Swindles, E.-S. Tuittila, L. Ukonmaanaho, M. Väliranta, S. van Bellen, B. van Geel, D. H. Vitt, and Y. Zhao
Biogeosciences, 10, 929–944, https://doi.org/10.5194/bg-10-929-2013, https://doi.org/10.5194/bg-10-929-2013, 2013
Related subject area
Biogeosciences and biodiversity
Fire weather index data under historical and shared socioeconomic pathway projections in the 6th phase of the Coupled Model Intercomparison Project from 1850 to 2100
A remote-sensing-based dataset to characterize the ecosystem functioning and functional diversity in the Biosphere Reserve of the Sierra Nevada (southeastern Spain)
A global long-term, high-resolution satellite radar backscatter data record (1992–2022+): merging C-band ERS/ASCAT and Ku-band QSCAT
A global database on holdover time of lightning-ignited wildfires
National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake
Mammals in the Chornobyl Exclusion Zone's Red Forest: a motion-activated camera trap study
Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20 years
AnisoVeg: anisotropy and nadir-normalized MODIS multi-angle implementation atmospheric correction (MAIAC) datasets for satellite vegetation studies in South America
A grid dataset of leaf age-dependent LAI seasonality product (Lad-LAI) over tropical and subtropical evergreen broadleaved forests
TiP-Leaf: a dataset of leaf traits across vegetation types on the Tibetan Plateau
Forest structure and individual tree inventories of northeastern Siberia along climatic gradients
Global climate-related predictors at kilometer resolution for the past and future
A daily and 500 m coupled evapotranspiration and gross primary production product across China during 2000–2020
Global land surface 250 m 8 d fraction of absorbed photosynthetically active radiation (FAPAR) product from 2000 to 2021
Rates and timing of chlorophyll-a increases and related environmental variables in global temperate and cold-temperate lakes
Harmonized gap-filled datasets from 20 urban flux tower sites
Holocene spatiotemporal millet agricultural patterns in northern China: a dataset of archaeobotanical macroremains
GRiMeDB: The global river database of methane concentrations and fluxes
The biogeography of relative abundance of soil fungi versus bacteria in surface topsoil
Airborne SnowSAR data at X and Ku bands over boreal forest, alpine and tundra snow cover
The Landscape Fire Scars Database: mapping historical burned area and fire severity in Chile
Aridec: an open database of litter mass loss from aridlands worldwide with recommendations on suitable model applications
LegacyPollen 1.0: a taxonomically harmonized global late Quaternary pollen dataset of 2831 records with standardized chronologies
Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests
A 30 m annual maize phenology dataset from 1985 to 2020 in China
Optical and biogeochemical properties of diverse Belgian inland and coastal waters
Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions
European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials
Global GOSAT, OCO-2, and OCO-3 solar-induced chlorophyll fluorescence datasets
VODCA2GPP – a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing
EcoDes-DK15: high-resolution ecological descriptors of vegetation and terrain derived from Denmark's national airborne laser scanning data set
The ABCflux database: Arctic–boreal CO2 flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems
Multi-year, spatially extensive, watershed-scale synoptic stream chemistry and water quality conditions for six permafrost-underlain Arctic watersheds
Vertical profiles of leaf photosynthesis and leaf traits and soil nutrients in two tropical rainforests in French Guiana before and after a 3-year nitrogen and phosphorus addition experiment
Global patterns and drivers of soil total phosphorus concentration
The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission
Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China
BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems
Mapping global forest age from forest inventories, biomass and climate data
Long-term phenological data set of multi-taxonomic groups, agrarian activities, and abiotic parameters from Latvia, northern Europe
A global map of root biomass across the world's forests
Organic matter cycling along geochemical, geomorphic, and disturbance gradients in forest and cropland of the African Tropics – project TropSOC database version 1.0
The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations
FLUXNET-CH4: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands
A distributed time-lapse camera network to track vegetation phenology with high temporal detail and at varying scales
Global transpiration data from sap flow measurements: the SAPFLUXNET database
MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon): a (radio)carbon-centric database for seafloor surficial sediments
Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M)
MOSEV: a global burn severity database from MODIS (2000–2020)
SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0
Yann Quilcaille, Fulden Batibeniz, Andreia F. S. Ribeiro, Ryan S. Padrón, and Sonia I. Seneviratne
Earth Syst. Sci. Data, 15, 2153–2177, https://doi.org/10.5194/essd-15-2153-2023, https://doi.org/10.5194/essd-15-2153-2023, 2023
Short summary
Short summary
We present a new database of four annual fire weather indicators over 1850–2100 and over all land areas. In a 3°C warmer world with respect to preindustrial times, the mean fire weather would increase on average by at least 66% in both intensity and duration and even triple for 1-in-10-year events. The dataset is a freely available resource for fire danger studies and beyond, highlighting that the best course of action would require limiting global warming as much as possible.
Beatriz P. Cazorla, Javier Cabello, Andrés Reyes, Emilio Guirado, Julio Peñas, Antonio J. Pérez-Luque, and Domingo Alcaraz-Segura
Earth Syst. Sci. Data, 15, 1871–1887, https://doi.org/10.5194/essd-15-1871-2023, https://doi.org/10.5194/essd-15-1871-2023, 2023
Short summary
Short summary
This dataset provides scientists, environmental managers, and the public in general with valuable information on the first characterization of ecosystem functional diversity based on primary production developed in the Sierra Nevada (Spain), a biodiversity hotspot in the Mediterranean basin and an exceptional natural laboratory for ecological research within the Long-Term Social-Ecological Research (LTSER) network.
Shengli Tao, Zurui Ao, Jean-Pierre Wigneron, Sassan Saatchi, Philippe Ciais, Jérôme Chave, Thuy Le Toan, Pierre-Louis Frison, Xiaomei Hu, Chi Chen, Lei Fan, Mengjia Wang, Jiangling Zhu, Xia Zhao, Xiaojun Li, Xiangzhuo Liu, Yanjun Su, Tianyu Hu, Qinghua Guo, Zhiheng Wang, Zhiyao Tang, Yi Y. Liu, and Jingyun Fang
Earth Syst. Sci. Data, 15, 1577–1596, https://doi.org/10.5194/essd-15-1577-2023, https://doi.org/10.5194/essd-15-1577-2023, 2023
Short summary
Short summary
We provide the first long-term (since 1992), high-resolution (8.9 km) satellite radar backscatter data set (LHScat) with a C-band (5.3 GHz) signal dynamic for global lands. LHScat was created by fusing signals from ERS (1992–2001; C-band), QSCAT (1999–2009; Ku-band), and ASCAT (since 2007; C-band). LHScat has been validated against independent ERS-2 signals. It could be used in a variety of studies, such as vegetation monitoring and hydrological modelling.
