Articles | Volume 13, issue 11
https://doi.org/10.5194/essd-13-5151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-5151-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems
Department of Renewable Resources, University of Alberta, T6E 1V6,
Edmonton, Alberta, Canada
Ruth K. Varner
Department of Earth Sciences and Earth System Research Center,
Institute for the Study of Earth, Oceans and Space, University of New
Hampshire, Durham, NH 03824, USA
Department of Physical Geography, Stockholm University, 10691 Stockholm,
Sweden
David Bastviken
Department of Thematic Studies – Environmental Change,
Linköping University, 581 83 Linköping, Sweden
Patrick Crill
Department of Geological Sciences, Stockholm University, Stockholm,
Sweden
Bolin Centre for Climate Research, Stockholm, Sweden
Sally MacIntyre
Marine Science Institute, University of California at Santa
Barbara, Santa Barbara, CA, USA
Merritt Turetsky
Institute of Arctic and Alpine Research (INSTAAR), University of
Colorado Boulder, Boulder, CO, USA
Katey Walter Anthony
Water and Environmental Research Center, University of Alaska
Fairbanks, P.O. Box 755860, Fairbanks, AK 99775-5860, USA
Anthony D. McGuire
Institute of Arctic Biology, University of Alaska Fairbanks,
Fairbanks, AK 99775, USA
David Olefeldt
Department of Renewable Resources, University of Alberta, T6E 1V6,
Edmonton, Alberta, Canada
Related authors
No articles found.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
This article is included in the Encyclopedia of Geosciences
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
This article is included in the Encyclopedia of Geosciences
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025, https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies – that is, the maximum extent – covers 18.2 × 106 km2, equivalent to 13.4 % of total global land area.
This article is included in the Encyclopedia of Geosciences
Aelis Spiller, Cynthia M. Kallenbach, Melanie S. Burnett, David Olefeldt, Christopher Schulze, Roxane Maranger, and Peter M. J. Douglas
SOIL, 11, 371–379, https://doi.org/10.5194/soil-11-371-2025, https://doi.org/10.5194/soil-11-371-2025, 2025
Short summary
Short summary
Permafrost peatlands are large reservoirs of carbon. As frozen permafrost thaws, drier peat moisture conditions can arise, affecting the microbial production of climate-warming greenhouse gases like CO2 and N2O. Our study suggests that future peat CO2 and N2O production depends on whether drier peat plateaus thaw into wetter fens or bogs and on their diverging responses of peat respiration to more moisture-limited conditions.
This article is included in the Encyclopedia of Geosciences
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
This article is included in the Encyclopedia of Geosciences
Yarden Gerera, André Pellerin, Efrat Eliani Russak, Katey Walter Anthony, Nicholas Hasson, Yoav Oved Rosenberg, and Orit Sivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-1504, https://doi.org/10.5194/egusphere-2025-1504, 2025
Short summary
Short summary
Thermokarst lakes have formed over thousands of years from permafrost thaw in the Arctic. Here we quantify the change in methane production rates as thermokarst lakes evolve by incubation-based approach of measuring and comparing methane production rates and organic carbon lability between a more mature thermokarst lake and a young dynamic thermokarst lake. We also show the use of Rock-Eval analysis of organic carbon along the sediments as a proxy for organics susceptibility for methanogenesis.
This article is included in the Encyclopedia of Geosciences
Manon Maisonnier, Maoyuan Feng, David Bastviken, Sandra Arndt, Ronny Lauerwald, Aidin Jabbari, Goulven Gildas Laruelle, Murray D. MacKay, Zeli Tan, Wim Thiery, and Pierre Regnier
EGUsphere, https://doi.org/10.5194/egusphere-2025-1306, https://doi.org/10.5194/egusphere-2025-1306, 2025
Short summary
Short summary
A new process-based modelling framework, FLaMe v1.0 (Fluxes of Lake Methane version 1.0), is developed to simulate methane (CH4) emissions from lakes at large scales. FLaMe couples the dynamics of organic carbon, oxygen and methane in lakes and rests on an innovative, computationally efficient lake clustering approach for the simulation of CH4 emissions across a large number of lakes. The model evaluation suggests that FLaMe captures the sub-annual and spatial variability of CH4 emissions well.
This article is included in the Encyclopedia of Geosciences
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
This article is included in the Encyclopedia of Geosciences
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
This article is included in the Encyclopedia of Geosciences
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
This article is included in the Encyclopedia of Geosciences
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
This article is included in the Encyclopedia of Geosciences
Liam Heffernan, Maria A. Cavaco, Maya P. Bhatia, Cristian Estop-Aragonés, Klaus-Holger Knorr, and David Olefeldt
Biogeosciences, 19, 3051–3071, https://doi.org/10.5194/bg-19-3051-2022, https://doi.org/10.5194/bg-19-3051-2022, 2022
Short summary
Short summary
Permafrost thaw in peatlands leads to waterlogged conditions, a favourable environment for microbes producing methane (CH4) and high CH4 emissions. High CH4 emissions in the initial decades following thaw are due to a vegetation community that produces suitable organic matter to fuel CH4-producing microbes, along with warm and wet conditions. High CH4 emissions after thaw persist for up to 100 years, after which environmental conditions are less favourable for microbes and high CH4 emissions.
This article is included in the Encyclopedia of Geosciences
Sparkle L. Malone, Youmi Oh, Kyle A. Arndt, George Burba, Roisin Commane, Alexandra R. Contosta, Jordan P. Goodrich, Henry W. Loescher, Gregory Starr, and Ruth K. Varner
Biogeosciences, 19, 2507–2522, https://doi.org/10.5194/bg-19-2507-2022, https://doi.org/10.5194/bg-19-2507-2022, 2022
Short summary
Short summary
To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and scaling methods is required. This can be achieved with a network of ground-based observations that are distributed based on climatic regions and land cover.
