Articles | Volume 13, issue 10
https://doi.org/10.5194/essd-13-4727-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-13-4727-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A first investigation of hydrogeology and hydrogeophysics of the Maqu catchment in the Yellow River source region
Mengna Li
School of Water and Environment, Chang'an University, Xi'an 710054,
China
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, 7500 AE, the Netherlands
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, 7500 AE, the Netherlands
Maciek W. Lubczynski
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, 7500 AE, the Netherlands
Jean Roy
IGP, Outremont, QC H2V 4T9, Canada
Lianyu Yu
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, 7500 AE, the Netherlands
Hui Qian
CORRESPONDING AUTHOR
School of Water and Environment, Chang'an University, Xi'an 710054,
China
Zhenyu Li
Institute of Geophysics and Geomatics, China University of
Geosciences, Wuhan, 430074, China
Jie Chen
School of Water and Environment, Chang'an University, Xi'an 710054,
China
Lei Han
School of Land Engineering, Chang'an University, Xi'an 710054, China
Han Zheng
School of Water and Environment, Chang'an University, Xi'an 710054,
China
Tom Veldkamp
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, 7500 AE, the Netherlands
Jeroen M. Schoorl
Soil Geography and Landscape Group, Wageningen University, P.O. Box
47, 6700 AA Wageningen, the Netherlands
Harrie-Jan Hendricks Franssen
Forschungszentrum Jülich GmbH, Agrosphere (IBG-3), Jülich,
52425, Germany
Kai Hou
School of Water and Environment, Chang'an University, Xi'an 710054,
China
Qiying Zhang
School of Water and Environment, Chang'an University, Xi'an 710054,
China
Panpan Xu
School of Water and Environment, Chang'an University, Xi'an 710054,
China
Fan Li
Institute of Geophysics and Geomatics, China University of
Geosciences, Wuhan, 430074, China
Kai Lu
Institute of Geophysics and Geomatics, China University of
Geosciences, Wuhan, 430074, China
Yulin Li
Institute of Geophysics and Geomatics, China University of
Geosciences, Wuhan, 430074, China
Zhongbo Su
CORRESPONDING AUTHOR
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, Enschede, 7500 AE, the Netherlands
Related authors
Lianyu Yu, Yijian Zeng, Huanjie Cai, Mengna Li, Yuanyuan Zha, Jicai Zeng, Hui Qian, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-221, https://doi.org/10.5194/gmd-2022-221, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a coupled soil water-groundwater (SW-GW) model, which is verified as physically accurate and applicable in large-scale groundwater problems. The role of vadose zone processes, coupling approach, and spatiotemporal heterogeneity of SW-GW interactions were highlighted as essential to represent the SW-GW system. Given the relevant dataset, the developed SW-GW modeling framework has the potential to portray the processes "from bedrock to atmosphere" in a physically consistent manner.
Teng Xu, Sinan Xiao, Sebastian Reuschen, Nils Wildt, Harrie-Jan Hendricks Franssen, and Wolfgang Nowak
Hydrol. Earth Syst. Sci., 28, 5375–5400, https://doi.org/10.5194/hess-28-5375-2024, https://doi.org/10.5194/hess-28-5375-2024, 2024
Short summary
Short summary
We provide a set of benchmarking scenarios for geostatistical inversion, and we encourage the scientific community to use these to compare their newly developed methods. To facilitate transparent, appropriate, and uncertainty-aware comparison of novel methods, we provide some accurate reference solutions, a high-end reference algorithm, and a diverse set of benchmarking metrics, all of which are publicly available. With this, we seek to foster more targeted and transparent progress in the field.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Zengjing Song, Yijian Zeng, Yunfei Wang, Enting Tang, Danyang Yu, Fakhereh Alidoost, Mingguo Ma, Xujun Han, Xuguang Tang, Zhongjing Zhu, Yao Xiao, Debing Kong, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-2940, https://doi.org/10.5194/egusphere-2024-2940, 2024
Short summary
Short summary
The exchange of water and carbon between the plant and the atmosphere is affected under water stress conditions. In this study, a leaf-water-potential-based water stress factor is considered in the STEMMUS-SCOPE (hereafter STEMMUS-SCOPE-PHS), to replace the conventional soil-moisture-based water stress factor. The results show that leaf water potential reflects the plant water stress well, and the STEMMUS-SCOPE-PHS outperforms STEMMUS-SCOPE in the dynamics of the water, energy and carbon fluxes.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678, https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Short summary
The Unsolved Problems in Hydrology (UPH) initiative has emphasized the need to establish networks of multi-decadal hydrological observatories to tackle catchment-scale challenges on a global scale. This opinion paper provocatively discusses two end members of possible future hydrological observatory (HO) networks for a given hypothesized community budget: a comprehensive set of moderately instrumented observatories or, alternatively, a small number of highly instrumented super-sites.
Yunfei Wang, Yijian Zeng, Zengjing Song, Danyang Yu, Qianqian Han, Enting Tang, Henk de Bruin, and Zhongbo Su
EGUsphere, https://doi.org/10.5194/egusphere-2024-1321, https://doi.org/10.5194/egusphere-2024-1321, 2024
Preprint archived
Short summary
Short summary
Various methods were proposed to estimate irrigation water requirements (IWR). However, the simulated IWR exhibits large differences. This study evaluates six potential evapotranspiration (PET) methods and proposes a practical approach to estimate IWR. The radiation-based methods show promise in approximating daily PET accurately, and the STEMMUS-SCOPE model can reliably estimate IWR. This research enhances our understanding of different PET methods and their implications for water management.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie Fisher, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-978, https://doi.org/10.5194/egusphere-2024-978, 2024
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land Surface Models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes and variability of carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research on these processes.
Lukas Strebel, Heye Bogena, Harry Vereecken, Mie Andreasen, Sergio Aranda-Barranco, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 28, 1001–1026, https://doi.org/10.5194/hess-28-1001-2024, https://doi.org/10.5194/hess-28-1001-2024, 2024
Short summary
Short summary
We present results from using soil water content measurements from 13 European forest sites in a state-of-the-art land surface model. We use data assimilation to perform a combination of observed and modeled soil water content and show the improvements in the representation of soil water content. However, we also look at the impact on evapotranspiration and see no corresponding improvements.
Enting Tang, Yijian Zeng, Yunfei Wang, Zengjing Song, Danyang Yu, Hongyue Wu, Chenglong Qiao, Christiaan van der Tol, Lingtong Du, and Zhongbo Su
Biogeosciences, 21, 893–909, https://doi.org/10.5194/bg-21-893-2024, https://doi.org/10.5194/bg-21-893-2024, 2024
Short summary
Short summary
Our study shows that planting shrubs in a semiarid grassland reduced the soil moisture and increased plant water uptake and transpiration. Notably, the water used by the ecosystem exceeded the rainfall received during the growing seasons, indicating an imbalance in the water cycle. The findings demonstrate the effectiveness of the STEMMUS–SCOPE model as a tool to represent ecohydrological processes and highlight the need to consider energy and water budgets for future revegetation projects.
Bamidele Joseph Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2023-3132, https://doi.org/10.5194/egusphere-2023-3132, 2024
Short summary
Short summary
This study uses simulations to understand how the soil information across Africa affects the water balance, using 4 soil databases and 3 different rainfall datasets. Results show that the soil information impacts water balance estimates, especially with a higher rate of rainfall.
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023, https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Short summary
In geosciences, we often use simulations based on physical laws. These simulations can be computationally expensive, which is a problem if simulations must be performed many times (e.g., to add error bounds). We show how a novel machine learning method helps to reduce simulation time. In comparison to other approaches, which typically only look at the output of a simulation, the method considers physical laws in the simulation itself. The method provides reliable results faster than standard.
Qianqian Han, Yijian Zeng, Lijie Zhang, Calimanut-Ionut Cira, Egor Prikaziuk, Ting Duan, Chao Wang, Brigitta Szabó, Salvatore Manfreda, Ruodan Zhuang, and Bob Su
Geosci. Model Dev., 16, 5825–5845, https://doi.org/10.5194/gmd-16-5825-2023, https://doi.org/10.5194/gmd-16-5825-2023, 2023
Short summary
Short summary
Using machine learning, we estimated global surface soil moisture (SSM) to aid in understanding water, energy, and carbon exchange. Ensemble models outperformed individual algorithms in predicting SSM under different climates. The best-performing ensemble included K-neighbours Regressor, Random Forest Regressor, and Extreme Gradient Boosting. This is important for hydrological and climatological applications such as water cycle monitoring, irrigation management, and crop yield prediction.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Kai-Gao Ouyang, Xiao-Wei Jiang, Gang Mei, Hong-Bin Yan, Ran Niu, Li Wan, and Yijian Zeng
Hydrol. Earth Syst. Sci., 27, 2579–2590, https://doi.org/10.5194/hess-27-2579-2023, https://doi.org/10.5194/hess-27-2579-2023, 2023
Short summary
Short summary
Our knowledge on sources and dynamics of rock moisture is limited. By using frequency domain reflectometry (FDR), we monitored rock moisture in a cave. The results of an explainable deep learning model reveal that the direct source of rock moisture responsible for weathering in the studied cave is vapour, not infiltrating precipitation. A physics-informed deep learning model, which uses variables controlling vapor condensation as model inputs, leads to accurate rock water content predictions.
Lianyu Yu, Yijian Zeng, Huanjie Cai, Mengna Li, Yuanyuan Zha, Jicai Zeng, Hui Qian, and Zhongbo Su
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-221, https://doi.org/10.5194/gmd-2022-221, 2023
Revised manuscript not accepted
Short summary
Short summary
We developed a coupled soil water-groundwater (SW-GW) model, which is verified as physically accurate and applicable in large-scale groundwater problems. The role of vadose zone processes, coupling approach, and spatiotemporal heterogeneity of SW-GW interactions were highlighted as essential to represent the SW-GW system. Given the relevant dataset, the developed SW-GW modeling framework has the potential to portray the processes "from bedrock to atmosphere" in a physically consistent manner.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Cosimo Brogi, Heye Reemt Bogena, Markus Köhli, Johan Alexander Huisman, Harrie-Jan Hendricks Franssen, and Olga Dombrowski
Geosci. Instrum. Method. Data Syst., 11, 451–469, https://doi.org/10.5194/gi-11-451-2022, https://doi.org/10.5194/gi-11-451-2022, 2022
Short summary
Short summary
Accurate monitoring of water in soil can improve irrigation efficiency, which is important considering climate change and the growing world population. Cosmic-ray neutrons sensors (CRNSs) are a promising tool in irrigation monitoring due to a larger sensed area and to lower maintenance than other ground-based sensors. Here, we analyse the feasibility of irrigation monitoring with CRNSs and the impact of the irrigated field dimensions, of the variations of water in soil, and of instrument design.
Hong Zhao, Yijian Zeng, Jan G. Hofste, Ting Duan, Jun Wen, and Zhongbo Su
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-333, https://doi.org/10.5194/hess-2022-333, 2022
Revised manuscript not accepted
Short summary
Short summary
This paper demonstrated the capability of our developed platform for simulating microwave emission and backscatter signals at multi-frequency. The results of associated investigations on impacts of vegetation water (VW) and temperature (T) imply the need to first disentangle the impact of T for the use of high-frequency signals as its variation is more due to dynamic T. Estimated vegetation optical depth is frequency-dependent, while its diurnal variation depends on that of VW despite frequency.