Jose V. Moris, Pedro Álvarez-Álvarez, Marco Conedera, Annalie Dorph, Thomas D. Hessilt, Hugh G. P. Hunt, Renata Libonati, Lucas S. Menezes, Mortimer M. Müller, Francisco J. Pérez-Invernón, Gianni B. Pezzatti, Nicolau Pineda, Rebecca C. Scholten, Sander Veraverbeke, B. Mike Wotton, and Davide Ascoli
Earth Syst. Sci. Data, 15, 1151–1163, https://doi.org/10.5194/essd-15-1151-2023, https://doi.org/10.5194/essd-15-1151-2023, 2023
Short summary
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Nicholas A. Beresford, Sergii Gashchak, Michael D. Wood, and Catherine L. Barnett
Earth Syst. Sci. Data, 15, 911–920, https://doi.org/10.5194/essd-15-911-2023, https://doi.org/10.5194/essd-15-911-2023, 2023
Short summary
Short summary
Camera traps were established in a highly contaminated area of the Chornobyl Exclusion Zone (CEZ) to capture images of mammals. Over 1 year, 14 mammal species were recorded. The number of species observed did not vary with estimated radiation exposure. The data will be of value from the perspectives of effects of radiation on wildlife and also rewilding in this large, abandoned area. They may also have value in future studies investigating impacts of recent Russian military action in the CEZ.
Yongzhe Chen, Xiaoming Feng, Bojie Fu, Haozhi Ma, Constantin M. Zohner, Thomas W. Crowther, Yuanyuan Huang, Xutong Wu, and Fangli Wei
Earth Syst. Sci. Data, 15, 897–910, https://doi.org/10.5194/essd-15-897-2023, https://doi.org/10.5194/essd-15-897-2023, 2023
Short summary
Short summary
This study presented a long-term (2002–2021) above- and belowground biomass dataset for woody vegetation in China at 1 km resolution. It was produced by combining various types of remote sensing observations with adequate plot measurements. Over 2002–2021, China’s woody biomass increased at a high rate, especially in the central and southern parts. This dataset can be applied to evaluate forest carbon sinks across China and the efficiency of ecological restoration programs in China.
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023, https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Short summary
The AnisoVeg dataset brings 22 years of monthly satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for South America at 1 km resolution aimed at vegetation applications. It has nadir-normalized data, which is the most traditional approach to correct satellite data but also unique anisotropy data with strong biophysical meaning, explaining 55 % of Amazon forest height. We expect this dataset to help large-scale estimates of vegetation biomass and carbon.
Xueqin Yang, Xiuzhi Chen, Jiashun Ren, Wenping Yuan, Liyang Liu, Juxiu Liu, Dexiang Chen, Yihua Xiao, Shengbiao Wu, Lei Fan, Xiaoai Dai, and Yongxian Su
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-436, https://doi.org/10.5194/essd-2022-436, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
We for the first-time mapped continental-scale grid dataset of monthly LAI in three leaf age cohorts, i.e., young, mature and old one, from 2001–2018 RTSIF data (referred to as Lad-LAI). The seasonality of three LAI cohorts from the new Lad-LAI products agree well at the three sites with very fine collections of monthly LAI. The proposed satellite-based approaches can provide reference for mapping finer temporal and spatial resolution LAI products with different leaf age cohorts.
Yili Jin, Haoyan Wang, Jie Xia, Jian Ni, Kai Li, Ying Hou, Jing Hu, Linfeng Wei, Kai Wu, Haojun Xia, and Borui Zhou
Earth Syst. Sci. Data, 15, 25–39, https://doi.org/10.5194/essd-15-25-2023, https://doi.org/10.5194/essd-15-25-2023, 2023
Short summary
Short summary
The TiP-Leaf dataset was compiled from direct field measurements and included 11 leaf traits from 468 species of 1692 individuals, covering a great proportion of species and vegetation types on the highest plateau in the world. This work is the first plant trait dataset that represents all of the alpine vegetation on the TP, which is not only an update of the Chinese plant trait database, but also a great contribution to the global trait database.
Timon Miesner, Ulrike Herzschuh, Luidmila A. Pestryakova, Mareike Wieczorek, Evgenii S. Zakharov, Alexei I. Kolmogorov, Paraskovya V. Davydova, and Stefan Kruse
Earth Syst. Sci. Data, 14, 5695–5716, https://doi.org/10.5194/essd-14-5695-2022, https://doi.org/10.5194/essd-14-5695-2022, 2022
Short summary
Short summary
We present data which were collected on expeditions to the northeast of the Russian Federation. One table describes the 226 locations we visited during those expeditions, and the other describes 40 289 trees which we recorded at these locations. We found out that important information on the forest cannot be predicted precisely from satellites. Thus, for anyone interested in distant forests, it is important to go to there and take measurements or use data (as presented here).
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Shaoyang He, Yongqiang Zhang, Ning Ma, Jing Tian, Dongdong Kong, and Changming Liu
Earth Syst. Sci. Data, 14, 5463–5488, https://doi.org/10.5194/essd-14-5463-2022, https://doi.org/10.5194/essd-14-5463-2022, 2022
Short summary
Short summary
This study developed a daily, 500 m evapotranspiration and gross primary production product (PML-V2(China)) using a locally calibrated water–carbon coupled model, PML-V2, which was well calibrated against observations at 26 flux sites across nine land cover types. PML-V2 (China) performs satisfactorily in the plot- and basin-scale evaluations compared with other mainstream products. It improved intra-annual ET and GPP dynamics, particularly in the cropland ecosystem.
Han Ma, Shunlin Liang, Changhao Xiong, Qian Wang, Aolin Jia, and Bing Li
Earth Syst. Sci. Data, 14, 5333–5347, https://doi.org/10.5194/essd-14-5333-2022, https://doi.org/10.5194/essd-14-5333-2022, 2022
Short summary
Short summary
The fraction of absorbed photosynthetically active radiation (FAPAR) is one of the essential climate variables. This study generated a global land surface FAPAR product with a 250 m resolution based on a deep learning model that takes advantage of the existing FAPAR products and MODIS time series of observation information. Direct validation and intercomparison revealed that our product better meets user requirements and has a greater spatiotemporal continuity than other existing products.
Hannah Adams, Jane Ye, Bhaleka D. Persaud, Stephanie Slowinski, Homa Kheyrollah Pour, and Philippe Van Cappellen
Earth Syst. Sci. Data, 14, 5139–5156, https://doi.org/10.5194/essd-14-5139-2022, https://doi.org/10.5194/essd-14-5139-2022, 2022
Short summary
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Keyang He, Houyuan Lu, Jianping Zhang, and Can Wang
Earth Syst. Sci. Data, 14, 4777–4791, https://doi.org/10.5194/essd-14-4777-2022, https://doi.org/10.5194/essd-14-4777-2022, 2022
Short summary
Short summary
Here we presented the first quantitative spatiotemporal cropping patterns spanning the Neolithic and Bronze ages in northern China. Temporally, millet agriculture underwent a dramatic transition from low-yield broomcorn to high-yield foxtail millet around 6000 cal. a BP under the influence of climate and population. Spatially, millet agriculture spread westward and northward from the mid-lower Yellow River (MLY) to the agro-pastoral ecotone (APE) around 6000 cal. a BP and diversified afterwards.