This article is included in the Encyclopedia of Geosciences
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
This article is included in the Encyclopedia of Geosciences
Patryk Łakomiec, Jutta Holst, Thomas Friborg, Patrick Crill, Niklas Rakos, Natascha Kljun, Per-Ola Olsson, Lars Eklundh, Andreas Persson, and Janne Rinne
Biogeosciences, 18, 5811–5830, https://doi.org/10.5194/bg-18-5811-2021, https://doi.org/10.5194/bg-18-5811-2021, 2021
Short summary
Short summary
Methane emission from the subarctic mire with heterogeneous permafrost status was measured for the years 2014–2016. Lower methane emission was measured from the palsa mire sector while the thawing wet sector emitted more. Both sectors have a similar annual pattern with a gentle rise during spring and a decrease during autumn. The highest emission was observed in the late summer. Winter emissions were positive during the measurement period and have a significant impact on the annual budgets.
This article is included in the Encyclopedia of Geosciences
Lydia Stolpmann, Caroline Coch, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Kathleen Stoof-Leichsenring, Yury Dvornikov, Birgit Heim, Josefine Lenz, Amy Larsen, Katey Walter Anthony, Benjamin Jones, Karen Frey, and Guido Grosse
Biogeosciences, 18, 3917–3936, https://doi.org/10.5194/bg-18-3917-2021, https://doi.org/10.5194/bg-18-3917-2021, 2021
Short summary
Short summary
Our new database summarizes DOC concentrations of 2167 water samples from 1833 lakes in permafrost regions across the Arctic to provide insights into linkages between DOC and environment. We found increasing lake DOC concentration with decreasing permafrost extent and higher DOC concentrations in boreal permafrost sites compared to tundra sites. Our study shows that DOC concentration depends on the environmental properties of a lake, especially permafrost extent, ecoregion, and vegetation.
This article is included in the Encyclopedia of Geosciences
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
This article is included in the Encyclopedia of Geosciences
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
This article is included in the Encyclopedia of Geosciences
Frederic Thalasso, Katey Walter Anthony, Olya Irzak, Ethan Chaleff, Laughlin Barker, Peter Anthony, Philip Hanke, and Rodrigo Gonzalez-Valencia
Hydrol. Earth Syst. Sci., 24, 6047–6058, https://doi.org/10.5194/hess-24-6047-2020, https://doi.org/10.5194/hess-24-6047-2020, 2020
Short summary
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
This article is included in the Encyclopedia of Geosciences
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
This article is included in the Encyclopedia of Geosciences
Samuel T. Wilson, Alia N. Al-Haj, Annie Bourbonnais, Claudia Frey, Robinson W. Fulweiler, John D. Kessler, Hannah K. Marchant, Jana Milucka, Nicholas E. Ray, Parvadha Suntharalingam, Brett F. Thornton, Robert C. Upstill-Goddard, Thomas S. Weber, Damian L. Arévalo-Martínez, Hermann W. Bange, Heather M. Benway, Daniele Bianchi, Alberto V. Borges, Bonnie X. Chang, Patrick M. Crill, Daniela A. del Valle, Laura Farías, Samantha B. Joye, Annette Kock, Jabrane Labidi, Cara C. Manning, John W. Pohlman, Gregor Rehder, Katy J. Sparrow, Philippe D. Tortell, Tina Treude, David L. Valentine, Bess B. Ward, Simon Yang, and Leonid N. Yurganov
Biogeosciences, 17, 5809–5828, https://doi.org/10.5194/bg-17-5809-2020, https://doi.org/10.5194/bg-17-5809-2020, 2020
Short summary
Short summary
The oceans are a net source of the major greenhouse gases; however there has been little coordination of oceanic methane and nitrous oxide measurements. The scientific community has recently embarked on a series of capacity-building exercises to improve the interoperability of dissolved methane and nitrous oxide measurements. This paper derives from a workshop which discussed the challenges and opportunities for oceanic methane and nitrous oxide research in the near future.
This article is included in the Encyclopedia of Geosciences
Roger Seco, Thomas Holst, Mikkel Sillesen Matzen, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Janne Rinne, and Riikka Rinnan
Atmos. Chem. Phys., 20, 13399–13416, https://doi.org/10.5194/acp-20-13399-2020, https://doi.org/10.5194/acp-20-13399-2020, 2020
Short summary
Short summary
Northern ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs). We measured VOC fluxes from a subarctic permafrost-free fen and its adjacent lake in northern Sweden. The graminoid-dominated fen emitted mainly isoprene during the peak of the growing season, with a pronounced response to increasing temperatures stronger than assumed by biogenic emission models. The lake was a sink of acetone and acetaldehyde during both periods measured.
This article is included in the Encyclopedia of Geosciences
Scott Zolkos, Suzanne E. Tank, Robert G. Striegl, Steven V. Kokelj, Justin Kokoszka, Cristian Estop-Aragonés, and David Olefeldt
Biogeosciences, 17, 5163–5182, https://doi.org/10.5194/bg-17-5163-2020, https://doi.org/10.5194/bg-17-5163-2020, 2020
Short summary
Short summary
High-latitude warming thaws permafrost, exposing minerals to weathering and fluvial transport. We studied the effects of abrupt thaw and associated weathering on carbon cycling in western Canada. Permafrost collapse affected < 1 % of the landscape yet enabled carbonate weathering associated with CO2 degassing in headwaters and increased bicarbonate export across watershed scales. Weathering may become a driver of carbon cycling in ice- and mineral-rich permafrost terrain across the Arctic.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aben, R. C., Barros, N., Van Donk, E., Frenken, T., Hilt, S., Kazanjian, G.,
Lamers, L. P., Peeters, E. T., Roelofs, J. G., de Senerpont Domis, L. N., and
Stephan, S.: Cross continental increase in methane ebullition under climate
change, Nat. Commun., 8, 1682, https://doi.org/10.1038/s41467-017-01535-y,
2017.