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022, https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
Short summary
Soil carbon storage and food production of fruit orchards will be influenced by climate change. However, they lack representation in models that study such processes. We developed and tested a new sub-model, CLM5-FruitTree, that describes growth, biomass distribution, and management practices in orchards. The model satisfactorily predicted yield and exchange of carbon, energy, and water in an apple orchard and can be used to study land surface processes in fruit orchards at different scales.
Lukas Strebel, Heye R. Bogena, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 15, 395–411, https://doi.org/10.5194/gmd-15-395-2022, https://doi.org/10.5194/gmd-15-395-2022, 2022
Short summary
Short summary
We present the technical coupling between a land surface model (CLM5) and the Parallel Data Assimilation Framework (PDAF). This coupling enables measurement data to update simulated model states and parameters in a statistically optimal way. We demonstrate the viability of the model framework using an application in a forested catchment where the inclusion of soil water measurements significantly improved the simulation quality.
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Geosci. Model Dev., 14, 7345–7376, https://doi.org/10.5194/gmd-14-7345-2021, https://doi.org/10.5194/gmd-14-7345-2021, 2021
Short summary
Short summary
We developed an integrated soil–snow–atmosphere model (STEMMUS-UEB) dedicated to the physical description of snow and soil processes with various complexities. With STEMMUS-UEB, we demonstrated that the snowpack affects not only the soil surface moisture conditions (in the liquid and ice phase) and energy-related states (albedo, LE) but also the subsurface soil water and vapor transfer, which contributes to a better understanding of the hydrothermal implications of the snowpack in cold regions.
Yafei Huang, Jonas Weis, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-569, https://doi.org/10.5194/hess-2021-569, 2021
Manuscript not accepted for further review
Short summary
Short summary
Trends in agricultural droughts cannot be easily deduced from measurements. Here trends in agricultural droughts over 31 German and Dutch sites were calculated with model simulations and long-term observed meteorological data as input. We found that agricultural droughts are increasing although precipitation hardly decreases. The increase is driven by increase in evapotranspiration. The year 2018 was for half of the sites the year with the most extreme agricultural drought in the last 55 years.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Hong-Yu Xie, Xiao-Wei Jiang, Shu-Cong Tan, Li Wan, Xu-Sheng Wang, Si-Hai Liang, and Yijian Zeng
Hydrol. Earth Syst. Sci., 25, 4243–4257, https://doi.org/10.5194/hess-25-4243-2021, https://doi.org/10.5194/hess-25-4243-2021, 2021
Short summary
Short summary
Freezing-induced groundwater migration and water table decline are widely observed, but quantitative understanding of these processes is lacking. By considering wintertime atmospheric conditions and occurrence of lateral groundwater inflow, a model coupling soil water and groundwater reproduced field observations of soil temperature, soil water content, and groundwater level well. The model results led to a clear understanding of the balance of the water budget during the freezing–thawing cycle.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Yunfei Wang, Yijian Zeng, Lianyu Yu, Peiqi Yang, Christiaan Van der Tol, Qiang Yu, Xiaoliang Lü, Huanjie Cai, and Zhongbo Su
Geosci. Model Dev., 14, 1379–1407, https://doi.org/10.5194/gmd-14-1379-2021, https://doi.org/10.5194/gmd-14-1379-2021, 2021
Short summary
Short summary
This study integrates photosynthesis and transfer of energy, mass, and momentum in the soil–plant–atmosphere continuum system, via a simplified 1D root growth model. The results indicated that the simulation of land surface fluxes was significantly improved by considering the root water uptake, especially when vegetation was experiencing severe water stress. This finding highlights the importance of enhanced soil heat and moisture transfer in simulating ecosystem functioning.
María P. González-Dugo, Xuelong Chen, Ana Andreu, Elisabet Carpintero, Pedro J. Gómez-Giraldez, Arnaud Carrara, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 755–768, https://doi.org/10.5194/hess-25-755-2021, https://doi.org/10.5194/hess-25-755-2021, 2021
Short summary
Short summary
Drought is a devastating natural hazard and difficult to define, detect and quantify. Global meteorological data and remote-sensing products present new opportunities to characterize drought in an objective way. In this paper, we applied the surface energy balance model SEBS to estimate monthly evapotranspiration (ET) from 2001 to 2018 over the dehesa area of the Iberian Peninsula. ET anomalies were used to identify the main drought events and analyze their impacts on dehesa vegetation.
Rogier van der Velde, Andreas Colliander, Michiel Pezij, Harm-Jan F. Benninga, Rajat Bindlish, Steven K. Chan, Thomas J. Jackson, Dimmie M. D. Hendriks, Denie C. M. Augustijn, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 473–495, https://doi.org/10.5194/hess-25-473-2021, https://doi.org/10.5194/hess-25-473-2021, 2021
Short summary
Short summary
NASA’s SMAP satellite provides estimates of the amount of water in the soil. With measurements from a network of 20 monitoring stations, the accuracy of these estimates has been studied for a 4-year period. We found an agreement between satellite and in situ estimates in line with the mission requirements once the large mismatches associated with rapidly changing water contents, e.g. soil freezing and rainfall, are excluded.
Theresa Boas, Heye Bogena, Thomas Grünwald, Bernard Heinesch, Dongryeol Ryu, Marius Schmidt, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, https://doi.org/10.5194/gmd-14-573-2021, 2021
Short summary
Short summary
In this study we were able to significantly improve CLM5 model performance for European cropland sites by adding a winter wheat representation, specific plant parameterizations for important cash crops, and a cover-cropping and crop rotation subroutine to its crop module. Our modifications should be applied in future studies of CLM5 to improve regional yield predictions and to better understand large-scale impacts of agricultural management on carbon, water, and energy fluxes.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Xu Yuan, Xiaolong Yu, and Zhongbo Su
Ocean Sci., 16, 1285–1296, https://doi.org/10.5194/os-16-1285-2020, https://doi.org/10.5194/os-16-1285-2020, 2020
Short summary
Short summary
This work investigates the variabilities of the barrier layer thickness (BLT) in the tropical Indian Ocean with the Simple Ocean Data Assimilation version 3 ocean reanalysis data. Our results show that the seasonal variation of the BLT is in relation to the changes of thermocline and sea surface salinity. In terms of the interannual timescale, BLT presents a clear seasonal phase locking dominated by different drivers during the Indian Dipole and El Niño–Southern Oscillation events.
Lianyu Yu, Yijian Zeng, and Zhongbo Su
Hydrol. Earth Syst. Sci., 24, 4813–4830, https://doi.org/10.5194/hess-24-4813-2020, https://doi.org/10.5194/hess-24-4813-2020, 2020
Short summary
Short summary
Soil mass and heat transfer processes were represented in three levels of model complexities to understand soil freeze–thaw mechanisms. Results indicate that coupled mass and heat transfer models considerably improved simulations of the soil hydrothermal regime. Vapor flow and thermal effects on water flow are the main mechanisms for the improvements. Given the explicit consideration of airflow, vapor flow and its effects on heat transfer were enhanced during the freeze–thaw transition period.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
X. Chen, Z. Su, and Y. Ma
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1729–1733, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1729-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1729-2019, 2019
Bibi S. Naz, Wolfgang Kurtz, Carsten Montzka, Wendy Sharples, Klaus Goergen, Jessica Keune, Huilin Gao, Anne Springer, Harrie-Jan Hendricks Franssen, and Stefan Kollet
Hydrol. Earth Syst. Sci., 23, 277–301, https://doi.org/10.5194/hess-23-277-2019, https://doi.org/10.5194/hess-23-277-2019, 2019
Short summary
Short summary
This study investigates the value of assimilating coarse-resolution remotely sensed soil moisture data into high-resolution land surface models for improving soil moisture and runoff modeling. The soil moisture estimates in this study, with complete spatio-temporal coverage and improved spatial resolution from the assimilation, offer a new reanalysis product for the monitoring of surface soil water content and other hydrological fluxes at 3 km resolution over Europe.
Mehdi Rahmati, Lutz Weihermüller, Jan Vanderborght, Yakov A. Pachepsky, Lili Mao, Seyed Hamidreza Sadeghi, Niloofar Moosavi, Hossein Kheirfam, Carsten Montzka, Kris Van Looy, Brigitta Toth, Zeinab Hazbavi, Wafa Al Yamani, Ammar A. Albalasmeh, Ma'in Z. Alghzawi, Rafael Angulo-Jaramillo, Antônio Celso Dantas Antonino, George Arampatzis, Robson André Armindo, Hossein Asadi, Yazidhi Bamutaze, Jordi Batlle-Aguilar, Béatrice Béchet, Fabian Becker, Günter Blöschl, Klaus Bohne, Isabelle Braud, Clara Castellano, Artemi Cerdà, Maha Chalhoub, Rogerio Cichota, Milena Císlerová, Brent Clothier, Yves Coquet, Wim Cornelis, Corrado Corradini, Artur Paiva Coutinho, Muriel Bastista de Oliveira, José Ronaldo de Macedo, Matheus Fonseca Durães, Hojat Emami, Iraj Eskandari, Asghar Farajnia, Alessia Flammini, Nándor Fodor, Mamoun Gharaibeh, Mohamad Hossein Ghavimipanah, Teamrat A. Ghezzehei, Simone Giertz, Evangelos G. Hatzigiannakis, Rainer Horn, Juan José Jiménez, Diederik Jacques, Saskia Deborah Keesstra, Hamid Kelishadi, Mahboobeh Kiani-Harchegani, Mehdi Kouselou, Madan Kumar Jha, Laurent Lassabatere, Xiaoyan Li, Mark A. Liebig, Lubomír Lichner, María Victoria López, Deepesh Machiwal, Dirk Mallants, Micael Stolben Mallmann, Jean Dalmo de Oliveira Marques, Miles R. Marshall, Jan Mertens, Félicien Meunier, Mohammad Hossein Mohammadi, Binayak P. Mohanty, Mansonia Pulido-Moncada, Suzana Montenegro, Renato Morbidelli, David Moret-Fernández, Ali Akbar Moosavi, Mohammad Reza Mosaddeghi, Seyed Bahman Mousavi, Hasan Mozaffari, Kamal Nabiollahi, Mohammad Reza Neyshabouri, Marta Vasconcelos Ottoni, Theophilo Benedicto Ottoni Filho, Mohammad Reza Pahlavan-Rad, Andreas Panagopoulos, Stephan Peth, Pierre-Emmanuel Peyneau, Tommaso Picciafuoco, Jean Poesen, Manuel Pulido, Dalvan José Reinert, Sabine Reinsch, Meisam Rezaei, Francis Parry Roberts, David Robinson, Jesús Rodrigo-Comino, Otto Corrêa Rotunno Filho, Tadaomi Saito, Hideki Suganuma, Carla Saltalippi, Renáta Sándor, Brigitta Schütt, Manuel Seeger, Nasrollah Sepehrnia, Ehsan Sharifi Moghaddam, Manoj Shukla, Shiraki Shutaro, Ricardo Sorando, Ajayi Asishana Stanley, Peter Strauss, Zhongbo Su, Ruhollah Taghizadeh-Mehrjardi, Encarnación Taguas, Wenceslau Geraldes Teixeira, Ali Reza Vaezi, Mehdi Vafakhah, Tomas Vogel, Iris Vogeler, Jana Votrubova, Steffen Werner, Thierry Winarski, Deniz Yilmaz, Michael H. Young, Steffen Zacharias, Yijian Zeng, Ying Zhao, Hong Zhao, and Harry Vereecken
Earth Syst. Sci. Data, 10, 1237–1263, https://doi.org/10.5194/essd-10-1237-2018, https://doi.org/10.5194/essd-10-1237-2018, 2018
Short summary
Short summary
This paper presents and analyzes a global database of soil infiltration data, the SWIG database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists or they were digitized from published articles. We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models.