Emily H. Stanley, Luke C. Loken, Nora J. Casson, Samantha K. Oliver, Ryan A. Sponseller, Marcus B. Wallin, Liwei Zhang, and Gerard Rocher-Ros
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-346, https://doi.org/10.5194/essd-2022-346, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
The Global Rivers Methane Database (GRiMeDB) presents CH4 concentrations and fluxes for flowing waters along with concurrent measures of CO2, N2O, and several physicochemical variables, plus information about sample locations and methods used to measure gas fluxes. GRiMeDB is intended to increase opportunities to understand variation in fluvial CH4, test hypotheses related to greenhouse gas dynamics, and reduce uncertainty in future estimates of gas emissions from world streams and rivers.
Kailiang Yu, Johan van den Hoogen, Zhiqiang Wang, Colin Averill, Devin Routh, Gabriel Reuben Smith, Rebecca E. Drenovsky, Kate M. Scow, Fei Mo, Mark P. Waldrop, Yuanhe Yang, Weize Tang, Franciska T. De Vries, Richard D. Bardgett, Peter Manning, Felipe Bastida, Sara G. Baer, Elizabeth M. Bach, Carlos García, Qingkui Wang, Linna Ma, Baodong Chen, Xianjing He, Sven Teurlincx, Amber Heijboer, James A. Bradley, and Thomas W. Crowther
Earth Syst. Sci. Data, 14, 4339–4350, https://doi.org/10.5194/essd-14-4339-2022, https://doi.org/10.5194/essd-14-4339-2022, 2022
Short summary
Short summary
We used a global-scale dataset for the surface topsoil (>3000 distinct observations of abundance of soil fungi versus bacteria) to generate the first quantitative map of soil fungal proportion across terrestrial ecosystems. We reveal striking latitudinal trends. Fungi dominated in regions with low mean annual temperature (MAT) and net primary productivity (NPP) and bacteria dominated in regions with high MAT and NPP.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Alejandro Miranda, Rayén Mentler, Ítalo Moletto-Lobos, Gabriela Alfaro, Leonardo Aliaga, Dana Balbontín, Maximiliano Barraza, Susanne Baumbach, Patricio Calderón, Fernando Cárdenas, Iván Castillo, Gonzalo Contreras, Felipe de la Barra, Mauricio Galleguillos, Mauro E. González, Carlos Hormazábal, Antonio Lara, Ian Mancilla, Francisca Muñoz, Cristian Oyarce, Francisca Pantoja, Rocío Ramírez, and Vicente Urrutia
Earth Syst. Sci. Data, 14, 3599–3613, https://doi.org/10.5194/essd-14-3599-2022, https://doi.org/10.5194/essd-14-3599-2022, 2022
Short summary
Short summary
Achieving a local understanding of fire regimes requires high-resolution, systematic and dynamic data. High-quality information can help to transform evidence into decision-making. Taking advantage of big-data and remote sensing technics we developed a flexible workflow to reconstruct burned area and fire severity data for more than 8000 individual fires in Chile. The framework developed for the database can be applied anywhere in the world with minimal adaptation.
Agustín Sarquis, Ignacio Andrés Siebenhart, Amy Theresa Austin, and Carlos A. Sierra
Earth Syst. Sci. Data, 14, 3471–3488, https://doi.org/10.5194/essd-14-3471-2022, https://doi.org/10.5194/essd-14-3471-2022, 2022
Short summary
Short summary
Plant litter breakdown in aridlands is driven by processes different from those in more humid ecosystems. A better understanding of these processes will allow us to make better predictions of future carbon cycling. We have compiled aridec, a database of plant litter decomposition studies in aridlands and tested some modeling applications for potential users. Aridec is open for use and collaboration, and we hope it will help answer newer and more important questions as the database develops.
Ulrike Herzschuh, Chenzhi Li, Thomas Böhmer, Alexander K. Postl, Birgit Heim, Andrei A. Andreev, Xianyong Cao, Mareike Wieczorek, and Jian Ni
Earth Syst. Sci. Data, 14, 3213–3227, https://doi.org/10.5194/essd-14-3213-2022, https://doi.org/10.5194/essd-14-3213-2022, 2022
Short summary
Short summary
Pollen preserved in environmental archives such as lake sediments and bogs are extensively used for reconstructions of past vegetation and climate. Here we present LegacyPollen 1.0, a dataset of 2831 fossil pollen records from all over the globe that were collected from publicly available databases. We harmonized the names of the pollen taxa so that all datasets can be jointly investigated. LegacyPollen 1.0 is available as an open-access dataset.
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022, https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
Short summary
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest structure and individual tree properties. We conducted airborne, UAV-borne and terrestrial laser scanning in German mixed forests, resulting in overlapping point clouds with different characteristics. From these, we generated a comprehensive database of individual tree point clouds and corresponding tree metrics. Our dataset may serve as a benchmark dataset for algorithms in forestry research.
Quandi Niu, Xuecao Li, Jianxi Huang, Hai Huang, Xianda Huang, Wei Su, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2851–2864, https://doi.org/10.5194/essd-14-2851-2022, https://doi.org/10.5194/essd-14-2851-2022, 2022
Short summary
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.
Alexandre Castagna, Luz Amadei Martínez, Margarita Bogorad, Ilse Daveloose, Renaat Dasseville, Heidi Melita Dierssen, Matthew Beck, Jonas Mortelmans, Héloïse Lavigne, Ana Dogliotti, David Doxaran, Kevin Ruddick, Wim Vyverman, and Koen Sabbe
Earth Syst. Sci. Data, 14, 2697–2719, https://doi.org/10.5194/essd-14-2697-2022, https://doi.org/10.5194/essd-14-2697-2022, 2022
Short summary
Short summary
Here we describe a dataset of optical measurements paired with the concentration and composition of dissolved and particulate components of water systems in Belgium. Sampling was performed over eight lakes, a coastal lagoon, an estuary, and coastal waters, covering the period of 2017 to 2019. The data cover a broad range of conditions and can be useful for development and evaluation of hyperspectral methods in hydrology optics and remote sensing.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Esther Githumbi, Ralph Fyfe, Marie-Jose Gaillard, Anna-Kari Trondman, Florence Mazier, Anne-Birgitte Nielsen, Anneli Poska, Shinya Sugita, Jessie Woodbridge, Julien Azuara, Angelica Feurdean, Roxana Grindean, Vincent Lebreton, Laurent Marquer, Nathalie Nebout-Combourieu, Miglė Stančikaitė, Ioan Tanţău, Spassimir Tonkov, Lyudmila Shumilovskikh, and LandClimII data contributors
Earth Syst. Sci. Data, 14, 1581–1619, https://doi.org/10.5194/essd-14-1581-2022, https://doi.org/10.5194/essd-14-1581-2022, 2022
Short summary
Short summary
Reconstruction of past land cover is necessary for the study of past climate–land cover interactions and the evaluation of climate models and land-use scenarios. We used 1128 available pollen records from across Europe covering the last 11 700 years in the REVEALS model to calculate percentage cover and associated standard errors for 31 taxa, 12 plant functional types and 3 land-cover types. REVEALS results are reliant on the quality of the input datasets.