Andersen, R., Poulin, M., Borcard, D., Laiho, R., Laine, J., Vasander, H., and Tuittila, E. T.: Environmental control and spatial structures in peatland vegetation, J. Veg. Sci., 22, 878–890, 2011.
Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R., and
Bastviken, D.: Total hydrocarbon flux dynamics at a subarctic mire in
northern Sweden, J. Geophys. Res.-Biogeo., 113, G03026,
https://doi.org/10.1029/2008JG000703, 2008.
Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B.:
Methane emissions from tundra environments in the Yukon-Kuskokwim Delta,
Alaska, J. Geophys. Res.-Atmos., 97, 16645–16660,
https://doi.org/10.1029/91JD00610, 1992.
Bastviken, D., Ejlertsson, J., and Tranvik, L.: Measurement of methane
oxidation in lakes: a comparison of methods, Environ. Sci.
Technol., 36, 3354–3361, https://doi.org/10.1021/es010311p, 2002.
Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M., and
Enrich-Prast, A.: Freshwater methane fluxes offset the continental carbon
sink, Science, 331, 50–50, https://doi.org/10.1126/science.1196808, 2011.
Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting linear mixed-effects models using lme4, arXiv [preprint], arXiv:1406.5823, 23 June 2014.
Beaulne, J., Garneau, M., Magnan, G., and Boucher, É.: Peat deposits
store more carbon than trees in forested peatlands of the boreal biome, Sci.
Rep.-UK, 11, 2657, https://doi.org/10.1038/s41598-021-82004-x, 2021.
Belyea, L. R. and Baird, A. J.: Beyond “the limits to peat bog growth”: Cross‐scale feedback in peatland development, Ecol. Monogr., 76, 299–322, https://doi.org/10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2, 2006.
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane
fluxes from wetlands: biogeochemical, microbial, and modeling perspectives
from local to global scales, Glob. Change Biol., 19, 1325–1346,
https://doi.org/10.1111/gcb.12131, 2013.
Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic Map of Permafrost and Ground-Ice Conditions,
Version 2. Boulder, Colorado USA, NSIDC: National Snow and Ice Data Center [data set],
https://doi.org/10.7265/skbg-kf16, 2002.
Bruhwiler, L., Dlugokencky, E., Masarie, K., Ishizawa, M., Andrews, A., Miller, J., Sweeney, C., Tans, P., and Worthy, D.: CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane, Atmos. Chem. Phys., 14, 8269–8293, https://doi.org/10.5194/acp-14-8269-2014, 2014.
Bubier, J. L., Moore, T. R., Bellisario, L., Comer, N. T., and Crill, P. M.:
Ecological controls on methane fluxes from a northern peatland complex in
the zone of discontinuous permafrost, Manitoba, Canada, Global Biogeochem.
Cy., 9, 455–470, https://doi.org/10.1029/95GB02379, 1995.
Burke, S. A., Wik, M., Lang, A., Contosta, A. R., Palace, M., Crill, P. M., and Varner, R. K.: Long‐term measurements of methane ebullition from thaw ponds, J. Geophys. Res.-Biogeo., 124, 2208–2221, 2019.
Burns, R., Wynn, P.M., Barker, P., McNamara, N., Oakley, S., Ostle, N.,
Stott, A. W., Tuffen, H., Zhou, Z., Tweed, F. S., and Chesler, A.: Direct
isotopic evidence of biogenic methane production and efflux from beneath a
temperate glacier, Sci. Rep.-UK, 8, 17118,
https://doi.org/10.1038/s41598-018-35253-2, 2018.
Canada Committee on Ecological (Biophysical) Land Classification, National
Wetlands Working Group, Warner, B. G., and Rubec, C. D. A.: The Canadian
wetland classification system, Wetlands Research Branch, University of
Waterloo, Waterloo, Ont., 1997.
Chanton, J. P., Whiting, G. J., Happell, J. D., and Gerard, G.: Contrasting
rates and diurnal patterns of methane emission from emergent aquatic
macrophytes, Aquat. Bot., 46, 111–128,
https://doi.org/10.1016/0304-3770(93)90040-4, 1993.
Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N.,
Öquist, M., Svensson, B. H., Nykänen, H., Martikainen, P. J., and
Oskarsson, H.: Factors controlling large scale variations in methane
emissions from wetlands, Geophys. Res. Lett., 30,
https://doi.org/10.1029/2002GL016848, 2003.
Christiansen, J. R. and Jørgensen, C. J.: First observation of direct methane
emission to the atmosphere from the subglacial domain of the Greenland Ice
Sheet, Sci. Rep.-UK, 8, 16623, https://doi.org/10.1038/s41598-018-35054-7,
2018.
Cole, J. J. and Caraco, N. F.: Atmospheric exchange of carbon dioxide in a
low-wind oligotrophic lake measured by the addition of SF6, Limnol.
Oceanogr., 43, 647–656, https://doi.org/10.4319/lo.1998.43.4.0647, 1998.
DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A., and Prairie,
Y. T.: Methane ebullition and diffusion from northern ponds and lakes
regulated by the interaction between temperature and system
productivity, Limnol. Oceanogr., 61, S62–S77,
https://doi.org/10.1002/lno.10335, 2016.
DelSontro, T., Beaulieu, J. J., and Downing, J. A.: Greenhouse gas emissions
from lakes and impoundments: Upscaling in the face of global change, Limnol.
Oceanogr., 3, 64–75, https://doi.org/10.1002/lol2.10073, 2018.