Hong Zhao, Yijian Zeng, Shaoning Lv, and Zhongbo Su
Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, https://doi.org/10.5194/essd-10-1031-2018, 2018
Short summary
Short summary
The Tibet-Obs soil properties dataset was compiled based on in situ and laboratory measurements of soil profiles across three climate zones on the Tibetan Plateau. The appropriate parameterization schemes of soil hydraulic and thermal properties were discussed for their applicability in land surface modeling. The uncertainties of existing soil datasets were evaluated. This paper contributes to land surface modeling and hydro-climatology communities for their studies of the third pole region.
Hanna Post, Harrie-Jan Hendricks Franssen, Xujun Han, Roland Baatz, Carsten Montzka, Marius Schmidt, and Harry Vereecken
Biogeosciences, 15, 187–208, https://doi.org/10.5194/bg-15-187-2018, https://doi.org/10.5194/bg-15-187-2018, 2018
Short summary
Short summary
Estimated values of selected key CLM4.5-BGC parameters obtained with the Markov chain Monte Carlo (MCMC) approach DREAM(zs) strongly altered catchment-scale NEE predictions in comparison to global default parameter values. The effect of perturbed meteorological input data on the uncertainty of the predicted carbon fluxes was notably higher for C3-grass and C3-crop than for coniferous and deciduous forest. A future distinction of different crop types including management is considered essential.
Hongjuan Zhang, Harrie-Jan Hendricks Franssen, Xujun Han, Jasper A. Vrugt, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 4927–4958, https://doi.org/10.5194/hess-21-4927-2017, https://doi.org/10.5194/hess-21-4927-2017, 2017
Short summary
Short summary
Applications of data assimilation (DA) arise in many fields of geosciences, perhaps most importantly in weather forecasting and hydrology. We want to investigate the roles of data assimilation methods and land surface models (LSMs) in joint estimation of states and parameters in the assimilation experiments. We find that all DA methods can improve prediction of states, and that differences between DA methods were limited but that the differences between LSMs were much larger.
Roland Baatz, Harrie-Jan Hendricks Franssen, Xujun Han, Tim Hoar, Heye Reemt Bogena, and Harry Vereecken
Hydrol. Earth Syst. Sci., 21, 2509–2530, https://doi.org/10.5194/hess-21-2509-2017, https://doi.org/10.5194/hess-21-2509-2017, 2017
Short summary
Short summary
Soil moisture is a major variable that affects regional climate, weather and hydrologic processes on the Earth's surface. In this study, real-world data of a network of cosmic-ray sensors were assimilated into a regional land surface model to improve model states and soil hydraulic parameters. The results show the potential of these networks for improving model states and parameters. It is suggested to widen the number of observed variables and to increase the number of estimated parameters.
Fakhereh Alidoost, Alfred Stein, Zhongbo Su, and Ali Sharifi
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-93, https://doi.org/10.5194/hess-2017-93, 2017
Manuscript not accepted for further review
Short summary
Short summary
Weather stations are often sparse and systematic under/overestimation of a global weather forecast system leads to bias. Most of the available bias correction methods do not consider higher order moments of a probability distribution and they use same distributions families to estimate both marginal and multivariate distributions. We propose three new copula-based bias correction methods, which describe the dependence structure between air temperature and covariates.
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557, https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this work we show how we used a coupled atmosphere-land surface-subsurface model at highest possible resolution to create a testbed for data assimilation. The model was able to capture all important processes and interactions between the compartments as well as showing realistic statistical behavior. This proves that using a model as a virtual truth is possible and it will enable us to develop data assimilation methods where states and parameters are updated across compartment.
Jian Peng, Alexander Loew, Xuelong Chen, Yaoming Ma, and Zhongbo Su
Hydrol. Earth Syst. Sci., 20, 3167–3182, https://doi.org/10.5194/hess-20-3167-2016, https://doi.org/10.5194/hess-20-3167-2016, 2016
Short summary
Short summary
The Tibetan Plateau plays a major role in regional and global climate. The knowledge of latent heat flux can help to better describe the complex interactions between land and atmosphere. The purpose of this paper is to provide a detailed cross-comparison of existing latent heat flux products over the TP. The results highlight the recently developed latent heat product – High Resolution Land Surface Parameters from Space (HOLAPS).
Wolfgang Kurtz, Guowei He, Stefan J. Kollet, Reed M. Maxwell, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 9, 1341–1360, https://doi.org/10.5194/gmd-9-1341-2016, https://doi.org/10.5194/gmd-9-1341-2016, 2016
Short summary
Short summary
This paper describes the development of a modular data assimilation (DA) system for the integrated Earth system model TerrSysMP with the help of the PDAF data assimilation library.
Currently, pressure and soil moisture data can be used to update model states and parameters in the subsurface compartment of TerrSysMP.
Results from an idealized twin experiment show that the developed DA system provides a good parallel performance and is also applicable for high-resolution modelling problems.
Lianyu Yu, Yijian Zeng, Zhongbo Su, Huanjie Cai, and Zhen Zheng
Hydrol. Earth Syst. Sci., 20, 975–990, https://doi.org/10.5194/hess-20-975-2016, https://doi.org/10.5194/hess-20-975-2016, 2016
Short summary
Short summary
The coupled water vapor and heat transport model using two different ET (ETdir, ETind) methods varied concerning the simulation of soil moisture and ET components, while agreed well for the simulation of soil temperature. Considering aerodynamic and surface resistance terms improved the ETdir method regarding simulating soil evaporation, especially after irrigation. The interactive effect of crop growth parameters with changing environment played an important role in estimating ET components.
X. Han, X. Li, G. He, P. Kumbhar, C. Montzka, S. Kollet, T. Miyoshi, R. Rosolem, Y. Zhang, H. Vereecken, and H.-J. H. Franssen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-7395-2015, https://doi.org/10.5194/gmdd-8-7395-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
DasPy is a ready to use open source parallel multivariate land data assimilation framework with joint state and parameter estimation using Local Ensemble Transform Kalman Filter. The Community Land Model (4.5) was integrated as model operator. The Community Microwave Emission Modelling platform, COsmic-ray Soil Moisture Interaction Code and the Two-Source Formulation were integrated as observation operators for the multivariate assimilation of soil moisture and soil temperature, respectively.
S. Gebler, H.-J. Hendricks Franssen, T. Pütz, H. Post, M. Schmidt, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 2145–2161, https://doi.org/10.5194/hess-19-2145-2015, https://doi.org/10.5194/hess-19-2145-2015, 2015
H. Post, H. J. Hendricks Franssen, A. Graf, M. Schmidt, and H. Vereecken
Biogeosciences, 12, 1205–1221, https://doi.org/10.5194/bg-12-1205-2015, https://doi.org/10.5194/bg-12-1205-2015, 2015
Short summary
Short summary
This study introduces an extension of the classical two-tower approach for uncertainty estimation of measured net CO2 fluxes (NEE). Because land surface properties cannot be assumed identical at two eddy covariance towers, a correction for systematic flux differences is proposed to be added to the classical weather filter. With this extension, the overestimation of NEE uncertainty due to systematic flux differences (which are assumed to increase with tower distance) can considerably be reduced.
X. Han, H.-J. H. Franssen, R. Rosolem, R. Jin, X. Li, and H. Vereecken
Hydrol. Earth Syst. Sci., 19, 615–629, https://doi.org/10.5194/hess-19-615-2015, https://doi.org/10.5194/hess-19-615-2015, 2015
Short summary
Short summary
This paper presents the joint assimilation of cosmic-ray neutron counts and land surface temperature with parameter estimation of leaf area index at an irrigated corn field. The results show that the data assimilation can reduce the systematic input errors due to the lack of irrigation data. The estimations of soil moisture, evapotranspiration and leaf area index can be improved in the joint assimilation framework.
X. Chen, Z. Su, Y. Ma, S. Liu, Q. Yu, and Z. Xu
Atmos. Chem. Phys., 14, 13097–13117, https://doi.org/10.5194/acp-14-13097-2014, https://doi.org/10.5194/acp-14-13097-2014, 2014
R. van der Velde, M. S. Salama, T. Pellarin, M. Ofwono, Y. Ma, and Z. Su
Hydrol. Earth Syst. Sci., 18, 1323–1337, https://doi.org/10.5194/hess-18-1323-2014, https://doi.org/10.5194/hess-18-1323-2014, 2014
W. Kurtz, H.-J. Hendricks Franssen, P. Brunner, and H. Vereecken
Hydrol. Earth Syst. Sci., 17, 3795–3813, https://doi.org/10.5194/hess-17-3795-2013, https://doi.org/10.5194/hess-17-3795-2013, 2013
V. R. N. Pauwels, G. J. M. De Lannoy, H.-J. Hendricks Franssen, and H. Vereecken
Hydrol. Earth Syst. Sci., 17, 3499–3521, https://doi.org/10.5194/hess-17-3499-2013, https://doi.org/10.5194/hess-17-3499-2013, 2013
Related subject area
Pedology
An integrated dataset of ground hydrothermal regimes and soil nutrients monitored in some previously burned areas in hemiboreal forests in Northeast China during 2016–2022
Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023)
A China dataset of soil properties for land surface modeling (version 2)
BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands
European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions
Improving the Latin America and Caribbean Soil Information System (SISLAC) database enhances its usability and scalability
The patterns of soil nitrogen stocks and C : N stoichiometry under impervious surfaces in China
Mapping of peatlands in the forested landscape of Sweden using lidar-based terrain indices
Harmonized Soil Database of Ecuador (HESD): data from 2009 to 2015
ChinaCropSM1 km: a fine 1 km daily soil moisture dataset for dryland wheat and maize across China during 1993–2018
Colombian soil texture: building a spatial ensemble model
SGD-SM 2.0: an improved seamless global daily soil moisture long-term dataset from 2002 to 2022
A high spatial resolution soil carbon and nitrogen dataset for the northern permafrost region based on circumpolar land cover upscaling
A repository of measured soil freezing characteristic curves: 1921 to 2021
A compiled soil respiration dataset at different time scales for forest ecosystems across China from 2000 to 2018
New gridded dataset of rainfall erosivity (1950–2020) on the Tibetan Plateau
An hourly ground temperature dataset for 16 high-elevation sites (3493–4377 m a.s.l.) in the Bale Mountains, Ethiopia (2017–2020)
Rainfall erosivity mapping over mainland China based on high-density hourly rainfall records
The Boreal–Arctic Wetland and Lake Dataset (BAWLD)
Radionuclide contamination in flood sediment deposits in the coastal rivers draining the main radioactive pollution plume of Fukushima Prefecture, Japan (2011–2020)
Generating seamless global daily AMSR2 soil moisture (SGD-SM) long-term products for the years 2013–2019
EstSoil-EH: a high-resolution eco-hydrological modelling parameters dataset for Estonia
An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003–2018
A new dataset of soil carbon and nitrogen stocks and profiles from an instrumented Greenlandic fen designed to evaluate land-surface models
Spatial radionuclide deposition data from the 60 km radial area around the Chernobyl Nuclear Power Plant: results from a sampling survey in 1987
Generalized models to estimate carbon and nitrogen stocks of organic soil horizons in Interior Alaska
Soil moisture and matric potential – an open field comparison of sensor systems
CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort
An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0
Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau
Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone
A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves
WoSIS: providing standardised soil profile data for the world
Post-Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain
A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region
The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024, https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Short summary
In Northeast China, the permafrost is more sensitive to climate warming and fire disturbances than the boreal and Arctic permafrost. Since 2016, a continuous ground hydrothermal regime and soil nutrient content observation system has been gradually established in Northeast China. The integrated dataset includes soil moisture content, soil organic carbon, total nitrogen, total phosphorus, total potassium, ground temperatures at depths of 0–20 m, and active layer thickness from 2016 to 2022.
