Articles | Volume 13, issue 5
https://doi.org/10.5194/essd-13-1925-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1925-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MOSEV: a global burn severity database from MODIS (2000–2020)
Esteban Alonso-González
Instituto Pirenaico de Ecología, Spanish Research Council
(IPE-CSIC), Zaragoza, 50059, Spain
Ecology, Department of Biodiversity and Environmental Management, Faculty of Biological and Environmental Sciences, University of León, León, 24071, Spain
Related authors
Esteban Alonso-González, Adrian Harpold, Jessica D. Lundquist, Cara Piske, Laura Sourp, Kristoffer Aalstad, and Simon Gascoin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2347, https://doi.org/10.5194/egusphere-2025-2347, 2025
Short summary
Short summary
Simulating the snowpack is challenging, as there are several sources of uncertainty due to e.g. the meteorological forcing. Using data assimilation techniques, it is possible to improve the simulations by fusing models and snow observations. However in forests, observations are difficult to obtain, because they cannot be retrieved through the canopy. Here, we explore the possibility of propagating the information obtained in forest clearings to areas covered by the canopy.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404, https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Esteban Alonso-González, Adrian Harpold, Jessica D. Lundquist, Cara Piske, Laura Sourp, Kristoffer Aalstad, and Simon Gascoin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2347, https://doi.org/10.5194/egusphere-2025-2347, 2025
Short summary
Short summary
Simulating the snowpack is challenging, as there are several sources of uncertainty due to e.g. the meteorological forcing. Using data assimilation techniques, it is possible to improve the simulations by fusing models and snow observations. However in forests, observations are difficult to obtain, because they cannot be retrieved through the canopy. Here, we explore the possibility of propagating the information obtained in forest clearings to areas covered by the canopy.
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404, https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024, https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary
Short summary
Climate warming is changing mountain snowpack patterns, leading in some cases to rain-on-snow (ROS) events. Here we analyzed near-present ROS and its sensitivity to climate warming across the Pyrenees. ROS increases during the coldest months of the year but decreases in the warmest months and areas under severe warming due to snow cover depletion. Faster snow ablation is anticipated in the coldest and northern slopes of the range. Relevant implications in mountain ecosystem are anticipated.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
Josep Bonsoms, Juan Ignacio López-Moreno, and Esteban Alonso-González
The Cryosphere, 17, 1307–1326, https://doi.org/10.5194/tc-17-1307-2023, https://doi.org/10.5194/tc-17-1307-2023, 2023
Short summary
Short summary
This work analyzes the snow response to temperature and precipitation in the Pyrenees. During warm and wet seasons, seasonal snow depth is expected to be reduced by −37 %, −34 %, and −27 % per degree Celsius at low-, mid-, and high-elevation areas, respectively. The largest snow reductions are anticipated at low elevations of the eastern Pyrenees. Results anticipate important impacts on the nearby ecological and socioeconomic systems.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Cited articles
Alonso-González, E. and Fernández-García, V.: MOSEV: a global burn
severity database from MODIS (2000–2020), Zenodo [data set], https://doi.org/10.5281/zenodo.4265209, last access: 1 November 2020.
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1362, https://doi.org/10.1126/science.aal4108, 2017.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., and Humber, M.
L.: Global validation of the collection 6 MODIS burned area product, Remote
Sens. Environ., 235, 111490, https://doi.org/10.1016/j.rse.2019.111490,
2019.
Botella-Martínez, M. A. and Fernández-Manso, A: Estudio de la severidad
post-incendio en la Comunidad Valenciana comparando los índices dNBR,
RdNBR y RBR a partir de imágenes Landsat 8, Revista de
Teledetección, 49, 33–47, https://doi.org/10.4995/raet.2017.7095, 2017.
Cai, L. and Wang, M.: Is the RdNBR a better estimator of wildfire burn severity
than the dNBR? A discussion and case study in southeast China, Geocarto Int., 1–15,
https://doi.org/10.1080/10106049.2020.1737973, 2020.
Chander, G., Markham, B. L., and Helder, D. L.: Summary of current radiometric
calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors,
Remote Sens. Environ., 113, 893–903,
https://doi.org/10.1016/j.rse.2009.01.007, 2009.
Chu, T. and Guo, X.: Remote Sensing Techniques in Monitoring Post-Fire Effects
and Patterns of Forest Recovery in Boreal Forest Regions: A Review, Remote
Sens., 6, 470–520, https://doi.org/10.3390/rs6010470, 2014.