Delwiche, K. B., Knox, S. H., Malhotra, A., Fluet-Chouinard, E., McNicol, G., Feron, S., Ouyang, Z., Papale, D., Trotta, C., Canfora, E., Cheah, Y.-W., Christianson, D., Alberto, Ma. C. R., Alekseychik, P., Aurela, M., Baldocchi, D., Bansal, S., Billesbach, D. P., Bohrer, G., Bracho, R., Buchmann, N., Campbell, D. I., Celis, G., Chen, J., Chen, W., Chu, H., Dalmagro, H. J., Dengel, S., Desai, A. R., Detto, M., Dolman, H., Eichelmann, E., Euskirchen, E., Famulari, D., Fuchs, K., Goeckede, M., Gogo, S., Gondwe, M. J., Goodrich, J. P., Gottschalk, P., Graham, S. L., Heimann, M., Helbig, M., Helfter, C., Hemes, K. S., Hirano, T., Hollinger, D., Hörtnagl, L., Iwata, H., Jacotot, A., Jurasinski, G., Kang, M., Kasak, K., King, J., Klatt, J., Koebsch, F., Krauss, K. W., Lai, D. Y. F., Lohila, A., Mammarella, I., Belelli Marchesini, L., Manca, G., Matthes, J. H., Maximov, T., Merbold, L., Mitra, B., Morin, T. H., Nemitz, E., Nilsson, M. B., Niu, S., Oechel, W. C., Oikawa, P. Y., Ono, K., Peichl, M., Peltola, O., Reba, M. L., Richardson, A. D., Riley, W., Runkle, B. R. K., Ryu, Y., Sachs, T., Sakabe, A., Sanchez, C. R., Schuur, E. A., Schäfer, K. V. R., Sonnentag, O., Sparks, J. P., Stuart-Haëntjens, E., Sturtevant, C., Sullivan, R. C., Szutu, D. J., Thom, J. E., Torn, M. S., Tuittila, E.-S., Turner, J., Ueyama, M., Valach, A. C., Vargas, R., Varlagin, A., Vazquez-Lule, A., Verfaillie, J. G., Vesala, T., Vourlitis, G. L., Ward, E. J., Wille, C., Wohlfahrt, G., Wong, G. X., Zhang, Z., Zona, D., Windham-Myers, L., Poulter, B., and Jackson, R. B.: FLUXNET-CH4: a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands , Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, 2021.
Dieleman, C. M., Rogers, B. M., Potter, S., Veraverbeke, S., Johnstone, J. F.,
Laflamme, J., Solvik, K., Walker, X. J., Mack, M. C., and Turetsky, M. R.:
Wildfire combustion and carbon stocks in the southern Canadian boreal
forest: Implications for a warming world, Glob. Change Biol., 26,
6062–6079, https://doi.org/10.1111/gcb.15158, 2020.
Downing, J. A., Cole, J. J., Duarte, C. M., Middelburg, J. J., Melack, J.
M., Prairie, Y. T., Kortelainen, P., Striegl, R. G., McDowell, W. H., and
Tranvik, L. J.: Global abundance and size distribution of streams and
rivers, Inland Waters, 2, 229–236, https://doi.org/10.5268/IW-2.4.502,
2012.
Emmerton, C. A., St. Louis, V. L., Lehnherr, I., Humphreys, E. R., Rydz, E., and Kosolofski, H. R.: The net exchange of methane with high Arctic landscapes during the summer growing season, Biogeosciences, 11, 3095–3106, https://doi.org/10.5194/bg-11-3095-2014, 2014.
Fernández, E. J., Peeters, F., and Hofmann, H.: Importance of the autumn
overturn and anoxic conditions in the hypolimnion for the annual methane
emissions from a temperate lake, Environ. Sci. Technol., 48, 7297–7304,
https://doi.org/10.1021/es4056164, 2014.
Garneau, M., Tremblay, L., and Magnan, G.: Holocene pool formation in
oligotrophic fens from boreal Québec in northeastern Canada,
Holocene, 28, 396–407, https://doi.org/10.1177/0959683617729439, 2018.
Glaser, P. H., Siegel, D. I., Reeve, A. S., Janssens, J. A., and Janecky, D.
R.: Tectonic drivers for vegetation patterning and landscape evolution in
the Albany River region of the Hudson Bay Lowlands, J. Ecol., 92,
1054–1070, https://doi.org/10.1111/j.0022-0477.2004.00930.x, 2004.
Gorham, E.: Northern peatlands: role in the carbon cycle and probable
responses to climatic warming, Ecol. Appl., 1, 182–195,
https://doi.org/10.2307/1941811, 1991.
Grosse, G., Jones, B., and Arp, C.: 8.21 Thermokarst Lakes,
Drainage, and Drained Basins, in: Treatise on Geomorphology,
edited by: Shroder, J. F., Academic Press, San Diego, 325–353,
https://doi.org/10.1016/B978-0-12-374739-6.00216-5, 2013.
Gunnarsson, U. and Löfroth, M.: The Swedish wetland survey: compiled
excerpts from the national final report, Swedish Environmental Protection
Agency, Stockholm, 2014.
Harris, L. I., Roulet, N. T., and Moore, T. R.: Mechanisms for the
Development of Microform Patterns in Peatlands of the Hudson Bay Lowland,
Ecosystems, 23, 741–767, https://doi.org/10.1007/s10021-019-00436-z, 2020.
Heikkinen, J. E., Virtanen, T., Huttunen, J. T., Elsakov, V., and Martikainen,
P. J.: Carbon balance in East European tundra, Global Biogeochem. Cy., 18, GB1023,
https://doi.org/10.1029/2003GB002054, 2004.