Russell Doughty, Thomas P. Kurosu, Nicholas Parazoo, Philipp Köhler, Yujie Wang, Ying Sun, and Christian Frankenberg
Earth Syst. Sci. Data, 14, 1513–1529, https://doi.org/10.5194/essd-14-1513-2022, https://doi.org/10.5194/essd-14-1513-2022, 2022
Short summary
Short summary
We describe and compare solar-induced chlorophyll fluorescence data produced by NASA from the Greenhouse Gases Observing Satellite (GOSAT) and the Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 platforms.
Benjamin Wild, Irene Teubner, Leander Moesinger, Ruxandra-Maria Zotta, Matthias Forkel, Robin van der Schalie, Stephen Sitch, and Wouter Dorigo
Earth Syst. Sci. Data, 14, 1063–1085, https://doi.org/10.5194/essd-14-1063-2022, https://doi.org/10.5194/essd-14-1063-2022, 2022
Short summary
Short summary
Gross primary production (GPP) describes the conversion of CO2 to carbohydrates and can be seen as a filter for our atmosphere of the primary greenhouse gas CO2. We developed VODCA2GPP, a GPP dataset that is based on vegetation optical depth from microwave remote sensing and temperature. Thus, it is mostly independent from existing GPP datasets and also available in regions with frequent cloud coverage. Analysis showed that VODCA2GPP is able to complement existing state-of-the-art GPP datasets.
Jakob J. Assmann, Jesper E. Moeslund, Urs A. Treier, and Signe Normand
Earth Syst. Sci. Data, 14, 823–844, https://doi.org/10.5194/essd-14-823-2022, https://doi.org/10.5194/essd-14-823-2022, 2022
Short summary
Short summary
In 2014 and 2015, the Danish government scanned the whole of Denmark using laser scanners on planes. The information can help biologists learn more about Denmark's natural environment. To make it easier to access the outputs from the scan, we divided the country into 10 m x 10 m squares and summed up the information most relevant to biologists for each square. The result is a set of 70 maps describing the three-dimensional architecture of the Danish landscape and vegetation.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Arial J. Shogren, Jay P. Zarnetske, Benjamin W. Abbott, Samuel Bratsman, Brian Brown, Michael P. Carey, Randy Fulweber, Heather E. Greaves, Emma Haines, Frances Iannucci, Joshua C. Koch, Alexander Medvedeff, Jonathan A. O'Donnell, Leika Patch, Brett A. Poulin, Tanner J. Williamson, and William B. Bowden
Earth Syst. Sci. Data, 14, 95–116, https://doi.org/10.5194/essd-14-95-2022, https://doi.org/10.5194/essd-14-95-2022, 2022
Short summary
Short summary
Rapidly sampling multiple points in an entire river network provides a high-resolution snapshot in time that can reveal where nutrients and carbon are being taken up and released. Here, we describe two such datasets of river network chemistry in six Arctic watersheds in northern Alaska. We describe how these repeated snapshots can be used as an indicator of ecosystem response to climate change and to improve predictions of future release of carbon, nutrient, and other solutes.
Lore T. Verryckt, Sara Vicca, Leandro Van Langenhove, Clément Stahl, Dolores Asensio, Ifigenia Urbina, Romà Ogaya, Joan Llusià, Oriol Grau, Guille Peguero, Albert Gargallo-Garriga, Elodie A. Courtois, Olga Margalef, Miguel Portillo-Estrada, Philippe Ciais, Michael Obersteiner, Lucia Fuchslueger, Laynara F. Lugli, Pere-Roc Fernandez-Garberí, Helena Vallicrosa, Melanie Verlinden, Christian Ranits, Pieter Vermeir, Sabrina Coste, Erik Verbruggen, Laëtitia Bréchet, Jordi Sardans, Jérôme Chave, Josep Peñuelas, and Ivan A. Janssens
Earth Syst. Sci. Data, 14, 5–18, https://doi.org/10.5194/essd-14-5-2022, https://doi.org/10.5194/essd-14-5-2022, 2022
Short summary
Short summary
We provide a comprehensive dataset of vertical profiles of photosynthesis and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N and P, and other leaf nutrients, in photosynthesis in tropical forests.
Xianjin He, Laurent Augusto, Daniel S. Goll, Bruno Ringeval, Yingping Wang, Julian Helfenstein, Yuanyuan Huang, Kailiang Yu, Zhiqiang Wang, Yongchuan Yang, and Enqing Hou
Earth Syst. Sci. Data, 13, 5831–5846, https://doi.org/10.5194/essd-13-5831-2021, https://doi.org/10.5194/essd-13-5831-2021, 2021
Short summary
Short summary
Our database of globally distributed natural soil total P (STP) concentration showed concentration ranged from 1.4 to 9630.0 (mean 570.0) mg kg−1. Global predictions of STP concentration increased with latitude. Global STP stocks (excluding Antarctica) were estimated to be 26.8 and 62.2 Pg in the topsoil and subsoil, respectively. Our global map of STP concentration can be used to constrain Earth system models representing the P cycle and to inform quantification of global soil P availability.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Yi-Wei Zhang, Yanpei Guo, Zhiyao Tang, Yuhao Feng, Xinrong Zhu, Wenting Xu, Yongfei Bai, Guoyi Zhou, Zongqiang Xie, and Jingyun Fang
Earth Syst. Sci. Data, 13, 5337–5351, https://doi.org/10.5194/essd-13-5337-2021, https://doi.org/10.5194/essd-13-5337-2021, 2021
Short summary
Short summary
Nitrogen (N) and phosphorus (P) are limiting nutrients for ecosystem productivity. For the first time, we mapped N and P densities of living plants, litter, and soil in forest, shrubland, and grassland ecosystems across China using random forest models based on a dataset of 4868 field sites. Our results depicted the spatial distribution pattern, the total pool, and the allocation among ecosystem components of N and P, which could benefit a more precise prediction of the carbon cycle.
McKenzie A. Kuhn, Ruth K. Varner, David Bastviken, Patrick Crill, Sally MacIntyre, Merritt Turetsky, Katey Walter Anthony, Anthony D. McGuire, and David Olefeldt
Earth Syst. Sci. Data, 13, 5151–5189, https://doi.org/10.5194/essd-13-5151-2021, https://doi.org/10.5194/essd-13-5151-2021, 2021
Short summary
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Simon Besnard, Sujan Koirala, Maurizio Santoro, Ulrich Weber, Jacob Nelson, Jonas Gütter, Bruno Herault, Justin Kassi, Anny N'Guessan, Christopher Neigh, Benjamin Poulter, Tao Zhang, and Nuno Carvalhais
Earth Syst. Sci. Data, 13, 4881–4896, https://doi.org/10.5194/essd-13-4881-2021, https://doi.org/10.5194/essd-13-4881-2021, 2021
Short summary
Short summary
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this paper, we introduced a new global distribution of forest age inferred from forest inventory, remote sensing and climate data in support of a better understanding of the global dynamics in the forest water and carbon cycles.