Chuvieco, E., Riaño, D., Danson, F. M., and Martin, P.: Use of a radiative
transfer model to simulate the postfire spectral response to burn severity,
J. Geophys. Res., 111, G04S09, https://doi.org/10.1029/2005JG000143, 2006.
Chuvieco, E. (Ed.): Teledetección ambiental. La observación de la
Tierra desde el espacio, 3rd edn., Ariel, Barcelona, Spain, 2010.
Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla,
M., Pereira, J. M., Oom, D., and Tansey, K.: A new global burned area product
for climate assessment of fire impacts, Global Ecol. Biogeogr., 25, 619–629.
https://doi.org/10.1111/geb.12440, 2016.
Chuvieco, E., Lizundia-Loiola, J., Pettinari, M. L., Ramo, R., Padilla, M., Tansey, K., Mouillot, F., Laurent, P., Storm, T., Heil, A., and Plummer, S.: Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies, Earth Syst. Sci. Data, 10, 2015–2031, https://doi.org/10.5194/essd-10-2015-2018, 2018.
De Luis, M., González-Hidalgo, J. C., and Raventós, J.: Effects of fire
and torrential rainfall on erosion in a Mediterranean gorse community, Land
Degrad. Dev., 14, 203–213, https://doi.org/10.1002/ldr.547, 2003.
De Santis, A. and Chuvieco, E.: GeoCBI: A modified version of the Composite Burn
Index for the initial assessment of the short-term burn severity from
remotely sensed data, Remote Sens. Environ., 113, 554–562,
https://doi.org/10.1016/j.rse.2008.10.011, 2009.
De Santis, A., Chuvieco, E., and Vaughan, P. J.: Short-term assessment of burn
severity using the inversion of PROSPECT and GeoSail models, Remote Sens.
Environ., 113, 126–136, https://doi.org/10.1016/j.rse.2008.08.008, 2009.
Duffy, P. A., Epting, J., Graham, J. M., Rupp, T. S., and McGuire, A. D.:
Analysis of Alaskan burn severity patterns using remotely sensed data, Int.
J. Wildland Fire, 16, 277–284, https://doi.org/10.1071/WF06034, 2007.
Feng, M., Sexton, J. O., Huang, C., Masek, J. G., Vermote, E. F., Gao, F.,
Narasimhan, R., Channan, S., Wolfe, R. E., and Townshend, J. R.: Global surface
reflectance products from Landsat: Assessment using coincident MODIS
observations, Remote Sens. Environ., 134, 276–293,
https://doi.org/10.1016/j.rse.2013.02.031, 2013.
Fernández-García, V., Santamarta, M., Fernández-Manso, A.,
Quintano, C., Marcos, E., and Calvo, L.: Burn severity metrics in fire-prone
pine ecosystems along a climatic gradient using Landsat imagery, Remote
Sens. Environ., 206, 205–217, https://doi.org/10.1016/j.rse.2017.12.029,
2018a.
Fernández-García, V., Quintano, C., Taboada, A., Marcos, E., and Calvo,
L.: Fernández-Manso, A. Remote Sensing Applied to the Study of Fire
Regime Attributes and Their Influence on Post-Fire Greenness Recovery in
Pine Ecosystems, Remote Sens., 10, 733, https://doi.org/10.3390/rs10050733,
2018b.
Fernández-García, V., Fulé, P. Z., Marcos, E., and Calvo, L.: The
role of fire frequency and severity on the regeneration of Mediterranean
serotinous pines under different environmental conditions, Forest Ecol.
Manag., 444, 59–68, https://doi.org/10.1016/j.foreco.2019.04.040, 2019.
Fernández-García, V., Marcos, E. Fulé, P. Z., Reyes, O.,
Santana, V. M., and Calvo, L.: Fire regimes shape diversity and traits of
vegetation under different climatic conditions, Sci. Total Environ., 716,
137137, https://doi.org/10.1016/j.scitotenv.2020.137137, 2020.
Fernández-Manso, A., Fernández-Manso, O., and Quintano, C.: SENTINEL-2A
red-edge spectral indices suitability for discriminating burn severity, Int.
J. Appl. Earth Obs. Geoinformation, 50, 170–175,
https://doi.org/10.1016/j.jag.2016.03.005, 2016.
Forkel, M., Dorigo, W., Lasslop, G., Chuvieco, E., Hantson, S., Heil, A.,
Teubner, I., Thonicke, K., and Harrison, S. P.: Recent global and regional
trends in burned area and their compensating environmental controls,
Environ. Res. Communications, 1, 051005,
https://doi.org/10.1088/2515-7620/ab25d2, 2019.