Niels H. Batjes, Luis Calisto, and Luis M. de Sousa
Earth Syst. Sci. Data, 16, 4735–4765, https://doi.org/10.5194/essd-16-4735-2024, https://doi.org/10.5194/essd-16-4735-2024, 2024
Short summary
Short summary
Soils are an important provider of ecosystem services. This dataset provides quality-assessed and standardised soil data to support digital soil mapping and environmental applications at a broad scale. The underpinning soil profiles were shared by a wide range of data providers. Special attention was paid to the standardisation of soil property definitions, analytical method descriptions and property values. We present three measures to assess "fitness for intended use" of the standardised data.
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Ye Zhang, Hongbin Liang, Lu Li, Xiaolin Sun, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-299, https://doi.org/10.5194/essd-2024-299, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In this study, we developed the second version of China's high-resolution soil information grid using legacy soil samples and advanced machine learning. This version predicts over 20 soil properties at six depths, providing accurate soil variation maps across China. It outperforms previous versions and global products, offering valuable data for hydrological, ecological analyses, and earth system modeling, enhancing understanding of soil roles in environmental processes.
Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink
Earth Syst. Sci. Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024, https://doi.org/10.5194/essd-16-2941-2024, 2024
Short summary
Short summary
Earth system models and decision support systems greatly benefit from high-resolution soil information with quantified accuracy. Here we introduce BIS-4D, a statistical modeling platform that predicts nine essential soil properties and their uncertainties at 25 m resolution in surface 2 m across the Netherlands. Using machine learning informed by up to 856 000 soil observations coupled with 366 spatially explicit environmental variables, prediction accuracy was the highest for clay, sand and pH.
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, and Zhou Shi
Earth Syst. Sci. Data, 16, 2367–2383, https://doi.org/10.5194/essd-16-2367-2024, https://doi.org/10.5194/essd-16-2367-2024, 2024
Short summary
Short summary
A new dataset for topsoil bulk density (BD) and soil organic carbon (SOC) stock (0–20 cm) across Europe using machine learning was generated. The proposed approach performed better in BD prediction and slightly better in SOC stock prediction than earlier-published PTFs. The outcomes present a meaningful advancement in enhancing the accuracy of BD, and the resultant topsoil BD and SOC stock datasets across Europe enable more precise soil hydrological and biological modeling.
Sergio Díaz-Guadarrama, Viviana M. Varón-Ramírez, Iván Lizarazo, Mario Guevara, Marcos Angelini, Gustavo A. Araujo-Carrillo, Jainer Argeñal, Daphne Armas, Rafael A. Balta, Adriana Bolivar, Nelson Bustamante, Ricardo O. Dart, Martin Dell Acqua, Arnulfo Encina, Hernán Figueredo, Fernando Fontes, Joan S. Gutiérrez-Díaz, Wilmer Jiménez, Raúl S. Lavado, Jesús F. Mansilla-Baca, Maria de Lourdes Mendonça-Santos, Lucas M. Moretti, Iván D. Muñoz, Carolina Olivera, Guillermo Olmedo, Christian Omuto, Sol Ortiz, Carla Pascale, Marco Pfeiffer, Iván A. Ramos, Danny Ríos, Rafael Rivera, Lady M. Rodriguez, Darío M. Rodríguez, Albán Rosales, Kenset Rosales, Guillermo Schulz, Víctor Sevilla, Leonardo M. Tenti, Ronald Vargas, Gustavo M. Vasques, Yusuf Yigini, and Yolanda Rubiano
Earth Syst. Sci. Data, 16, 1229–1246, https://doi.org/10.5194/essd-16-1229-2024, https://doi.org/10.5194/essd-16-1229-2024, 2024
Short summary
Short summary
In this work, the Latin America and Caribbean Soil Information System (SISLAC) database (https://54.229.242.119/sislac/es) was revised to generate an improved version of the data. Rules for data enhancement were defined. In addition, other datasets available in the region were included. Subsequently, through a principal component analysis (PCA), the main soil characteristics for the region were analyzed. We hope this dataset can help mitigate problems such as food security and global warming.
Qian Ding, Hua Shao, Chi Zhang, and Xia Fang
Earth Syst. Sci. Data, 15, 4599–4612, https://doi.org/10.5194/essd-15-4599-2023, https://doi.org/10.5194/essd-15-4599-2023, 2023
Short summary
Short summary
A soil survey in 41 Chinese cities showed the soil nitrogen (N) in impervious surface areas (ISA; NISA) was 0.59±0.35 kg m−2, lower than in pervious soils. Eastern China had the highest NISA but the lowest natural soil N in China. Soil N decreased linearly with depth in ISA but nonlinearly in natural ecosystems. Temperature was negatively correlated with C : NISA but positively correlated with natural soil C : N. The unique NISA patterns imply intensive disturbance in N cycle by soil sealing.
Lukas Rimondini, Thomas Gumbricht, Anders Ahlström, and Gustaf Hugelius
Earth Syst. Sci. Data, 15, 3473–3482, https://doi.org/10.5194/essd-15-3473-2023, https://doi.org/10.5194/essd-15-3473-2023, 2023
Short summary
Short summary
Peatlands have historically sequestrated large amounts of carbon and contributed to atmospheric cooling. However, human activities and climate change may instead turn them into considerable carbon emitters. In this study, we produced high-quality maps showing the extent of peatlands in the forests of Sweden, one of the most peatland-dense countries in the world. The maps are publicly available and may be used to support work promoting sustainable peatland management and combat their degradation.
Daphne Armas, Mario Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, Víctor Osorio, Wilmer Jiménez, and Cecilio Oyonarte
Earth Syst. Sci. Data, 15, 431–445, https://doi.org/10.5194/essd-15-431-2023, https://doi.org/10.5194/essd-15-431-2023, 2023
Short summary
Short summary
The global need for updated soil datasets has increased. Our main objective was to synthesize and harmonize soil profile information collected by two different projects in Ecuador between 2009 and 2015.The main result was the development of the Harmonized Soil Database of Ecuador (HESD) that includes information from 13 542 soil profiles with over 51 713 measured soil horizons, including 92 different edaphic variables, and follows international standards for archiving and sharing soil data.
Fei Cheng, Zhao Zhang, Huimin Zhuang, Jichong Han, Yuchuan Luo, Juan Cao, Liangliang Zhang, Jing Zhang, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 15, 395–409, https://doi.org/10.5194/essd-15-395-2023, https://doi.org/10.5194/essd-15-395-2023, 2023
Short summary
Short summary
We generated a 1 km daily soil moisture dataset for dryland wheat and maize across China (ChinaCropSM1 km) over 1993–2018 through random forest regression, based on in situ observations. Our improved products have a remarkably better quality compared with the public global products in terms of both spatial and time dimensions by integrating an irrigation module (crop type, phenology, soil depth). The dataset may be useful for agriculture drought monitoring and crop yield forecasting studies.
Viviana Marcela Varón-Ramírez, Gustavo Alfonso Araujo-Carrillo, and Mario Antonio Guevara Santamaría
Earth Syst. Sci. Data, 14, 4719–4741, https://doi.org/10.5194/essd-14-4719-2022, https://doi.org/10.5194/essd-14-4719-2022, 2022
Short summary
Short summary
These are the first national soil texture maps obtained via digital soil mapping. We built clay, sand, and silt maps using spatial assembling with the best possible predictions at different depths. Also, we identified the better model for each pixel. This work was done to address the lack of soil texture maps in Colombia, and it can provide soil information for water-related applications, ecosystem services, and agricultural and crop modeling.
Qiang Zhang, Qiangqiang Yuan, Taoyong Jin, Meiping Song, and Fujun Sun
Earth Syst. Sci. Data, 14, 4473–4488, https://doi.org/10.5194/essd-14-4473-2022, https://doi.org/10.5194/essd-14-4473-2022, 2022
Short summary
Short summary
Compared to previous seamless global daily soil moisture (SGD-SM 1.0) products, SGD-SM 2.0 enlarges the temporal scope from 2002 to 2022. By fusing auxiliary precipitation information with the long short-term memory convolutional neural network (LSTM-CNN) model, SGD-SM 2.0 can consider sudden extreme weather conditions for 1 d in global daily soil moisture products and is significant for full-coverage global daily hydrologic monitoring, rather than averaging monthly–quarterly–yearly results.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Hongru Sun, Zhenzhu Xu, and Bingrui Jia
Earth Syst. Sci. Data, 14, 2951–2961, https://doi.org/10.5194/essd-14-2951-2022, https://doi.org/10.5194/essd-14-2951-2022, 2022
Short summary
Short summary
We compiled a new soil respiration (Rs) database of China's forests from 568 studies published up to 2018. The hourly, monthly, and annual samples were 8317, 5003, and 634, respectively. Most of the Rs data are shown in figures but were seldom exploited. For the first time, these data were digitized, accounting for 82 % of samples. Rs measured with common methods was selected (Li-6400, Li-8100, Li-8150, gas chromatography) and showed small differences of ~10 %. Bamboo had the highest Rs.
Yueli Chen, Xingwu Duan, Minghu Ding, Wei Qi, Ting Wei, Jianduo Li, and Yun Xie
Earth Syst. Sci. Data, 14, 2681–2695, https://doi.org/10.5194/essd-14-2681-2022, https://doi.org/10.5194/essd-14-2681-2022, 2022
Short summary
Short summary
We reconstructed the first annual rainfall erosivity dataset for the Tibetan Plateau in China. The dataset covers 71 years in a 0.25° grid. The reanalysis precipitation data are employed in combination with the densely spaced in situ precipitation observations to generate the dataset. The dataset can supply fundamental data for quantifying the water erosion, and extend our knowledge of the rainfall-related hazard prediction on the Tibetan Plateau.
Alexander R. Groos, Janik Niederhauser, Bruk Lemma, Mekbib Fekadu, Wolfgang Zech, Falk Hänsel, Luise Wraase, Naki Akçar, and Heinz Veit
Earth Syst. Sci. Data, 14, 1043–1062, https://doi.org/10.5194/essd-14-1043-2022, https://doi.org/10.5194/essd-14-1043-2022, 2022
Short summary
Short summary
Continuous observations and measurements from high elevations are necessary to monitor recent climate and environmental changes in the tropical mountains of eastern Africa, but meteorological and ground temperature data from above 3000 m are very rare. Here we present a comprehensive ground temperature monitoring network that has been established between 3493 and 4377 m in the Bale Mountains (Ethiopian Highlands) to monitor and study the afro-alpine climate and ecosystem in this region.