Gunta Kalvāne, Andis Kalvāns, and Andris Ģērmanis
Earth Syst. Sci. Data, 13, 4621–4633, https://doi.org/10.5194/essd-13-4621-2021, https://doi.org/10.5194/essd-13-4621-2021, 2021
Short summary
Short summary
A phenological (seasonal occurrences) data set in Latvia, northern Europe, is presented. It includes phenological phases of eight taxonomic groups such as timing of leaf unfolding, bird migration, and leaf senescence as well as weather phenomena and agrarian activities from 1979 to 2018. The data provide direct and compelling evidence of climate change like earlier spring blossom and delayed autumn phases of some migratory birds and plants in recent years.
Yuanyuan Huang, Phillipe Ciais, Maurizio Santoro, David Makowski, Jerome Chave, Dmitry Schepaschenko, Rose Z. Abramoff, Daniel S. Goll, Hui Yang, Ye Chen, Wei Wei, and Shilong Piao
Earth Syst. Sci. Data, 13, 4263–4274, https://doi.org/10.5194/essd-13-4263-2021, https://doi.org/10.5194/essd-13-4263-2021, 2021
Short summary
Short summary
Roots play a key role in our Earth system. Here we combine 10 307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially explicit global high-resolution (~ 1 km) root biomass dataset. In total, 142 ± 25 (95 % CI) Pg of live dry-matter biomass is stored belowground, representing a global average root : shoot biomass ratio of 0.25 ± 0.10.
Sebastian Doetterl, Rodrigue K. Asifiwe, Geert Baert, Fernando Bamba, Marijn Bauters, Pascal Boeckx, Benjamin Bukombe, Georg Cadisch, Matthew Cooper, Landry N. Cizungu, Alison Hoyt, Clovis Kabaseke, Karsten Kalbitz, Laurent Kidinda, Annina Maier, Moritz Mainka, Julia Mayrock, Daniel Muhindo, Basile B. Mujinya, Serge M. Mukotanyi, Leon Nabahungu, Mario Reichenbach, Boris Rewald, Johan Six, Anna Stegmann, Laura Summerauer, Robin Unseld, Bernard Vanlauwe, Kristof Van Oost, Kris Verheyen, Cordula Vogel, Florian Wilken, and Peter Fiener
Earth Syst. Sci. Data, 13, 4133–4153, https://doi.org/10.5194/essd-13-4133-2021, https://doi.org/10.5194/essd-13-4133-2021, 2021
Short summary
Short summary
The African Tropics are hotspots of modern-day land use change and are of great relevance for the global carbon cycle. Here, we present data collected as part of the DFG-funded project TropSOC along topographic, land use, and geochemical gradients in the eastern Congo Basin and the Albertine Rift. Our database contains spatial and temporal data on soil, vegetation, environmental properties, and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020.
Maurizio Santoro, Oliver Cartus, Nuno Carvalhais, Danaë M. A. Rozendaal, Valerio Avitabile, Arnan Araza, Sytze de Bruin, Martin Herold, Shaun Quegan, Pedro Rodríguez-Veiga, Heiko Balzter, João Carreiras, Dmitry Schepaschenko, Mikhail Korets, Masanobu Shimada, Takuya Itoh, Álvaro Moreno Martínez, Jura Cavlovic, Roberto Cazzolla Gatti, Polyanna da Conceição Bispo, Nasheta Dewnath, Nicolas Labrière, Jingjing Liang, Jeremy Lindsell, Edward T. A. Mitchard, Alexandra Morel, Ana Maria Pacheco Pascagaza, Casey M. Ryan, Ferry Slik, Gaia Vaglio Laurin, Hans Verbeeck, Arief Wijaya, and Simon Willcock
Earth Syst. Sci. Data, 13, 3927–3950, https://doi.org/10.5194/essd-13-3927-2021, https://doi.org/10.5194/essd-13-3927-2021, 2021
Short summary
Short summary
Forests play a crucial role in Earth’s carbon cycle. To understand the carbon cycle better, we generated a global dataset of forest above-ground biomass, i.e. carbon stocks, from satellite data of 2010. This dataset provides a comprehensive and detailed portrait of the distribution of carbon in forests, although for dense forests in the tropics values are somewhat underestimated. This dataset will have a considerable impact on climate, carbon, and socio-economic modelling schemes.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Frans-Jan W. Parmentier, Lennart Nilsen, Hans Tømmervik, and Elisabeth J. Cooper
Earth Syst. Sci. Data, 13, 3593–3606, https://doi.org/10.5194/essd-13-3593-2021, https://doi.org/10.5194/essd-13-3593-2021, 2021
Short summary
Short summary
Satellites provide a global overview of Earth's ecosystems, but they have coarse resolutions and low revisit times. Small-scale vegetation patterns and sudden shifts in plant growth can easily be missed. In this paper, we show how to fill these gaps with vegetation indices obtained with ordinary time-lapse cameras deployed across a valley on Svalbard. We show how to adjust for unwanted camera movement and that vegetation indices from ordinary cameras compare well to those used by satellites.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Esteban Alonso-González and Víctor Fernández-García
Earth Syst. Sci. Data, 13, 1925–1938, https://doi.org/10.5194/essd-13-1925-2021, https://doi.org/10.5194/essd-13-1925-2021, 2021
Short summary
Short summary
We present the first global burn severity database (MOSEV database), which is based on Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance and burned area products. The database inludes monthly scenes with the dNBR, RdNBR and post-burn NBR spectral indices at 500 m spatial resolution from November 2000 onwards. Moreover, in this work we show that there is a close relationship between the burn severity metrics included in MOSEV and the same ones obtained from Landsat-8.
William R. Wieder, Derek Pierson, Stevan Earl, Kate Lajtha, Sara G. Baer, Ford Ballantyne, Asmeret Asefaw Berhe, Sharon A. Billings, Laurel M. Brigham, Stephany S. Chacon, Jennifer Fraterrigo, Serita D. Frey, Katerina Georgiou, Marie-Anne de Graaff, A. Stuart Grandy, Melannie D. Hartman, Sarah E. Hobbie, Chris Johnson, Jason Kaye, Emily Kyker-Snowman, Marcy E. Litvak, Michelle C. Mack, Avni Malhotra, Jessica A. M. Moore, Knute Nadelhoffer, Craig Rasmussen, Whendee L. Silver, Benjamin N. Sulman, Xanthe Walker, and Samantha Weintraub
Earth Syst. Sci. Data, 13, 1843–1854, https://doi.org/10.5194/essd-13-1843-2021, https://doi.org/10.5194/essd-13-1843-2021, 2021
Short summary
Short summary
Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Here we present the SOils DAta Harmonization database (SoDaH), a flexible database designed to harmonize diverse SOM datasets from multiple research networks.