Fried, J. S., Tor, M. S., and Mills, E.: The Impact of Climate Change on
Wildfire Severity: A Regional Forecast for Northern California, Climatic
Change, 64, 169–191, https://doi.org/10.1023/B:CLIM.0000024667.89579.ed,
2004.
García-Llamas, P., Suárez-Seoane, S., Taboada, A.,
Fernández-Manso, A., Quintano, C., Fernández-García, V.,
Fernández-Guisuraga, J. M., Marcos, E., and Calvo, L.: Environmental drivers
of fire severity in extreme fire events that affect Mediterranean pine
forest ecosystems, Forest Ecol. Manag., 433, 24–32,
https://doi.org/10.1016/j.foreco.2018.10.051, 2019.
Ghosh, A., Mandel, A., Kenduiywo, B., and Hijmans, R.: rspatial/luna: Tools for
satellite remote sensing (Earth Observation) data processing, Version 0.3-2,
https://rdrr.io/github/rspatial/luna/, last access: 1 November 2020.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, O. C.: The
Collection 6 MODIS burned area mapping algorithm and product, Remote Sens.
Environ, 217, 72–85, https://doi.org/10.1016/j.rse.2018.08.005, 2018.
Hijmans, R. J., Bivand, R., Forner, K., Ooms, J., and Pebesma, E.: Package
“terra”, Version 0.8-6, https://rspatial.org/terra, last access: 1 November 2020.
Humber, M. L., Boschetti, L., Giglio, L., and Justice, C. O.: Spatial and
temporal intercomparison of four global burned area products, Int. J. Digit.
Earth, 4, 460–484, https://doi.org/10.1080/17538947.2018.1433727, 2018.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J.,
Williamson, G. J., and Bowman, D. M. J. S.: Climate-induced variations in global
wildfire danger from 1979 to 2013, Nat. Commun., 6, 7537,
https://doi.org/10.1038/ncomms8537, 2015.
Ju, J. and Roy, D. P.: The availability of cloud-free Landsat ETM+ data over
the conterminous United States and globally, Remote Sens. Environ., 112,
1196–1211, https://doi.org/10.1016/j.rse.2007.08.011, 2008.
Ke, Y., Im, J., Lee, j., Gong, H., and Ryu, Y.: Characteristics of Landsat 8
OLI-derived NDVI by comparison with multiple satellite sensors and in-situ
observations, Remote Sens. Environ., 164, 298–313.
https://doi.org/10.1016/j.rse.2015.04.004, 2015.
Keeley, J. E.: Fire intensity, fire severity and burn severity: a brief
review and suggested usage, Int. J. Wildland Fire, 18, 116–126,
https://doi.org/10.1071/WF07049, 2009.
Keeley, J. E., Bond, W. J., Bradstock, R. A., Pausas, J. G., and Rundel, P. W.
(Eds.): Fire in Mediterranean ecosystems: Ecology, evolution and management,
Cambridge University Press, Cambridge, United Kingdom, 2011.
Kennedy, M. C. and Johnson, M. C.: Fuel treatment prescriptions alter spatial
patterns of fire severity around the wildland–urban interface during the
Wallow Fire, Arizona, USA, Forest Ecol. Manag., 318, 122–132,
https://doi.org/10.1016/j.foreco.2014.01.014, 2014.
Key, C. H. and Benson, N. C.: Landscape assessment (LA) sampling and analysis
methods, USDA Forest Service General Technical Report, RMRS-GTR-164-CD, U.S.
Department of Agriculture, Forest Service, Fort Collins, Colorado, United
States of America, 2006.
Landsat 8 Data Users Handbook Version 5.0:
https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_ Data_Users_Handbook-v5.0.pdf (last access: 1 November 2020), 2019.
López-García, M. J. and Caselles, V.: Mapping burns and natural
reforestation using thematic mapper data, Geocarto Int., 1 31–37,
https://doi.org/10.1080/10106049109354290, 1991.
Miller, J. D. and Thode, A. E.: Quantifying burn severity in a heterogeneous
landscape with a relative version of the delta normalized burn ratio (dNBR),
Remote Sens. Environ., 109, 66–80,
https://doi.org/10.1016/j.rse.2006.12.006, 2007.