Tianyu Yue, Shuiqing Yin, Yun Xie, Bofu Yu, and Baoyuan Liu
Earth Syst. Sci. Data, 14, 665–682, https://doi.org/10.5194/essd-14-665-2022, https://doi.org/10.5194/essd-14-665-2022, 2022
Short summary
Short summary
This paper provides new rainfall erosivity maps over mainland China based on hourly data from 2381 stations (available at https://doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001). The improvement from the previous work was also assessed. The improvement in the R-factor map occurred mainly in the western region, because of an increase in the number of stations and an increased temporal resolution from daily to hourly data.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Olivier Evrard, Caroline Chartin, J. Patrick Laceby, Yuichi Onda, Yoshifumi Wakiyama, Atsushi Nakao, Olivier Cerdan, Hugo Lepage, Hugo Jaegler, Rosalie Vandromme, Irène Lefèvre, and Philippe Bonté
Earth Syst. Sci. Data, 13, 2555–2560, https://doi.org/10.5194/essd-13-2555-2021, https://doi.org/10.5194/essd-13-2555-2021, 2021
Short summary
Short summary
This dataset provides an original compilation of radioactive dose rates and artificial radionuclide activities in sediment deposited after floods in the rivers draining the main radioactive pollution plume in Fukushuma, Japan, between November
2011 and November 2020. In total, 782 sediment samples collected from 27 to 71 locations during 16 fieldwork campaigns were analysed. This provides a unique post-accidental dataset to better understand the environmental fate of radionuclides.
Qiang Zhang, Qiangqiang Yuan, Jie Li, Yuan Wang, Fujun Sun, and Liangpei Zhang
Earth Syst. Sci. Data, 13, 1385–1401, https://doi.org/10.5194/essd-13-1385-2021, https://doi.org/10.5194/essd-13-1385-2021, 2021
Short summary
Short summary
Acquired daily soil moisture products are always incomplete globally (just about 30 %–80 % coverage ratio) due to the satellite orbit coverage and the limitations of soil moisture retrieval algorithms. To solve this inevitable problem, we generate long-term seamless global daily (SGD) AMSR2 soil moisture productions from 2013 to 2019. These productions are significant for full-coverage global daily hydrologic monitoring, rather than averaging as the monthly–quarter–yearly results.
Alexander Kmoch, Arno Kanal, Alar Astover, Ain Kull, Holger Virro, Aveliina Helm, Meelis Pärtel, Ivika Ostonen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 83–97, https://doi.org/10.5194/essd-13-83-2021, https://doi.org/10.5194/essd-13-83-2021, 2021
Short summary
Short summary
The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We derived parameters including soil layering, soil texture (clay, silt, and sand content), coarse fragments, and rock content and aggregated and predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic carbon content, available water capacity).
Yongzhe Chen, Xiaoming Feng, and Bojie Fu
Earth Syst. Sci. Data, 13, 1–31, https://doi.org/10.5194/essd-13-1-2021, https://doi.org/10.5194/essd-13-1-2021, 2021
Short summary
Short summary
Soil moisture can greatly influence the ecosystem but is hard to monitor at the global scale. By calibrating and combining 11 different products derived from satellite observation, we developed a new global surface soil moisture dataset spanning from 2003 to 2018 with high accuracy. Using this new dataset, not only can the global long-term trends be derived, but also the seasonal variation and spatial distribution of surface soil moisture at different latitudes can be better studied.
Xavier Morel, Birger Hansen, Christine Delire, Per Ambus, Mikhail Mastepanov, and Bertrand Decharme
Earth Syst. Sci. Data, 12, 2365–2380, https://doi.org/10.5194/essd-12-2365-2020, https://doi.org/10.5194/essd-12-2365-2020, 2020
Short summary
Short summary
Nuuk fen site is a well-instrumented Greenlandic site where soil physical variables and greenhouse gas fluxes are monitored. But knowledge of soil carbon stocks and profiles is missing. This is a crucial shortcoming for a complete evaluation of models. For the first time we measured soil carbon and nitrogen density, profiles, and stocks in the Nuuk peatland. This new dataset can contribute to further develop joint modeling of greenhouse gas emissions and soil carbon in land-surface models.
Valery Kashparov, Sviatoslav Levchuk, Marina Zhurba, Valentyn Protsak, Nicholas A. Beresford, and Jacqueline S. Chaplow
Earth Syst. Sci. Data, 12, 1861–1875, https://doi.org/10.5194/essd-12-1861-2020, https://doi.org/10.5194/essd-12-1861-2020, 2020
Short summary
Short summary
Sampling and analysis methodology and spatial radionuclide deposition data from the 60 km area around the Chernobyl Nuclear Power Plant, sampled in 1987 by the Ukrainian Institute of Agricultural Radiology, are useful for reconstructing doses to human and wildlife populations, answering the current lack of scientific consensus on the effects of radiation on wildlife in the Chernobyl Exclusion Zone and evaluating future management options for the Chernobyl-impacted areas of Ukraine and Belarus.
Kristen Manies, Mark Waldrop, and Jennifer Harden
Earth Syst. Sci. Data, 12, 1745–1757, https://doi.org/10.5194/essd-12-1745-2020, https://doi.org/10.5194/essd-12-1745-2020, 2020
Short summary
Short summary
Boreal ecosystems are unique in that their mineral soil is covered by what can be quite thick layers of organic soil. Layers within this organic soil have different bulk densities, carbon composition, and nitrogen composition. We summarize these properties by soil layer and examine if and how they are affected by soil drainage and stand age. These values can be used to initialize and validate models as well as gap fill when these important soil properties are not measured.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Marco Pfeiffer, José Padarian, Rodrigo Osorio, Nelson Bustamante, Guillermo Federico Olmedo, Mario Guevara, Felipe Aburto, Francisco Albornoz, Monica Antilén, Elías Araya, Eduardo Arellano, Maialen Barret, Juan Barrera, Pascal Boeckx, Margarita Briceño, Sally Bunning, Lea Cabrol, Manuel Casanova, Pablo Cornejo, Fabio Corradini, Gustavo Curaqueo, Sebastian Doetterl, Paola Duran, Mauricio Escudey, Angelina Espinoza, Samuel Francke, Juan Pablo Fuentes, Marcel Fuentes, Gonzalo Gajardo, Rafael García, Audrey Gallaud, Mauricio Galleguillos, Andrés Gomez, Marcela Hidalgo, Jorge Ivelic-Sáez, Lwando Mashalaba, Francisco Matus, Francisco Meza, Maria de la Luz Mora, Jorge Mora, Cristina Muñoz, Pablo Norambuena, Carolina Olivera, Carlos Ovalle, Marcelo Panichini, Aníbal Pauchard, Jorge F. Pérez-Quezada, Sergio Radic, José Ramirez, Nicolás Riveras, Germán Ruiz, Osvaldo Salazar, Iván Salgado, Oscar Seguel, Maria Sepúlveda, Carlos Sierra, Yasna Tapia, Francisco Tapia, Balfredo Toledo, José Miguel Torrico, Susana Valle, Ronald Vargas, Michael Wolff, and Erick Zagal
Earth Syst. Sci. Data, 12, 457–468, https://doi.org/10.5194/essd-12-457-2020, https://doi.org/10.5194/essd-12-457-2020, 2020
Short summary
Short summary
The CHLSOC database is the biggest soil organic carbon (SOC) database that has been compiled for Chile yet, comprising 13 612 data points. This database is the product of the compilation of numerous sources including unpublished and difficult-to-access data, allowing us to fill numerous spatial gaps where no SOC estimates were publicly available before. The values of SOC compiled in CHLSOC have a wide range, reflecting the variety of ecosystems that exists in Chile.
Corey R. Lawrence, Jeffrey Beem-Miller, Alison M. Hoyt, Grey Monroe, Carlos A. Sierra, Shane Stoner, Katherine Heckman, Joseph C. Blankinship, Susan E. Crow, Gavin McNicol, Susan Trumbore, Paul A. Levine, Olga Vindušková, Katherine Todd-Brown, Craig Rasmussen, Caitlin E. Hicks Pries, Christina Schädel, Karis McFarlane, Sebastian Doetterl, Christine Hatté, Yujie He, Claire Treat, Jennifer W. Harden, Margaret S. Torn, Cristian Estop-Aragonés, Asmeret Asefaw Berhe, Marco Keiluweit, Ágatha Della Rosa Kuhnen, Erika Marin-Spiotta, Alain F. Plante, Aaron Thompson, Zheng Shi, Joshua P. Schimel, Lydia J. S. Vaughn, Sophie F. von Fromm, and Rota Wagai
Earth Syst. Sci. Data, 12, 61–76, https://doi.org/10.5194/essd-12-61-2020, https://doi.org/10.5194/essd-12-61-2020, 2020
Short summary
Short summary
The International Soil Radiocarbon Database (ISRaD) is an an open-source archive of soil data focused on datasets including radiocarbon measurements. ISRaD includes data from bulk or
whole soils, distinct soil carbon pools isolated in the laboratory by a variety of soil fractionation methods, samples of soil gas or water collected interstitially from within an intact soil profile, CO2 gas isolated from laboratory soil incubations, and fluxes collected in situ from a soil surface.
Hong Zhao, Yijian Zeng, Shaoning Lv, and Zhongbo Su
Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, https://doi.org/10.5194/essd-10-1031-2018, 2018
Short summary
Short summary
The Tibet-Obs soil properties dataset was compiled based on in situ and laboratory measurements of soil profiles across three climate zones on the Tibetan Plateau. The appropriate parameterization schemes of soil hydraulic and thermal properties were discussed for their applicability in land surface modeling. The uncertainties of existing soil datasets were evaluated. This paper contributes to land surface modeling and hydro-climatology communities for their studies of the third pole region.
Valery Kashparov, Sviatoslav Levchuk, Marina Zhurba, Valentyn Protsak, Yuri Khomutinin, Nicholas A. Beresford, and Jacqueline S. Chaplow
Earth Syst. Sci. Data, 10, 339–353, https://doi.org/10.5194/essd-10-339-2018, https://doi.org/10.5194/essd-10-339-2018, 2018
Short summary
Short summary
Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone describe data from analysis of samples collected by the Ukrainian Institute of Agricultural Radiology after the Chernobyl nuclear accident between May 1986 and 2014 at sites inside the Chernobyl Exclusion Zone and other areas of interest. The data and supporting documentation are freely available from the Environmental Information Data Centre: https://doi.org/10.5285/782ec845-2135-4698-8881-b38823e533bf.
Carsten Montzka, Michael Herbst, Lutz Weihermüller, Anne Verhoef, and Harry Vereecken
Earth Syst. Sci. Data, 9, 529–543, https://doi.org/10.5194/essd-9-529-2017, https://doi.org/10.5194/essd-9-529-2017, 2017
Short summary
Short summary
Global climate models require adequate parameterization of soil hydraulic properties, but typical resampling to the model grid introduces uncertainties. Here we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the problems. It preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters that enables modellers to perturb hydraulic parameters for model ensemble generation.
Niels H. Batjes, Eloi Ribeiro, Ad van Oostrum, Johan Leenaars, Tom Hengl, and Jorge Mendes de Jesus
Earth Syst. Sci. Data, 9, 1–14, https://doi.org/10.5194/essd-9-1-2017, https://doi.org/10.5194/essd-9-1-2017, 2017
Short summary
Short summary
Soil is an important provider of ecosystem services. Yet this natural resource is being threatened. Professionals, scientists, and decision makers require quality-assessed soil data to address issues such as food security, land degradation, and climate change. Procedures for safeguarding, standardising, and subsequently serving of consistent soil data to underpin broad-scale mapping and modelling are described. The data are freely accessible at doi:10.17027/isric-wdcsoils.20160003.
J. S. Chaplow, N. A. Beresford, and C. L. Barnett
Earth Syst. Sci. Data, 7, 215–221, https://doi.org/10.5194/essd-7-215-2015, https://doi.org/10.5194/essd-7-215-2015, 2015
Short summary
Short summary
The data set ‘Post Chernobyl surveys of radiocaesium in soil, vegetation, wildlife and fungi in Great Britain’ was developed to enable data collected by the Natural Environment Research Council after the Chernobyl accident to be made publicly available. Data for samples collected between May 1986 (immediately after Chernobyl) to spring 1997 are freely available for non-commercial use under Open Government Licence terms and conditions. doi: 10.5285/d0a6a8bf-68f0-4935-8b43-4e597c3bf251.