Cited articles
Abatzoglou, J. T., and Williams, A. P.: Impact of anthropogenic climate
change on wildfire across western US forests, P. Natl.
Acad. Sci. USA, 113, 11770–11775,
https://doi.org/10.1073/pnas.1607171113, 2016.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Arora, V. K. and Melton, J. R.: Reduction in global area burned and wildfire
emissions since 1930s enhances carbon uptake by land, Nat. Commun., 9, 1326,
https://doi.org/10.1038/s41467-018-03838-0, 2018.
Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M. C.: Causal relationships versus emergent patterns in the global controls of fire frequency, Biogeosciences, 11, 5087–5101, https://doi.org/10.5194/bg-11-5087-2014, 2014.
Blaauw, M., Christen, J. A., Aquino Lopez, M. A., Esquivel Vazquez, J.,
Gonzalez, O. M., Belding, T., Theiler, J., Gough, B., and Karney, C.: rbacon:
Age-Depth Modelling using Bayesian Statistics, https://CRAN.R-project.org/package=rbacon (last access: 21 February 2022), 2021.
Blaauw, M. J. and Christen, A.: Flexible paleoclimate age-depth models using an
autoregressive gamma process, Bayesian Anal., 6, 457–474,
https://doi.org/10.1214/11-BA618, 2011.
Blarquez, O.: GCD, https://CRAN.R-project.org/package=GCD (last access: 21 February 2022), 2018.
Blarquez, O., Vannière, B., Marlon, J. R., Daniau, A.-L., Power, M. J.,
Brewer, S., and Bartlein, P. J.: paleofire: An R package to analyse
sedimentary charcoal records from the Global Charcoal Database to
reconstruct past biomass burning, Comput. Geosci., 72, 255–261,
https://doi.org/10.1016/j.cageo.2014.07.020, 2014.
Bond, W. J., Woodward, F. I., and Midgley, G. F.: The global distribution of
ecosystems in a world without fire, New Phytol., 165, 525–538, 2005.
Bowman, D. M. J. S., Perry, G. L. W., Higgins, S. I., Johnson, C. N.,
Fuhlendorf, S. D., and Murphy, B. P.: Pyro- diversity is the coupling of
biodiversity and fire regimes in food webs, Philos. T. R. Soc. Lond., 371,
20150169, https://doi.org/10.1098/rstb.2015.0169, 2016.
Clark, J. S. and Patterson, W. A.: Background and local charcoal in
sediments: Scales of fire evidence in the paleorecord, in: Sediment Records
of Biomass Burning and Global Change, Springer Berlin Heidelberg, Berlin,
Heidelberg, 23–48,
https://doi.org/10.1007/978-3-642-59171-6_3, 1997.
Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., and Krebs,
P.: Reconstructing past fire regimes: methods, applications, and relevance
to fire management and conservation, Quaternary Sci. Rev., 28,
555–576, https://doi.org/10.1016/j.quascirev.2008.11.005, 2009.
Daniau, A.-L., Harrison, S. P., and Bartlein, P. J.: Fire regimes
during the last glacial, Quaternary Sci. Rev., 29, 2918–2930, 2010.
Daniau, A.-L., Bartlein, P. J., Harrison, S. P., Prentice, I. C., Brewer,
S., Friedlingstein, P., Harrison-Prentice, T. I., Inoue, J., Marlon, J. R.,
Mooney, S., Power, M. J., Stevenson, J., Tinner, W., Andrič, M.,
Atanassova, J., Behling, H., Black, M., Blarquez, O., Brown, K. J.,
Carcaillet, C., Colhoun, E., Colombaroli, D., Davis, B. A. S., D'Costa, D.,
Dodson, J., Dupont, L., Eshetu, Z., Gavin, D. G., Genries, A., Gebru, T.,
Haberle, S., Hallett, D. J., Horn, S., Hope, G., Katamura, F., Kennedy, L.,
Kershaw, P., Krivonogov, S., Long, C., Magri, D., Marinova, E., McKenzie, G.
M., Moreno, P. I., Moss, P., Neumann, F. H., Norström, E., Paitre, C.,
Rius, D., Roberts, N., Robinson, G., Sasaki, N., Scott, L., Takahara, H.,
Terwilliger, V., Thevenon, F., Turner, R. B., Valsecchi, V. G.,
Vannière, B., Walsh, M., Williams, N., and Zhang, Y.: Predictability of
biomass burning in response to climate changes, Global Biogeochem. Cy., 26,
GB4007, https://doi.org/10.1029/2011GB004249, 2012.
Dutta, R., Das, A., and Aryal, J.: Big data integration shows Australian
bush-fire frequency is increasing significantly, Royal Society Open Science,
3, 150241, https://doi.org/10.1098/rsos.150241, 2016.
Evangeliou, N., Kylling, A., Eckhardt, S., Myroniuk, V., Stebel, K., Paugam, R., Zibtsev, S., and Stohl, A.: Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions, Atmos. Chem. Phys., 19, 1393–1411, https://doi.org/10.5194/acp-19-1393-2019, 2019.
Feurdean, A., Vannière, B., Finsinger, W., Warren, D., Connor, S. C., Forrest, M., Liakka, J., Panait, A., Werner, C., Andrič, M., Bobek, P., Carter, V. A., Davis, B., Diaconu, A.-C., Dietze, E., Feeser, I., Florescu, G., Gałka, M., Giesecke, T., Jahns, S., Jamrichová, E., Kajukało, K., Kaplan, J., Karpińska-Kołaczek, M., Kołaczek, P., Kuneš, P., Kupriyanov, D., Lamentowicz, M., Lemmen, C., Magyari, E. K., Marcisz, K., Marinova, E., Niamir, A., Novenko, E., Obremska, M., Pędziszewska, A., Pfeiffer, M., Poska, A., Rösch, M., Słowiński, M., Stančikaitė, M., Szal, M., Święta-Musznicka, J., Tanţău, I., Theuerkauf, M., Tonkov, S., Valkó, O., Vassiljev, J., Veski, S., Vincze, I., Wacnik, A., Wiethold, J., and Hickler, T.: Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe, Biogeosciences, 17, 1213–1230, https://doi.org/10.5194/bg-17-1213-2020, 2020.
Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., and Thonicke, K.: A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1), Geosci. Model Dev., 10, 4443–4476, https://doi.org/10.5194/gmd-10-4443-2017, 2017.
Forkel, M., Andela, N., Harrison, S. P., Lasslop, G., van Marle, M., Chuvieco, E., Dorigo, W., Forrest, M., Hantson, S., Heil, A., Li, F., Melton, J., Sitch, S., Yue, C., and Arneth, A.: Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models, Biogeosciences, 16, 57–76, https://doi.org/10.5194/bg-16-57-2019, 2019.
Harrison, S. P., Marlon, J. R., and Bartlein, P. J.: Fire in the Earth System,
in: Changing Climates, Earth Systems and Society International Year of Planet
Earth, Springer Publisher, 21-48, 2010.