Heiskanen, J. J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T.,
MacIntyre, S., and Ojala, A.: Effects of cooling and internal wave motions on
gas transfer coefficients in a boreal lake, Tellus B, 66,
22827, https://doi.org/10.3402/tellusb.v66.22827, 2014.
Heiskanen, L., Tuovinen, J.-P., Räsänen, A., Virtanen, T., Juutinen, S., Lohila, A., Penttilä, T., Linkosalmi, M., Mikola, J., Laurila, T., and Aurela, M.: Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons, Biogeosciences, 18, 873–896, https://doi.org/10.5194/bg-18-873-2021, 2021.
Holgerson, M. and Raymond, P.: Large contribution to inland water
CO2 and CH4 fluxes from very small ponds, Nat.
Geosci., 9, 222–226, https://doi.org/10.1038/ngeo2654, 2016.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M. B., and Treat, C.: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, P. Natl. Acad. Sci. USA, 117, 20438–20446, https://doi.org/10.1073/pnas.1916387117, 2020.
Jansen, J., Thornton, B. F., Wik, M., MacIntyre, S., and Crill, P. M.:
Temperature proxies as a solution to biased sampling of lake methane
fluxes, Geophys. Res. Lett., 47, e2020GL088647, https://doi.org/10.1029/2020GL088647,
2020.
Jorgenson, M. T., Racine, C. H., Walters, J. C., and Osterkamp, T. E.:
Permafrost Degradation and Ecological Changes Associated with a Warming
Climate in Central Alaska, Climatic Change, 48, 551–579,
https://doi.org/10.1023/A:1005667424292, 2001.
Juutinen, S., Alm, J., Larmola, T., Huttunen, J. T., Morero, M.,
Martikainen, P. J., and Silvola, J.: Major implication of the littoral zone
for methane release from boreal lakes, Global Biogeochem. Cy., 17, 1117,
https://doi.org/10.1029/2003GB002105, 2003.
Karlsson, J., Giesler, R., Persson, J., and Lundin, E.: High emission of
carbon dioxide and methane during ice thaw in high latitude lakes, Geophys.
Res. Lett., 40, 1123–1127, https://doi.org/10.1002/grl.50152, 2013.
Klaus, M., Bergström, A. K., Jonsson, A., Deininger, A., Geibrink, E., and
Karlsson, J.: Weak response of greenhouse gas emissions to whole lake N
enrichment, Limnol. Oceanogr., 63, S340–S353,
https://doi.org/10.1002/lno.10743, 2018.
Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E.,
Zhang, Z., Hugelius, G., Bousquet, P., Canadell, J. G., Saunois, M., and
Papale, D.: FLUXNET-CH4 synthesis activity: Objectives, observations, and
future directions, B. Am. Meteorol. Soc., 100, 2607–2632,
https://doi.org/10.1175/BAMS-D-18-0268.1, 2019.
Kuhn, M., Lundin, E. J., Giesler, R., Johansson, M., and Karlsson, J.:
Emissions from thaw ponds largely offset the carbon sink of northern
permafrost wetlands, Sci. Rep.-UK, 8, 1–7,
https://doi.org/10.1038/s41598-018-27770-x, 2018.
Kuhn, M., Varner, R. K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky,
M., Walter Anthony, K., McGuire, D., and Olefeldt, D.: BAWLD-CH4: Methane
Fluxes from Boreal and Arctic Ecosystems, Arctic Data Center [data set],
https://doi.org/10.18739/A2DN3ZX1R, 2021.
Lamarche-Gagnon, G., Wadham, J. L., Lollar, B. S., Arndt, S., Fietzek, P.,
Beaton, A. D., Tedstone, A. J., Telling, J., Bagshaw, E. A., Hawkings, J. R., and
Kohler, T. J.: Greenland melt drives continuous export of methane from the
ice-sheet bed, Nature, 565, 73–77,
https://doi.org/10.1038/s41586-018-0800-0, 2019.
Lehner, B. and Döll, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.
Li, M., Peng, C., Zhu, Q., Zhou, X., Yang, G., Song, X., and Zhang, K.: The
significant contribution of lake depth in regulating global lake diffusive
methane emissions, Water Res., 172, 115465,
https://doi.org/10.1016/j.watres.2020.115465, 2020.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., Matveyeva, N.,
Necsoiu, M., Raynolds, M. K., Romanovsky, V. E., Schulla, J., Tape, K. D.,
Walker, D. A., Wilson, C. J., Yabuki, H., and Zona, D.: Pan-Arctic ice-wedge
degradation in warming permafrost and its influence on tundra hydrology,
Nat. Geosci., 9, 312–318, https://doi.org/10.1038/ngeo2674, 2016.
Machacova, K., Bäck, J., Vanhatalo, A., Halmeenmäki, E., Kolari, P.,
Mammarella, I., Pumpanen, J., Acosta, M., Urban, O., and Pihlatie, M.: Pinus
sylvestris as a missing source of nitrous oxide and methane in boreal
forest, Sci. Rep.-UK, 6, 23410, https://doi.org/10.1038/srep23410, 2016.
MacIntyre, S., Crowe, A. T., Cortés, A., and Arneborg, L.: Turbulence in a
small arctic pond, Limnol. Oceanogr., 63, 2337–2358,
https://doi.org/10.1002/lno.10941, 2018.
MacIntyre, S., Bastviken, D., Arneborg, L., Crow, A. T., Karlsson, J.,
Andersson, A., Galfalk, M., Rutgersson, A., Podgrajsek, E., and Melack, J.
M.: Turbulence in a small boreal lake: Consequences for air-water gas
exchange, Limnol. Oceanogr., 9999, 1–28, https://doi.org/10.1002/lno.11645,
2020.