G. Hugelius, J. G. Bockheim, P. Camill, B. Elberling, G. Grosse, J. W. Harden, K. Johnson, T. Jorgenson, C. D. Koven, P. Kuhry, G. Michaelson, U. Mishra, J. Palmtag, C.-L. Ping, J. O'Donnell, L. Schirrmeister, E. A. G. Schuur, Y. Sheng, L. C. Smith, J. Strauss, and Z. Yu
Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, https://doi.org/10.5194/essd-5-393-2013, 2013
G. Hugelius, C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry, and D. K. Swanson
Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, https://doi.org/10.5194/essd-5-3-2013, 2013
Cited articles
Abiye, T. A. and Haile, T.: Geophysical exploration of the Boku geothermal
area, Central Ethiopian Rift, Geothermics, 37, 586–596, 2008.
Agarwal, R. G.: A new method to account for producing time effects when
drawdown type curves are used to analyze pressure buildup and other test
data, SPE Paper 9289 presented at the 55th SPE Annual Technical Conference
and Exhibition, Dallas, Texas, 21–24 September 1980, https://doi.org/10.2118/9289-MS, 1980.
ASTM D6913/D6913M-17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, PA, 2017, https://doi.org/10.1520/D6913_D6913M-17, 2017.
Auken, E., Pellerin, L., Christensen, N. B., and Sørensen, K.: A survey
of current trends in near-surface electrical and electromagnetic methods,
Geophysics, 71, G249–G260, 2006.
Bernard, J.: Instruments and field work to measure a magnetic resonance
sounding, Boletin Geologico y Minero, 118, 459–472, 2007.
Boucher, M., Favreau, G., Vouillamoz, J.-M., Nazoumou, Y., and Legchenko,
A.: Estimating specific yield and transmissivity with magnetic resonance
sounding in an unconfined sandstone aquifer (Niger), Hydrogeol. J., 17,
1805, https://doi.org/10.1007/s10040-009-0447-x, 2009.
Boucher, M., Costabel, S., and Yaramanci, U.: The detectability of water by
NMR considering the instrumental dead time–A laboratory analysis of
unconsolidated materials, Near Surf. Geophys., 9, 145–154, 2011.
Boulton, N. S.: Analysis of data from non-equilibrium pumping tests allowing
for delayed yield from storage, Proc. Inst. Civil Eng., 26,
469–482, https://doi.org/10.1680/iicep.1963.10409, 1963.
Bouwer, H. and Rice, R.: A slug test for determining hydraulic conductivity
of unconfined aquifers with completely or partially penetrating wells, Water
Resour. Res., 12, 423–428, https://doi.org/10.1029/WR012i003p00423, 1976.
Braun, M. and Yaramanci, U.: Inversion of resistivity in magnetic resonance
sounding, J. Appl. Geophys., 66, 151–164, https://doi.org/10.1016/j.jappgeo.2007.12.004,
2008.
Brown, D. L., Narasimhan, T., and Demir, Z.: An evaluation of the Bouwer and
Rice method of slug test analysis, Water Resour. Res., 31, 1239–1246, 1995.
Burt, R.: Soil survey field and laboratory methods manual, United States
Department of Agriculture, Natural Resources Conservation Service, National
Soil Survey Center, Kellogg Soil Survey Laboratory, Lincoln, Nebraska, 2014.
Chambers, J., Wilkinson, P., Uhlemann, S., Sorensen, J., Roberts, C.,
Newell, A., Ward, W., Binley, A., Williams, P., and Gooddy, D.: Derivation
of lowland riparian wetland deposit architecture using geophysical image
analysis and interface detection, Water Resour. Res., 50,
5886–5905, https://doi.org/10.1002/2014WR015643, 2014.
Chang, D. Z.: Preliminary analysis and research on the Yellow River water
resources in Maqu wetland, Gansu Water Conservancy and Hydropower
Technology, 45, 8–10, 2009.
Chen, F., Bloemendal, J., Zhang, P., and Liu, G.: An 800 ky proxy record of
climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 151,
307–320, 1999.
Chirindja, F. J., Dahlin, T., Perttu, N., Steinbruch, F., and Owen, R.:
Combined electrical resistivity tomography and magnetic resonance sounding
investigation of the surface-water/groundwater interaction in the Urema
Graben, Mozambique, Hydrogeol. J., 24,
1583–1592, https://doi.org/10.1007/s10040-016-1422-y, 2016.
Compton, R. R.: Manual of field geology, Wiley, New York, 1962.
Cosentino, P., Capizzi, P., Fiandaca, G., Martorana, R., Messina, P., and
Pellerito, S.: Study and monitoring of salt water intrusion in the coastal
area between Mazara del Vallo and Marsala (South-Western Sicily), in:
Methods and Tools for Drought Analysis and Management, Springer, Netherlands, 2007.
Cressie, N.: The origins of kriging, Math. Geol., 22, 239–252,
1990.
Cressie, N.: Statistics for spatial data, John Wiley & Sons, New York,
1991.
Cunningham, W. L. and Schalk, C. W.: Groundwater technical procedures of the
US Geological Survey, US Geological Survey Techniques and Methods 151 pp., 2011.
Dackombe, R. and Gardiner, V.: Geomorphological field manual, Routledge, London, 270 pp., 2020.
Delnaz, A., Rakhshandehroo, G., and Nikoo, M. R.: Optimal estimation of
unconfined aquifer parameters in uncertain environment based on fuzzy
transformation method, Water Supply, 19, 444–450, 2019.
Dente, L., Vekerdy, Z., Wen, J., and Su, Z.: Maqu network for validation of
satellite-derived soil moisture products, Int. J. Appl. Earth Obs. Geoinf.,
17, 55–65, https://doi.org/10.1016/j.jag.2011.11.004, 2012.
Descloitres, M., Séguis, L., Wubda, M., and Legchenko, A.:
Discrimination of rocks with different hydrodynamic properties using MRS, EM
and resistivity methods, Near Surface 2007-13th EAGE European Meeting of
Environmental and Engineering Geophysics, 2007.
Descloitres, M., Ruiz, L., Sekhar, M., Legchenko, A., Braun, J. J., Mohan
Kumar, M., and Subramanian, S.: Characterization of seasonal local recharge
using electrical resistivity tomography and magnetic resonance sounding,
Hydrol. Process., 22, 384–394, https://doi.org/10.1002/hyp.6608, 2008.
Di Napoli, R., Aiuppa, A., Sulli, A., Caliro, S., Chiodini, G., Acocella,
V., Ciraolo, G., Di Vito, M., Interbartolo, F., and Nasello, C.:
Hydrothermal fluid venting in the offshore sector of Campi Flegrei caldera:
A geochemical, geophysical, and volcanological study, Geochem. Geophy.
Geosy., 17, 4153–4178, https://doi.org/10.1002/2016GC006494, 2016.
Fan, Y. and Van Den Dool, H.: Climate Prediction Center global monthly soil
moisture data set at 0.5 resolution for 1948 to present, J. Geophys. Res.-Atmos., 109, D10102, https://doi.org/10.1029/2003JD004345, 2004.
Fan, Y., Li, H., and Miguez-Macho, G.: Global patterns of groundwater table
depth, Science, 339, 940–943, 2013.
Fikos, I., Vargemezis, G., Zlotnicki, J., Puertollano, J., Alanis, P.,
Pigtain, R., Villacorte, E., Malipot, G., and Sasai, Y.: Electrical
resistivity tomography study of Taal volcano hydrothermal system,
Philippines, Bull. Volcanol., 74, 1821–1831, https://doi.org/10.1007/s00445-012-0638-5,
2012.
Fujita, K., Suzuki, R., Nuimura, T., and Sakai, A.: Performance of ASTER and
SRTM DEMs, and their potential for assessing glacial lakes in the Lunana
region, Bhutan Himalaya, J. Glaciol., 54,
220–228, 2008.
Galazoulas, E. C., Mertzanides, Y. C., Petalas, C. P., and Kargiotis, E. K.:
Large scale electrical resistivity tomography survey correlated to
hydrogeological data for mapping groundwater salinization: a case study from
a multilayered coastal aquifer in Rhodope, Northeastern Greece,
Environmental processes, 2, 19–35, 2015.
Gao, S., Jin, H., Bense, V. F., Wang, X., and Chai, X.: Application of
electrical resistivity tomography for delineating permafrost hydrogeology in
the headwater area of Yellow River on Qinghai-Tibet Plateau, SW China,
Hydrogeol. J., 27, 1725–1737, https://doi.org/10.1007/s10040-019-01942-z, 2019.
Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H.,
Manning, A. H., van Beek, L. P., and Jellinek, A. M.: Mapping permeability
over the surface of the Earth, Geophys. Res. Lett., 38, L02401, https://doi.org/10.1029/2010GL045565, 2011.
Gleeson, T., Moosdorf, N., Hartmann, J., and Van Beek, L.: A glimpse beneath
earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and
porosity, Geophys. Res. Lett., 41, 3891–3898, 2014.
Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M.
B.: The global volume and distribution of modern groundwater, Nat.
Geosci., 9, 161–167, 2016.
Gonçalves, R. M. D.: Hydrochemical water prediction (water quality) with
transient electromagnetic soundings (TEM), PhD thesis, University of Lisbon, Lisbon, Portugal, 314 pp., 2012.
Graham, D. N. and Butts, M. B.: Flexible integrated watershed modelling with MIKE SHE, in: Watershed models, edited by: Singh, V. P. and Frevert, D. K., CRC Press, Boca Raton, Florida, 245–272, 2005.
Grohmann, C. H.: Evaluation of TanDEM-X DEMs on selected Brazilian sites:
Comparison with SRTM, ASTER GDEM and ALOS AW3D30, Remote Sens. Environ.,
212, 121–133, 2018.
Gupta, S., Hengl, T., Lehmann, P., Bonetti, S., and Or, D.: SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications, Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, 2021.
Haile, K. H.: Estimation of terrestrial water storage in the upper reach of
Yellow River, University of Twente Faculty of Geo-Information and Earth
Observation (ITC), Enschede, Netherlands, 2011.
Healy, R. W., Winter, T. C., LaBaugh, J. W., and Franke, O. L.: Water
budgets: foundations for effective water-resources and environmental
management, US Geological Survey Reston, Virginia, 2007.
Hebeler, F. and Purves, R. S.: The influence of elevation uncertainty on
derivation of topographic indices, Geomorphology, 111, 4–16, 2009.
Herckenrath, D., Auken, E., Christiansen, L., Behroozmand, A. A., and
Bauer-Gottwein, P.: Coupled hydrogeophysical inversion using time-lapse
magnetic resonance sounding and time-lapse gravity data for hydraulic
aquifer testing: Will it work in practice?, Water Resour. Res.,
48, W01539, https://doi.org/10.1029/2011WR010411, 2012.
Hoffman, R. E.: Measurement of magnetic susceptibility and calculation of
shape factor of NMR samples, J. Magn. Reson., 178, 237–247,
2006.
Hopkins, J. and Anderson, B.: A Field Manual for Groundwater-level
Monitoring at the Texas Water Development Board, User Manual 52, 26 pp., available at: https://www.twdb.texas.gov/groundwater/docs/UMs/UM-52.pdf (last access: 4 March 2021), 2016.