Harrison, S. P., Bartlein, P. J., Brovkin, V., Houweling, S., Kloster, S., and Prentice, I. C.: The biomass burning contribution to climate–carbon-cycle feedback, Earth Syst. Dynam., 9, 663–677, https://doi.org/10.5194/esd-9-663-2018, 2018.
Harrison, S. P., Villegas-Diaz, R., Lincoln, P., Kesner, D., Cruz-Silva, E.,
Sweeney, L., Shen, Y., and Gallagher, D.: The Reading Palaeofire Database: an
expanded global resource to document changes in fire regimes from
sedimentary charcoal records, University of Reading [data set], https://doi.org/10.17864/1947.319, 2021.
Hayasaka, H.: Rare and extreme wildland fire in Sakha in
2021, Atmosphere, 1, 1572, https://doi.org/10.3390/atmos12121572, 2021.
He, T., Lamont, B. B., and Pausas, J. G.: Fire as a key driver of Earth's
biodiversity, Biol. Rev., 94, 1983–2010, https://doi.org/10.1111/brv.12544, 2019.
Heaton, T., Köhler, P., Butzin, M., Bard, E., Reimer, R., Austin, W.,
Bronk Ramsey, C., Grootes, P. M., Highen, K. A., Kromer, B., Reimer, P. J.,
Adkins, A., Burke, A. M., Cook, M. S., Olsen, J., and Skinner, L.: Marine 20
– The marine radiocarbon age calibration curve (0–55,000 cal BP),
Radiocarbon, 62, 779–820, https://doi.org/10.1017/RDC.2020.68, 2020.
Hogg, A., Heaton, T., Hua, Q., Palmer, J., Turney, C., Southon, J., Bayliss,
A., Blackwell, P. G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey,
F., Reimer, P., Reimer, R., and Wacker, L.: SHCal 20 southern Hemisphere
calibration, 0-55,000 years cal BP, Radiocarbon, 62, 759–778, https://doi.org/10.1017/RDC.2020.59, 2020.
Knorr, W., Jiang, L., and Arneth, A.: Climate, CO2 and human population impacts on global wildfire emissions, Biogeosciences, 13, 267–282, https://doi.org/10.5194/bg-13-267-2016, 2016.
Lasslop, G., Coppola, A. I., Voulgarakis, A., Yue, C., and Veraverbeke, S.:
Influence of fire on the carbon cycle and climate, Curr. Clim. Change
Rep., 5, 112–123, https://doi.org/10.1007/s40641-019-00128-9, 2019.
Lasslop, G., Hantson, S., Harrison, S. P., Bachelet, D., Burton, C., Forkel,
M., Forrest, M., Li, F., Melton, J. R., Yue, C., Archibald, S., Scheiter,
S., Arneth, A., Hickler, T., and Sitch, S.: Global ecosystems and fire:
multi-model assessment of fire-induced tree cover and carbon storage
reduction, Glob. Change Biol., 26, 5027–5041, https://doi.org/10.1111/gcb.15160, 2020.
Leys, B., Marlon, J. R., Umbanhowar, C., and Vanniere, B.: Global fire history of
grassland biomes, Ecol. Evolut., 8, 8831–8852, 2018.
Li, F., Bond-Lamberty, B., and Levis, S.: Quantifying the role of fire in the Earth system – Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century, Biogeosciences, 11, 1345–1360, https://doi.org/10.5194/bg-11-1345-2014, 2014.
Li, F., Lawrence, D. M., and Bond-Lamberty, B.: Impact of fire on global
land surface air temperature and energy budget for the 20th century due to
changes within ecosystems, Environ. Res. Lett., 12, 044014, https://doi.org/10.1088/1748-9326/aa6685, 2017.
Li, F., Val Martin, M., Andreae, M. O., Arneth, A., Hantson, S., Kaiser, J. W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J. R., Ward, D. S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B. I., Sitch, S., van der Werf, G. R., Wiedinmyer, C., and Rabin, S. S.: Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP), Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, 2019.
Liu, Z., Ballantyne, A. P., and Cooper, L. A.: Biophysical feedback of
global forest fires on surface temperature, Nat. Commun., 10, 214,
https://doi.org/10.1038/s41467-018-08237-z, 2019.
Marlon, J., Bartlein, P. J., and Whitlock, C.: Fire-fuel-climate linkages in
the northwestern USA during the Holocene, Holocene, 16, 1059–1071, 2006.
Marlon, J., Bartlein, P. J., Carcaillet, C., Gavin, D. G., Harrison, S. P.,
Higuera, P. E., Joos, F., Power, M., and Prentice, I. C.: Climate and human
influences on global biomass burning over the past two millennia, Nat.
Geosci., 1, 697–702, https://doi.org/10.1038/ngeo313, 2008.
Marlon, J. R., Bartlein, P. J., Walsh, M. K., Harrison, S. P., Brown, K. J.,
Edwards, M. E., Higuera, P. E., Power, M. J., Anderson, R. S., Briles, C.,
Brunelle, A., Carcaillet, C., Daniels, M., Hu, F. S., Lavoie, M., Long, C.,
Minckley, T., Richard, P. J. H., Scott, A. C., Shafer, D. S., Tinner, W.,
Umbanhower Jr., C. E., and Whitlock, C.: Wildfire responses to abrupt
climate change in North America, P. Natl. Acad.
Sci. USA, 106, 2519–2524, https://doi.org/10.1073/pnas.0808212106, 2009.
Marlon, J. R., Bartlein, P. J., Long, C., Gavin, D. G., Anderson, R. S.,
Briles, C., Brown, K., Colombaroli, D., Hallett, D. J., Power, M. J.,
Scharf, E., and Walsh, M. K.: Long-term perspective on wildfires in the
western U.S.A., P. Natl. Acad. Sci. USA,
109, E535–E543, https://doi.org/10.1073/pnas.1112839109, 2012.
Marlon, J. R., Bartlein, P. J., Daniau, A-L., Harrison, S. P., Power, M. J.,
Tinner, W., Maezumie, S., and Vannière, B.: Global biomass burning: A
synthesis and review of Holocene paleofire records and their controls,
Quaternary Sci. Rev., 65, 5–25, 2013.
Marlon, J. R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M. J., Bartlein, P., Higuera, P., Blarquez, O., Brewer, S., Brücher, T., Feurdean, A., Romera, G. G., Iglesias, V., Maezumi, S. Y., Magi, B., Courtney Mustaphi, C. J., and Zhihai, T.: Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons, Biogeosciences, 13, 3225–3244, https://doi.org/10.5194/bg-13-3225-2016, 2016.
Mooney, S., Harrison, S. P., Bartlein, P. J., Daniau A.-L., Stevenson,
J., Brownlie, K., Buckman, S., Cupper, M., Luly, J., Black, M., Colhoun, E.,
D'Costa, D., Dodson, J., Haberle, S., Hope, G. S., Kershaw, P., Kenyon, C.,
McKenzie, M., and Williams, N.: Late Quaternary fire regimes of Australasia,
Quaternary Sci. Rev., 30, 28–46, 2011.