Malhotra, A. and Roulet, N. T.: Environmental correlates of peatland carbon fluxes in a thawing landscape: do transitional thaw stages matter?, Biogeosciences, 12, 3119–3130, https://doi.org/10.5194/bg-12-3119-2015, 2015.
Mammarella, I., Nordbo, A., Rannik, Ü., Haapanala, S., Levula, J.,
Laakso, H., Ojala, A., Peltola, O., Heiskanen, J., Pumpanen, J., and Vesala,
T.: Carbon dioxide and energy fluxes over a small boreal lake in Southern
Finland, J. Geophys. Res.-Biogeo., 120, 1296–1314,
https://doi.org/10.1002/2014JG002873, 2015.
Marinho, C. C., Palma-Silva, C., Albertoni, E. F., Giacomini, I. B., Barros,
M. P. F., Furlanetto, L. M., and de Assis Esteves, F.: Emergent macrophytes
alter the sediment composition in a small, shallow subtropical lake:
Implications for methane flux, Am. J. Plant Sci., 6, 315,
https://doi.org/10.4236/ajps.2015.62036, 2015.
Markfort, C. D., Perez, A. L. S., Thill, J. W., Jaster, D. A., Porte-Agel, F.,
and Stefan, H. G.: Wind sheltering of a lake by a tree canopy or bluff
topography, Water Resour. Res., 46, W03530,
https:/doi.org/10.1029/2009WR007759, 2010.
Masing, V., Botch, M., and Läänelaid, A.: Mires of the former Soviet
Union, Wetlands Ecol. Manage., 18, 397–433,
https://doi.org/10.1007/s11273-008-9130-6, 2010.
Matson, A., Pennock, D., and Bedard-Haughn, A.: Methane and nitrous oxide
emissions from mature forest stands in the boreal forest, Saskatchewan,
Canada, Forest Ecol. Manage., 258, 1073–1083,
https://doi.org/10.1016/j.foreco.2009.05.034, 2009.
Matthews, E. and Fung, I.: Methane flux from natural wetlands: Global
distribution, area, and environmental characteristics of sources, Global
Biogeochem. Cy., 1, 61–86, https://doi.org/10.1029/GB001i001p00061, 1987.
Matthews, E., Johnson, M. S., Genovese, V., Du, J., and Bastviken, D.:
Methane flux from high latitude lakes: methane-centric lake classification
and satellite-driven annual cycle of fluxes, Sci. Rep.-UK, 10, 1–9,
https://doi.org/10.1038/s41598-020-68246-1, 2020.
Matveev, A., Laurion, I., Deshpande, B. N., Bhiry, N., and Vincent, W. F.:
High methane fluxes from thermokarst lakes in subarctic peatlands, Limnol.
Oceanogr., 61, S150–S164, https://doi.org/10.1002/lno.10311, 2016.
Mazerolle, M. J. and Mazerolle, M. M. J.: Package “AICcmodavg”
AICcmodavg; model selection and multimodel inference based on(Q) AIC©, CRAN R Project, 2015.
McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E. H.,
Mondav, R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G. W., and Saleska,
S. R.: Methane dynamics regulated by microbial community response to
permafrost thaw, Nature, 514, 478–481, https://doi.org/10.1038/nature13798,
2014.
McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven, C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185–3204, https://doi.org/10.5194/bg-9-3185-2012, 2012.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.:
Estimating the volume and age of water stored in global lakes using a
geo-statistical approach, Nat. Commun., 7, 13603,
https://doi.org/10.1038/ncomms13603, 2016.
Moore, T. R., Heyes, A., and Roulet, N. T.: Methane fluxes from wetlands,
southern Hudson Bay lowland, J. Geophys. Res.-Atmos., 99, 1455–1467,
https://doi.org/10.1029/93JD02457, 1994.
Moosavi, S. C. and Crill, P. M.: Controls on CH4 and CO2 emissions along two
moisture gradients in the Canadian boreal zone, J. Geophys. Res.-Atmos., 102, 29261–29277, https://doi.org/10.1029/96JD03873, 1997.
Muster, S., Riley, W. J., Roth, K., Langer, M., Cresto Aleina, F., Koven, C.
D., Lange, S., Bartsch, A., Grosse, G., Wilson, C. J., Jones, B. M., and
Boike, J.: Size Distributions of Arctic Waterbodies Reveal Consistent
Relations in Their Statistical Moments in Space and Time, Front. Earth Sci.,
7, 5, https://doi.org/10.3389/feart.2019.00005, 2019.
Oh, Y., Zhuang, Q., Liu, L., Welp, L. R., Lau, M. C., Onstott, T. C., Medvigy,
D., Bruhwiler, L., Dlugokencky, E. J., Hugelius, G., and D'Imperio,
L.: Reduced net methane emissions due to microbial methane oxidation in a
warmer Arctic, Nat. Clim. Change, 10, 317–321,
https://doi.org/10.1038/s41558-020-0734-z, 2020.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial methane fluxes
across permafrost zones, Glob. Change Biol., 19, 589–603,
https://doi.org/10.1111/gcb.12071, 2013.
Olefeldt, D., Euskirchen, E. S., Harden, J., Kane, E., McGuire, A. D.,
Waldrop, M. P., and Turetsky, M. R.: A decade of boreal rich fen greenhouse
gas fluxes in response to natural and experimental water table
variability, Glob. Change Biol., 23, 2428–2440,
https://doi.org/10.1111/gcb.13612, 2017.
Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T., Connolly,
J., Crill, P., Euskirchen, E., Finklestein, S., Genet, H., Grosse, G.,
Harris, L., Heffernan, L., Helbig, M., Hugelius, G., Hutchins, R., Juutinen,
S., Lara, M., Malhotra, A., Manies, K., McGuire, A. D., Natali, S.,
O'Donnell, S., Parmentier, F. J., Räsänen, A., Schaedel, C.,
Sonnentag, O., Strack, M., Tank, S., Treat, C., Varner, R. K, Virtanen, T.,
Warren, R., and Watts, J. D.: The fractional land cover estimates from the
Boreal-Arctic Wetland and Lake Dataset (BAWLD), Arctic Data Center
[data set], https://doi.org/10.18739/A2C824F9X, 2021a.
Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T. J., Connolly, J., Crill, P., Euskirchen, E. S., Finkelstein, S. A., Genet, H., Grosse, G., Harris, L. I., Heffernan, L., Helbig, M., Hugelius, G., Hutchins, R., Juutinen, S., Lara, M. J., Malhotra, A., Manies, K., McGuire, A. D., Natali, S. M., O'Donnell, J. A., Parmentier, F.-J. W., Räsänen, A., Schädel, C., Sonnentag, O., Strack, M., Tank, S. E., Treat, C., Varner, R. K., Virtanen, T., Warren, R. K., and Watts, J. D.: The Boreal–Arctic Wetland and Lake Dataset (BAWLD), Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, 2021b.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison,
J. C., and Loucks, C. J.: Terrestrial Ecoregions of the World: A New Map of
Life on Earth: A new global map of terrestrial ecoregions provides an
innovative tool for conserving biodiversity, BioScience, 51, 933–938,
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations, Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, 2019.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van.,
Willigen, B., and Maintainer, R: Package “nlme”. Linear and Nonlinear
Mixed Effects Models, version 3-1, CRAN R Project, 2017.
Rasilo, T., Prairie, Y. T., and del Giorgio, P. A.: Large-scale patterns in
summer diffusive CH4 fluxes across boreal lakes, and contribution to
diffusive C fluxes, Glob. Change Biol., 21, 1124–1139,
https://doi.org/10.1111/gcb.12741, 2015.
Sannel, A. B. K. and Kuhry, P.: Warming-induced destabilization of peat
plateau/thermokarst lake complexes, J. Geophys. Res.-Biogeo., 116, G03035,
https://doi.org/10.1029/2010JG001635, 2011.
Schirrmeister, L., Froese, D., Tumskoy, V., Grosse, G., and Wetterich, S.:
Yedoma: Late Pleistocene ice-rich syngenetic permafrost of Beringia,
Encyclopedia of Quaternary Science, 2nd Edn., 542–552,
https://doi.org/10.1016/B978-0-444-53643-3.00106-0, 2013.
Schnurrenberger, D., Russell, J., and Kelts, K.: Classification of
lacustrine sediments based on sedimentary components, J. Paleolimnol., 29,
141–154, https://doi.org/10.1023/A:1023270324800, 2003.
Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S., and Thalasso, F.: Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska, Biogeosciences, 12, 3197–3223, https://doi.org/10.5194/bg-12-3197-2015, 2015.
Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Foster, P. N., Joos, F., Prentice, I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665, https://doi.org/10.5194/bg-8-1643-2011, 2011.
Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L.
C., and Oliver, S. K.: The ecology of methane in streams and rivers:
patterns, controls, and global significance, Ecol. Monogr., 86,
146–171, https://doi.org/10.1890/15-1027, 2016.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G.,
Knoblauch, C., Romanovsky, V., Schädel, C., von Deimling, T. S., Schuur,
E. A., and Shmelev, D.: Deep Yedoma permafrost: A synthesis of depositional
characteristics and carbon vulnerability, Earth-Sci. Rev., 172, 75–86,
https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Ström, L. and Christensen, T. R.: Below ground carbon turnover and
greenhouse gas exchanges in a sub-arctic wetland, Soil Biol.
Biochem., 39, 1689–1698, https://doi.org/10.1016/j.soilbio.2007.01.019,
2007.
Ström, L., Tagesson, T., Mastepanov, M., and Christensen, T. R.:
Presence of Eriophorum scheuchzeri enhances substrate availability and
methane flux in an Arctic wetland, Soil Biol. Biochem., 45, 61–70,
https://doi.org/10.1016/j.soilbio.2011.09.005, 2012.
Tan, Z., Zhuang, Q., Henze, D. K., Frankenberg, C., Dlugokencky, E., Sweeney, C., Turner, A. J., Sasakawa, M., and Machida, T.: Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models?, Atmos. Chem. Phys., 16, 12649–12666, https://doi.org/10.5194/acp-16-12649-2016, 2016.
Thompson, R. L., Nisbet, E. G., Pisso, I., Stohl, A., Blake, D., Dlugokencky,
E. J., Helmig, D., and White, J. W. C.: Variability in atmospheric methane from
fossil fuel and microbial sources over the last three decades, Geophys.
Res. Lett., 45, 11499–11508, https://doi.org/10.1029/2018GL078127, 2018.
Terentieva, I. E., Glagolev, M. V., Lapshina, E. D., Sabrekov, A. F., and Maksyutov, S.: Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions, Biogeosciences, 13, 4615–4626, https://doi.org/10.5194/bg-13-4615-2016, 2016.
Treat, C. C., Bloom, A. A., and Marushchak, M. E.: Nongrowing season methane
fluxes – a significant component of annual fluxes across northern
ecosystems, Glob. Change Biol., 24, 3331–3343,
https://doi.org/10.1111/gcb.14137, 2018.
Turetsky, M. R., Wieder, R. K., and Vitt, D. H.: Boreal peatland C fluxes
under varying permafrost regimes, Soil Biol. Biochem., 34, 907–912,
https://doi.org/10.1016/S0038-0717(02)00022-6, 2002.
Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook,
E. R., Minkkinen, K., Moore, T. R., Myers-Smith, I. H., Nykänen, H., and
Olefeldt, D.: A synthesis of methane fluxes from 71 northern, temperate, and
subtropical wetlands, Glob. Change Biol., 20, 2183–2197,
https://doi.org/10.1111/gcb.12580, 2014.
van der Molen, M. K., van Huissteden, J., Parmentier, F. J. W., Petrescu, A. M. R., Dolman, A. J., Maximov, T. C., Kononov, A. V., Karsanaev, S. V., and Suzdalov, D. A.: The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia, Biogeosciences, 4, 985–1003, https://doi.org/10.5194/bg-4-985-2007, 2007.
Virtanen, R., Oksanen, L., Oksanen, T., Cohen, J., Forbes, B. C., Johansen,
B., Käyhkö, J., Olofsson, J., Pulliainen, J., and Tømmervik, H.:
Where do the treeless tundra areas of northern highlands fit in the global
biome system: toward an ecologically natural subdivision of the tundra
biome, Ecol. Evol., 6, 143–158,
https://doi.org/10.1002/ece3.1837, 2016.
von Fischer, J. C., Rhew, R. C., Ames, G. M., Fosdick, B. K., and von
Fischer, P. E.: Vegetation height and other controls of spatial variability
in methane fluxes from the Arctic coastal tundra at Barrow, Alaska, J.
Geophys. Res.-Biogeo., 115, G00I03, https://doi.org/10.1029/2009JG001283, 2010.
Wagner, D., Kobabe, S., Pfeiffer, E. M., and Hubberten, H. W.: Microbial
controls on methane fluxes from a polygonal tundra of the Lena Delta,
Siberia, Permafrost. Periglac., 14, 173–185,
https://doi.org/10.1002/ppp.443, 2003.
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D., and Chapin, F. S.:
Methane bubbling from Siberian thaw lakes as a positive feedback to climate
warming, Nature, 443, 71–75, https://doi.org/10.1038/nature05040, 2006.
Walter Anthony, K. M., Vas, D. A., Brosius, L., Chapin III, F. S., Zimov, S. A.,
and Zhuang, Q.: Estimating methane emissions from northern lakes using
ice-bubble surveys, Limnol. Oceanogr.: Methods, 8, 592–609,
https://doi.org/10.4319/lom.2010.8.0592, 2010.
Walter Anthony, K., Daanen, R., Anthony, P., von Deimling, T. S., Ping, C.
L., Chanton, J. P., and Grosse, G.: Methane fluxes proportional to
permafrost carbon thawed in Arctic lakes since the 1950s, Nat.
Geosci., 9, 679–682, https://doi.org/10.1038/ngeo2795, 2016.
Watts, J. D., Kimball, J. S., Bartsch, A., and McDonald, K. C.: Surface
water inundation in the boreal-Arctic: potential impacts on regional methane
fluxes, Environ. Res. Lett., 9, 075001,
https://doi.org/10.1088/1748-9326/9/7/075001, 2014.
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res., 101,
8741–8743, https://doi.org/10.1029/96JB00104, 1996.
Whalen, S. C.: Biogeochemistry of methane exchange between natural wetlands
and the atmosphere, Environ. Eng. Sci., 22, 73–94,
https://doi.org/10.1089/ees.2005.22.73, 2005.
Wik, M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear
measurements of ebullitive methane flux from three subarctic lakes, J.
Geophys. Res.-Biogeosci., 118, 1307–1321,
https://doi.org/10.1002/jgrg.20103, 2013.
Wik, M., Thornton, B. F., Bastviken, D., Uhlbäck, J., and Crill, P. M.:
Biased sampling of methane release from northern lakes: A problem for
extrapolation, Geophys. Res. Lett., 43, 1256–1262,
https://doi.org/10.1002/2015GL066501, 2016a.
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S., and Bastviken, D.:
Climate-sensitive northern lakes and ponds are critical components of
methane release, Nat. Geosci., 9, 99–105, https://doi.org/10.1038/ngeo2578,
2016b.
Wik, M., Johnson, J. E., Crill, P. M., DeStasio, J. P., Erickson, L., Halloran,
M. J., Fahnestock, M. F., Crawford, M. K., Phillips, S. C., and Varner, R. K.:
Sediment characteristics and methane ebullition in three subarctic lakes, J.
Geophys. Res.-Biogeo., 123, 2399–2411,
https://doi.org/10.1029/2017JG004298, 2018.
Woodcroft, B. J., Singleton, C. M., Boyd, J. A., Evans, P. N., Emerson, J. B.,
Zayed, A. A., Hoelzle, R. D., Lamberton, T. O., McCalley, C. K., Hodgkins, S. B.,
and Wilson, R. M.: Genome-centric view of carbon processing in thawing
permafrost, Nature, 560, 49–54, https://doi.org/10.1038/s41586-018-0338-1,
2018.
Zhu, X., Zhuang, Q., Qin, Z., Glagolev, M., and Song, L.: Estimating wetland
methane fluxes from the northern high latitudes from 1990 to 2009 using
artificial neural networks, Global Biogeochem. Cy., 27, 592–604,
https://doi.org/10.1002/gbc.20052, 2013.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., and Chang, R. Y. W.: Cold
season fluxes dominate the Arctic tundra methane budget, P. Natl. Acad.
Sci. USA, 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.
Download
- Article
(12607 KB) - Full-text XML
Short summary
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current magnitude of annual emissions is not well defined. Here we present a dataset of surface CH4 fluxes from northern wetlands, lakes, and uplands that was built alongside a compatible land cover dataset, sharing the same classifications. We show CH4 fluxes can be split by broad land cover characteristics. The dataset is useful for comparison against new field data and model parameterization or validation.
Methane (CH4) emissions from the boreal–Arctic region are globally significant, but the current...
Altmetrics
Final-revised paper
Preprint