Huang, X., Deng, J., Wang, W., Feng, Q., and Liang, T.: Impact of climate
and elevation on snow cover using integrated remote sensing snow products in
Tibetan Plateau, Remote Sens. Environ., 190,
274–288, https://doi.org/10.1016/j.rse.2016.12.028, 2017.
Immerzeel, W. W., Droogers, P., De Jong, S., and Bierkens, M.: Large-scale
monitoring of snow cover and runoff simulation in Himalayan river basins
using remote sensing, Remote Sens. Environ., 113,
40–49, https://doi.org/10.1016/j.rse.2008.08.010, 2009.
Immerzeel, W. W., Van Beek, L. P., and Bierkens, M. F.: Climate change will
affect the Asian water towers, Science, 328,
1382–1385, https://doi.org/10.1126/science.1183188, 2010.
Jiang, F., Dong, L., and Dai, Q.: Electrical resistivity imaging inversion:
An ISFLA trained kernel principal component wavelet neural network approach,
Neural Networks, 104, 114–123, https://doi.org/10.1016/j.neunet.2018.04.012, 2018.
Jiao, J. J., Zhang, X., Liu, Y., and Kuang, X.: Increased water storage in
the Qaidam Basin, the North Tibet Plateau from GRACE gravity data, PloS one,
10, e0141442, https://doi.org/10.1371/journal.pone.0141442, 2015.
Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., and Yao, T.: Review
of climate and cryospheric change in the Tibetan Plateau, Environ. Res.
Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101, 2010.
Kenyon, W., Howard, J., Sezginer, A., Straley, C., Matteson, A., Horkowitz,
K., and Ehrlich, R.: Pore-size distribution and NMR in microporous cherty
sandstones, SPWLA 30th Annual Logging Symposium, Denver, Colorado, 11–14 June 1989.
Kuang, X. and Jiao, J. J.: Review on climate change on the Tibetan Plateau
during the last half century, J. Geophys. Res.-Atmos., 121,
3979–4007, https://doi.org/10.1002/2015JD024728, 2016.
Lachassagne, P., Baltassat, J.-M., Legchenko, A., and de Gramont, H. M.: The
links between MRS parameters and the hydrogeological parameters, Near Surf.
Geophys., 3, 259–265, https://doi.org/10.3997/1873-0604.2005021, 2005.
Legault, J. M.: Airborne electromagnetic systems – state of the art and
future directions, CSEG Recorder, 40, 38–49, 2015.
Legchenko, A., Baltassat, J.-M., Beauce, A., and Bernard, J.: Nuclear
magnetic resonance as a geophysical tool for hydrogeologists, J. Appl.
Geophys., 50, 21–46, https://doi.org/10.1016/S0926-9851(02)00128-3, 2002.
Legchenko, A., Baltassat, J. M., Bobachev, A., Martin, C., Robain, H., and
Vouillamoz, J. M.: Magnetic resonance sounding applied to aquifer
characterization, Groundwater, 42,
363–373, https://doi.org/10.1111/j.1745-6584.2004.tb02684.x, 2004.
Legchenko, A., Comte, J.-C., Ofterdinger, U., Vouillamoz, J.-M., Lawson, F.
M. A., and Walsh, J.: Joint use of singular value decomposition and
Monte-Carlo simulation for estimating uncertainty in surface NMR inversion,
J. Appl. Geophys., 144, 28–36, 2017.
Legchenko, A., Miège, C., Koenig, L. S., Forster, R. R., Miller, O.,
Solomon, D., Schmerr, N., Montgomery, L., Ligtenberg, S., and Brucker, L.:
Estimating water volume stored in the south-eastern Greenland firn aquifer
using magnetic-resonance soundings, J. Appl. Geophys., 150,
11–20, https://doi.org/10.1016/j.jappgeo.2018.01.005, 2018.
Legchenko, A. V. and Shushakov, O. A.: Inversion of surface NMR data,
Geophysics, 63, 75–84, https://doi.org/10.1190/1.1444329, 1998.
Li, M., Zeng, Y., Lubczynski, M. W., Su, Z., and Qian, H.: 2018–2019 dataset in
Maqu, the Tibetan Plateau, DANS [data set], https://doi.org/10.17026/dans-z6t-zpn7, 2020a.
Li, M., Zeng, Y., Lubczynski, M., Su, Z., and Qian, H.: Multi dimensional
observation data set of single watershed in Maqu County, Qinghai Tibet
Plateau (2018–2019), TPDC Data Center [data set], https://doi.org/10.11888/Hydro.tpdc.271221, 2020b.
Li, X., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Wang, W., Hu, X., Xu,
Z., and Wen, J.: A multiscale dataset for understanding complex
eco-hydrological processes in a heterogeneous oasis system, Sci. Data, 4,
170083, https://doi.org/10.1038/sdata.2017.83, 2017.
Li, X., Gou, X., Wang, N., Sheng, Y., Jin, H., Qi, Y., Song, X., Hou, F.,
Li, Y., and Zhao, C.: Tightening ecological management facilitates green
development in the Qilian Mountains, Chinese Sci. Bull., 64, 2928–2937,
2019.
Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D., Pan, X., Fang,
M., and Bao, Q.: CASEarth poles: big data for the three poles, B. Am.
Meteorol. Soc., 101, E1475–E1491, 2020.
Li, X., Cheng, G., Wang, L., Wang, J., Ran, Y., Che, T., Li, G., He, H.,
Zhang, Q., and Jiang, X.: Boosting geoscience data sharing in China, Nat.
Geosci., 14, 541–542, 2021.
Li, Z. and Gao, P.: Channel adjustment after artificial neck cutoffs in a
meandering river of the Zoige basin within the Qinghai-Tibet Plateau, China,
Catena, 172, 255–265, 2019.
Loke, M. H.: Electrical imaging surveys for environmental and engineering
studies, User's Manual for Res2dinv, available at: https://www.academia.edu/11991713/Electrical (last acces: 8 August 2021), 1999.
Lubczynski, M. and Roy, J.: Hydrogeological interpretation and potential of
the new magnetic resonance sounding (MRS) method, J. Hydrol., 283,
19–40, https://doi.org/10.1016/S0022-1694(03)00170-7, 2003.
Lubczynski, M. and Roy, J.: Magnetic resonance sounding: New method for
ground water assessment, Groundwater, 42,
291–309, https://doi.org/10.1111/j.1745-6584.2004.tb02675.x, 2004.
Lubczynski, M. and Roy, J.: Use of MRS for hydrogeological system
parameterization and modeling, Boletin Geologico y Minero, 118, 509–530,
2007.
Macnae, J.: Quantitative estimation of intrinsic induced polarization and
superparamagnetic parameters from airborne electromagnetic data, Geophysics,
81, E433–E446, 2016.
McClymont, A. F., Roy, J. W., Hayashi, M., Bentley, L. R., Maurer, H., and
Langston, G.: Investigating groundwater flow paths within proglacial moraine
using multiple geophysical methods, J. Hydrol., 399,
57–69, https://doi.org/10.1016/j.jhydrol.2010.12.036, 2011.
McCormack, T., O'Connell, Y., Daly, E., Gill, L., Henry, T., and Perriquet,
M.: Characterisation of karst hydrogeology in Western Ireland using
geophysical and hydraulic modelling techniques, J. Hydrol. Reg. Stud., 10,
1–17, https://doi.org/10.1016/j.ejrh.2016.12.083, 2017.
Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., and Vereecken, H.: A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves, Earth Syst. Sci. Data, 9, 529–543, https://doi.org/10.5194/essd-9-529-2017, 2017.
Nabighian, M. N. and Macnae, J. C.: Time domain electromagnetic prospecting
methods, Electromagnetic Methods in Applied Geophysics, 2, 427–509, 1991.
Nan, X., Li, A., Bian, J., and Zhang, Z.: Comparison of the accuracy between
SRTM and ASTER GDEM over typical mountain area: A case study in the Eastern
Qinghai-Tibetan Plateau, J. Geo-Inf. Sci, 17,
91–98, https://doi.org/10.3724/SP.J.1047.2015.00091, 2015.
Nielsen, M. R., Hagensen, T. F., Chalikakis, K., and Legchenko, A.:
Comparison of transmissivities from MRS and pumping tests in Denmark, Near
Surf. Geophys., 9, 211–223, https://doi.org/10.3997/1873-0604.2010071, 2011.
Niu, F., Yin, G., Luo, J., Lin, Z., and Liu, M.: Permafrost distribution
along the Qinghai-Tibet Engineering Corridor, China using high-resolution
statistical mapping and modeling integrated with remote sensing and GIS,
Remote Sens., 10, 215, https://doi.org/10.3390/rs10020215, 2018.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Pérez-Bielsa, C., Lambán, L. J., Plata, J. L., Rubio, F. M., and
Soto, R.: Characterization of a karstic aquifer using magnetic resonance
sounding and electrical resistivity tomography: a case-study of Estaña
Lakes (northern Spain), Hydrogeol. J., 20,
1045–1059, https://doi.org/10.1007/s10040-012-0839-1, 2012.
Plata, J. and Rubio, F.: Basic theory of the magnetic resonance sounding
method, Boletin Geologico y minero, 118, 441–458, 2007.
Plata, J. L. and Rubio, F. M.: The use of MRS in the determination of
hydraulic transmissivity: The case of alluvial aquifers, J. Appl. Geophys.,
66, 128–139, https://doi.org/10.1016/j.jappgeo.2008.04.001, 2008.
Qu, B., Zhang, Y., Kang, S., and Sillanpaa, M.: Water quality in the Tibetan
Plateau: Major ions and trace elements in rivers of the “Water Tower of
Asia”, Sci. Total Environ., 649,
571–581, https://doi.org/10.1016/j.scitotenv.2018.08.316, 2019.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M.: The
global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
2004.
Roy, J., Rouleau, A., Chouteau, M., and Bureau, M.: Widespread occurrence of
aquifers currently undetectable with the MRS technique in the Grenville
geological province, Canada, J. Appl. Geophys., 66,
82–93, https://doi.org/10.1016/j.jappgeo.2008.04.006, 2008.
Rydlund Jr., P. H. and Densmore, B. K.: Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey, U.S. Geological Survey, Reston, Virginia, 102 pp., 2012.
Schoorl, J., Veldkamp, A., and Bouma, J.: Modeling water and soil
redistribution in a dynamic landscape context, Soil Sci. Soc. Am. J., 66,
1610–1619, 2002.
Schoorl, J., Claessens, L., Lopez Ulloa, M., De Koning, G., and Veldkamp,
A.: Geomorphological analysis and scenario modelling in the Noboa–Pajan
area, Manabi province, Ecuador, Z. Geomorphol., 145, 105–118,
2006.
Seevers, D.: A nuclear magnetic method for determining the permeability of
sandstones, SPWLA 7th Annual Logging Symposium, Tulsa, Oklahoma, 9–11 May 1966.
Shah, S. D., Kress, W. H., and Legchenko, A.: Application of Magnetic
Resonance Soundings and Other Surface Geophysical Methods to Enhance
Subsurface Analysis of a Ground-Water Availability Model – A Pilot Study,
Symposium on the Application of Geophysics to Engineering and Environmental
Problems 2008, Philadelphia, Pennsylvania, 896–915, 6–10 April 2008.
Shangguan, W., Hengl, T., de Jesus, J. M., Yuan, H., and Dai, Y.: Mapping
the global depth to bedrock for land surface modeling, J. Adv. Model Earth
Sy., 9, 65–88, https://doi.org/10.1002/2016MS000686, 2017.
Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., Mwakanyamale, K.,
Versteeg, R. J., Ward, A., Strickland, C., Johnson, C. D., and Lane Jr., J.
W.: Use of electrical imaging and distributed temperature sensing methods to
characterize surface water–groundwater exchange regulating uranium
transport at the Hanford 300 Area, Washington, Water Resour. Res., 46, W10533,
https://doi.org/10.1029/2010WR009110, 2010.
Steelman, C., Kennedy, C., and Parker, B.: Geophysical conceptualization of
a fractured sedimentary bedrock riverbed using ground-penetrating radar and
induced electrical conductivity, J. Hydrol., 521,
433–446, https://doi.org/10.1016/j.jhydrol.2014.12.001, 2015.
Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products, Hydrol. Earth Syst. Sci., 15, 2303–2316, https://doi.org/10.5194/hess-15-2303-2011, 2011.
Su, Z., De Rosnay, P., Wen, J., Wang, L., and Zeng, Y.: Evaluation of
ECMWF's soil moisture analyses using observations on the Tibetan Plateau, J.
Geophys. Res.-Atmos., 118, 5304–5318, https://doi.org/10.1002/jgrd.50468, 2013.
Su, Z., Wen, J., Zeng, Y., Zhao, H., Lv, S., van der Velde, R., Zheng, D.,
Wang, X., Wang, Z., and Schwank, M.: Multiyear in-situ L-band microwave
radiometry of land surface processes on the tibetan Plateau, Sci. Data, 7,
317 pp., 2020.
Thorne, P. and Newcomer, D.: Prototype database and User's guide of
saturated zone hydraulic properties for the Hanford site, in: Report
PNNL-14058, Pacific Northwest National Laboratory, Richland, Washington,
2002.
Vouillamoz, J., Legchenko, A., Albouy, Y., Bakalowicz, M., Baltassat, J.,
and Al-Fares, W.: Localization of saturated karst aquifer with magnetic
resonance sounding and resistivity imagery, Groundwater, 41,
578–586, https://doi.org/10.1111/j.1745-6584.2003.tb02396.x, 2003.
Vouillamoz, J.-M., Descloitres, M., Bernard, J., Fourcassier, P., and
Romagny, L.: Application of integrated magnetic resonance sounding and
resistivity methods for borehole implementation. A case study in Cambodia,
J. Appl. Geophys., 50, 67–81, https://doi.org/10.1016/S0926-9851(02)00130-1, 2002.
Vouillamoz, J.-M., Descloitres, M., Toe, G., and Legchenko, A.:
Characterization of crystalline basement aquifers with MRS: comparison with
boreholes and pumping tests data in Burkina Faso, Near Surf. Geophys., 3,
205–213, 2005.
Vouillamoz, J.-M., Chatenoux, B., Mathieu, F., Baltassat, J.-M., and
Legchenko, A.: Efficiency of joint use of MRS and VES to characterize
coastal aquifer in Myanmar, J. Appl. Geophys., 61,
142–154, https://doi.org/10.1016/j.jappgeo.2006.06.003, 2007.
Vouillamoz, J.-M., Sokheng, S., Bruyere, O., Caron, D., and Arnout, L.:
Towards a better estimate of storage properties of aquifer with magnetic
resonance sounding, J. Hydrol., 458,
51–58, https://doi.org/10.1016/j.jhydrol.2012.06.044, 2012.
Wang, H.: The Causes of the Error in Grain Size Analysis Experiment,
Resources Environment and Engineering, 25, 527–529, 2011.
Wang, P., Yao, W., Guo, J., Su, C., Wang, Q., Wang, Y., Zhang, B., and Wang,
C.: Detection of Shallow Buried Water-Filled Goafs Using the Fixed-Loop
Transient Electromagnetic Method: A Case Study in Shaanxi, China, Pure
Appl. Geophys., 178, 529–544, 2021.
Wang, Q., Jin, H., Zhang, T., Cao, B., Peng, X., Wang, K., Xiao, X., Guo,
H., Mu, C., and Li, L.: Hydro-thermal processes and thermal offsets of peat
soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet
plateau, Glob. Planet. Change, 156,
1–12, https://doi.org/10.1016/j.gloplacha.2017.07.011, 2017.
Wang, W.: Strategy of ecological protection for water source supply areas of
the Yellow River in southern Gansu Province, Yangtze River, 39, 25–27, 2008.
Wang, Y., Wang, S., Xue, B., Ji, L., Wu, J., Xia, W., Pan, H., Zhang, P.,
and Chen, F.: Sedimentological evidence of the piracy of fossil Zoige Lake
by the Yellow River, Chinese Sci. Bull., 40, 1539–1544, 1995.
Wei, Y. and Fang, Y.: Spatio-temporal characteristics of global warming in
the Tibetan Plateau during the last 50 years based on a generalised
temperature zone-elevation model, PloS one, 8, e60044, https://doi.org/10.1371/journal.pone.0060044, 2013.
Wilkinson, P., Chambers, J., Uhlemann, S., Meldrum, P., Smith, A., Dixon,
N., and Loke, M. H.: Reconstruction of landslide movements by inversion of
4-D electrical resistivity tomography monitoring data, Geophys. Res.
Lett., 43, 1166–1174, 2016.
Xiang, L., Wang, H., Steffen, H., Wu, P., Jia, L., Jiang, L., and Shen, Q.:
Groundwater storage changes in the Tibetan Plateau and adjacent areas
revealed from GRACE satellite gravity data, Earth Planet. Sci. Lett., 449,
228–239, https://doi.org/10.1016/j.epsl.2016.06.002, 2016.
Xu, Y., Ramanathan, V., and Washington, W. M.: Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols, Atmos. Chem. Phys., 16, 1303–1315, https://doi.org/10.5194/acp-16-1303-2016, 2016.
Xue, B., Wang, S., Xia, W., Wu, J., Wang, Y., Qian, J., Hu, S., Wu, Y., and
Zhang, P.: The uplifting and environmental change of Qinghai-Xizang
(Tibetan) Plateau in the past 0.9 Ma inferred from core RM of Zoige Basin,
Sci. China Ser. D, 41, 165–170, https://doi.org/10.1007/BF02932436, 1998.
Yan, F., Shangguan, W., Zhang, J., and Hu, B.: Depth-to-bedrock map of China
at a spatial resolution of 100 meters, Sci. Data, 7,
2, https://doi.org/10.1038/s41597-019-0345-6, 2020.
Yang, K.: Observed Regional Climate Change in Tibet over the Last Decades, in: Oxford Research Encyclopedia of Climate Science, Oxford University Press,
Oxford, UK, 2017.
Yao, T., Qin, D., Shen, Y., Zhao, L., Wang, N., and Lu, A.: Cryospheric
changes and their impacts on regional water cycle and ecological conditions
in the Qinghai-Tibetan Plateau, Chin. J. Nat., 35,
179–186, https://doi.org/10.3969/j.issn.0253-9608.2013.03.004, 2013.
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau,
W. K.-M., Lettenmaier, D., and Mosbrugger, V.: Recent Third Pole's rapid
warming accompanies cryospheric melt and water cycle intensification and
interactions between monsoon and environment: Multidisciplinary approach
with observations, modeling, and analysis, B. Am. Meteorol. Soc., 100,
423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019.
Ye, Q., Shi, J., Cheng, X., Li, X., and Hochschild, V.: Application of ALOS
Data in Studying Alpine Glaciers in the Mt. Himalayas on the Tibetan
Plateau, 10 pp., 2011.
Ye, Q., Bolch, T., Naruse, R., Wang, Y., Zong, J., Wang, Z., Zhao, R., Yang,
D., and Kang, S.: Glacier mass changes in Rongbuk catchment on Mt.
Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data,
J. Hydrol., 530, 273–280, 2015.
You, Y., Yu, Q., Pan, X., Wang, X., and Guo, L.: Application of electrical
resistivity tomography in investigating depth of permafrost base and
permafrost structure in Tibetan Plateau, Cold Reg. Sci. Technol., 87,
19–26, https://doi.org/10.1016/j.coldregions.2012.11.004, 2013.
Zeng, Y., Su, Z., Calvet, J.-C., Manninen, T., Swinnen, E., Schulz, J.,
Roebeling, R., Poli, P., Tan, D., and Riihelä, A.: Analysis of current
validation practices in Europe for space-based climate data records of
essential climate variables, Int. J. Appl. Earth Obs. Geoinf., 42, 150–161,
2015.
Zeng, Y., Su, Z., Van der Velde, R., Wang, L., Xu, K., Wang, X., and Wen,
J.: Blending satellite observed, model simulated, and in situ measured soil
moisture over Tibetan Plateau, Remote Sens., 8, 268, https://doi.org/10.3390/rs8030268,
2016.
Zeng, Y., Su, Z., Barmpadimos, I., Perrels, A., Poli, P., Boersma, K. F.,
Frey, A., Ma, X., de Bruin, K., and Goosen, H.: Towards a traceable climate
service: Assessment of quality and usability of essential climate variables,
Remote Sens., 11, 1186, https://doi.org/10.3390/rs11101186, 2019.
Zhang, H. P., Liu, S. F., Yang, N., Zhang, Y. Q., and Zhang, G. W.:
Geomorphic characteristics of the Minjiang drainage basin (eastern Tibetan
Plateau) and its tectonic implications: New insights from a digital
elevation model study, Island Arc., 15,
239–250, https://doi.org/10.1111/j.1440-1738.2006.00524.x, 2006.
Zhang, Y., Li, B., and Zheng, D.: Datasets of the boundary and area of the
Tibetan Plateau, Acta Geographica Sinica, 69, 164–168, 2014a.
Zhang, Y., Li, B., and Zheng, D.: Datasets of the Boundary and Area of the
Tibetan Plateau, Global Change Data Repository [data set],
https://doi.org/10.3974/geodb.2014.01.12.v1, 2014b.
Zhao, H., Zeng, Y., Lv, S., and Su, Z.: Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau, Earth Syst. Sci. Data, 10, 1031–1061, https://doi.org/10.5194/essd-10-1031-2018, 2018.
Zheng, D., Van der Velde, R., Su, Z., Wen, J., Wang, X., Booij, M. J.,
Hoekstra, A. Y., Lv, S., Zhang, Y., and Ek, M. B.: Impacts of Noah model
physics on catchment-scale runoff simulations, J. Geophys. Res.-Atmos.,
121, 807–832, https://doi.org/10.1002/2015JD023695, 2016.
Zhong, M., Duan, J., Xu, H., Peng, P., Yan, H., and Zhu, Y.: Trend of China
land water storage redistribution at medi-and large-spatial scales in recent
five years by satellite gravity observations, Chinese Sci. Bull., 54,
816–821, https://doi.org/10.1007/s11434-008-0556-2, 2009.
Zhuang, R., Zeng, Y., Manfreda, S., and Su, Z.: Quantifying long-term land
surface and root zone soil moisture over Tibetan Plateau, Remote Sens., 12,
509, https://doi.org/10.3390/rs12030509, 2020.
Short summary
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian Water Tower. Due to its remoteness and the harsh environment, there is a lack of field survey data to investigate its hydrogeology. Borehole core lithology analysis, an altitude survey, soil thickness measurement, hydrogeological surveys, and hydrogeophysical surveys were conducted in the Maqu catchment within the Yellow River source region to improve a full–picture understanding of the water cycle.
The Tibetan Plateau is the source of most of Asia's major rivers and has been called the Asian...
Special issue
Altmetrics
Final-revised paper
Preprint