Nolan, R. H. Boer, M. M., Collins, L., Resco de Dios, V., Clarke, H.,
Jenkins, M., Kenny, B., and Bradstock, R. A.: Causes and consequences of
eastern Australia's 2019–20 season of mega-fires, Glob. Change Biol.,
26, 1039–1041, https://doi.org/10.1111/gcb.14987, 2020.
Pellegrini, A. F. A., Ahlström, A., Hobbie, S. E., Reich,
P. B., Nieradzik, L. P., Staver, A. C., Scharenbroch, B. C., Jumpponen, A.,
William R. L. Anderegg, W. R. L., James T. Randerson, J. T., and Jackson, R.
B.: Fire frequency drives decadal changes in soil carbon and nitrogen and
ecosystem productivity, Nature, 553, 194–198,
https://doi.org/10.1038/nature24668, 2018.
Power, M. J., Whitlock, C., Bartlein, P. J., and Stevens, L.R.: Fire and
vegetation history during the last 3800 years in northwestern Montana,
Geomorphology, 75, 420–436, 2006.
Power, M. J., Ortiz, N., Marlon, J., Bartlein, P. J., Harrison, S. P.,
Mayle, F., Ballouche, A., Bradshaw, R., Carcaillet, C., Cordova, C., Mooney,
S., Moreno, P., Prentice, I. C., Thonicke, K., Tinner, W., Whitlock, C.,
Zhang, Y., Zhao, Y., Anderson, R. S., Beer, R., Behling, H., Briles, C.,
Brown, K, Brunelle A., Bush, M., Clark, J., Colombaroli, D., Chu, C. Q.,
Daniels, M., Dodson, J., Edwards, M. E., Fisinger, W., Gavin, D. G., Gobet,
E., Hallett, D. J., Higuera, P., Horn, S., Inoue, J., Kaltenrieder, P.,
Kennedy, L., Kong, Z. C., Long, C., Lynch, J., Lynch, B., McGlone, M.,
Meeks, S., Meyer, G., Minckley, T., Mohr, J., Noti, R., Pierce, J., Richard,
P., Shuman, B. J., Takahara, H., Toney, J., Turney, C., Umbanhower, C.,
Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams,
N., Wilmshurst, J., and Zhang, J. H.: Changes in fire activity since the LGM: an
assessment based on a global synthesis and analysis of charcoal data, Clim.
Dynam., 30, 887–907, https://doi.org/10.1007/s00382.00.0334x, 2008.
Power, M. J., Marlon, J. R., Bartlein, P. J., and Harrison, S. P.: Fire
history and the Global Charcoal Database: a new tool for hypothesis testing
and data exploration, Palaeogeogr. Palaeoclim., 291, 52–59, https://doi.org/10.1016/j.palaeo.2009.09.014,
2010.
Power, M. J., Mayle, F. E., Bartlein, P. J., Marlon, J. R., Anderson, R. S.,
Behling, H., Brown, K. J., Carcaillet, C., Colombaroli, D., Gavin, D. G.,
Hallett, D. J., Horn, S. P., Kennedy, L. M., Lane, C. S., Long, C. J.,
Moreno, P. I., Paitre, C., Robinson, G., Taylor, Z., and Walsh, M. K.: 16th
Century burning decline in the Americas: population collapse or climate
change?, Holocene, 23, 3–13, https://doi.org/10.1177/0959683612450196, 2013a.
Power, M. J., Mayle, F., Bartlein, P., Marlon, J. R., Anderson, R. S., Behling,
H., Brown, K. J. Carcailler, C., Colombaroli, D., Gavin, D. G., Hallett, D. J.,
Horn, S. P., Kennedy, L. M., Lane, C. S., Long, C. J., Moreno, P. I., Paitre, C.,
Robinson, G., Taylor, Z., and Walsh, M. K.: Climatic control of the
biomass-burning decline in the Americas after ad 1500, Holocene, 23,
3–13, https://doi.org/10.1177/0959683612450196, 2013b.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess,
P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F.
S., Hardeb, J. W., Goulden, M.L. Lyons, E., Neff, J. C., Schuur, E. A. G.,
and Zender, C. S.: The impact of boreal forest fire on climate warming,
Science, 314, 1130–1132, 2006.
Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey,
C., Butzin, M., Cheng, H. Edwards, R. L., Friedrich, M., Grootes, P. M.,
Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A.,
Kromer, B., Manning, S. W., Muscheler, R., Palmer, J. G., Pearson, C., van der
Plicht, J., Reimer, R. W., Richards, D.A., Scott, E. M., Southon, J. R.,
Turney, C. S. M., Wacker, L., Adolphi, F., Buntgen, U., Capano, M., Fahrni,
S. M., Fogtmann-Schulz, A., Friedrich, R., Kohler, P. Kudsk, S., Miyake, F.,
Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, M., and Talamo, S.: The IntCal20
Northern Hemisphere radiocarbon age calibration curve (0–55 calkBP),
Radiocarbon, 62, 725–757, https://doi.org/10.1017/RDC.2020.41, 2020.
Rubino, M., D'Onofrio, A., Seki, O., and Bendle, J. A.: Ice- core records of
biomass burning, Anthrop. Rev., 3, 140–162,
https://doi.org/10.1177/2053019615605117, 2016.
Sokolik, I. N., Soja, A. J., DeMott, P. J., and Winker, D.: Progress and
challenges in quantifying wildfire smoke emissions, their properties,
transport, and atmospheric impacts. J. Geophys. Res.-Atmos., 124, 13005–12025,
https://doi.org/10.1029/2018JD029878, 2019.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Vannière, B., Power, M. J., Roberts, N., Tinner, W., Carrión, J.,
Magny. M., Bartlein, P. J., and GPWG contributors: Circum-Mediterranean
fire activity and climate changes during the mid Holocene environmental
transition (8500–2500 cal yr BP), Holocene, 21, 53–73, 2011.
Villegas-Diaz, R., Cruz-Silva, E., and Harrison, S. P.: ageR: Supervised Age
Models, Zenodo [code], https://doi.org/10.5281/zenodo.4636716, 2021.
Williams, A. N., Mooney, S. D., Sisson, S. A., and Marlon, J. R.: Exploring
the relationship between Aboriginal population indices and fire in Australia
over the last 20,000 years, Palaeogeogr. Palaeoclim., 432,
49–57, 2015.
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales,
J., Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.: Observed impacts of
anthropogenic climate change on wildfire in California, Earth's Future, 7,
892–910, https://doi.org/10.1029/2019EF001210, 2019.
Short summary
We provide a new global data set of charcoal preserved in sediments that can be used to examine how fire regimes have changed during past millennia and to investigate what caused these changes. The individual records have been standardised, and new age models have been constructed to allow better comparison across sites. The data set contains 1681 records from 1477 sites worldwide.
We provide a new global data set of charcoal preserved in sediments that can be used to examine...