Miller, J. D., Safford, H. D., Crimmins, M., and Thode, A. E.: Quantitative
evidence for increasing forest fire severity in the Sierra Nevada and
Southern Cascade Mountains, California and Nevada, USA, Ecosystems, 12,
16–32, https://doi.org/10.1007/s10021-008-9201-9, 2009.
MODIS Science Data Support Team:
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf (last access: 1 November 2020), 1997.
Moreira, F., Ascoli, D., Safford, H., Adams, M. A., Moreno J. M., Pereira,
J.M., Catry, F. X., Armesto, J., Bond, W., González, M. E., Curt, T.,
Koutsias, N., McCaw, L., Price, O., Pausas, J. G,, Rigolot, E., Stephens,
S., Tavsanoglu, C., Vallejo, V. R., Van Wilgen, B. W., Xanthopoulos, G.,
and Fernandes, P. M.: Wildfire management in Mediterranean-type regions: paradigm
change needed, Environ. Res. Lett., 15, 011001,
https://doi.org/10.1088/1748-9326/ab541e, 2020.
Moritz, M. A., Parisien, M. A., Batllori, E., Krawchuk, M. A., Van Dorn, J.,
Ganz, D. J., and Hayhoe, K.: Climate change and disruptions to global fire
activity, Ecosphere, 3, 1–22, https://doi.org/10.1890/ES11-00345.1, 2012.
Muhammad, S. and Thapa, A.: Daily Terra–Aqua MODIS cloud-free snow and Randolph Glacier Inventory 6.0 combined product (M*D10A1GL06) for high-mountain Asia between 2002 and 2019, Earth Syst. Sci. Data, 13, 767–776, https://doi.org/10.5194/essd-13-767-2021, 2021.
Parks, S. A., Dillon, G. K., and Miller, C.: A new metric for quantifying burn
severity: the relativized burn ratio, Remote Sens., 6, 1827–1844,
https://doi.org/10.3390/rs6031827, 2014.
Parks, S. A., Miller, C., Abatzoglou, J. T., Holsinger, L. M., Parisien, M.
A., and Dobrowski, S. Z.: How will climate change affect wildland fire severity
in the western US?, Environ. Res. Lett., 11, 035002,
https://doi.org/10.1088/1748-9326/11/3/035002, 2016.
Picotte, J. J. and Robertson, K. M.: Validation of remote sensing of burn
severity in south-eastern US ecosystems, Int. J. Wildland Fire, 20, 453–464,
https://doi.org/10.1071/WF10013, 2011.
Picotte, J. J., Peterson, B., Meier, G., and Howard, S. M.: 1984–2010 trends in
fire burn severity and area for the conterminous US, Int. J. Wildland Fire,
25, 413–420, https://doi.org/10.1071/WF15039, 2016.
Potapov, P., Hansen, M. C., Kommareddy, I., Kommareddy, A., Turubanova, S.,
Pickens, A., Adusei, B., Tyukavina, A., and Ying, Q.: Landsat Analysis Ready
Data for Global Land Cover and Land Cover Change Mapping, Remote Sens., 12,
426, https://doi.org/10.3390/rs12030426, 2020.
Quintano, C., Fernández-Manso, A., and Roberts, D. A.: Burn severity mapping
from Landsat MESMA fraction images and land surface temperature, Remote
Sens. Environ., 190, 83–95, https://doi.org/10.1016/j.rse.2016.12.009, 2017.
Rahman, S., Chang, H., Hehir, W., Magilli, C., and Tomkins, K.: Inter-Comparison
of Fire Severity Indices from Moderate (Modis) and Moderate-To-High Spatial
Resolution (Landsat 8 & Sentinel-2A) Satellite Sensors, IGARSS 2018 –
2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia,
Spain, https://doi.org/10.1109/IGARSS.2018.8518449, 2018.
Rodrigues, M. and Febrer, M.: Spatial-temporal modeling of forest fire
behavior: modeling fire ignition and propagation from MCD64A1, in:
Proceedings of the 20th EGU General Assembly, Vienna, Austria, 4–13 April
2018.
Rozario, P. F., Madurapperuma, B. D., and Wang, Y.: Remote Sensing Approach to
Detect Burn Severity Risk Zones in Palo Verde National Park, Costa Rica,
Remote Sens., 10, 1427, https://doi.org/10.3390/rs10091427, 2018.
Soverel, N. O., Coops, N. C., Perrakis, D. B., Daniels, L., and Gergel, S.: The
transferability of a dNBR-derived model to predict burn severity across ten
wildland fires in Western Canada, Int. J. Wildland Fire, 20, 1–14,
https://doi.org/10.1071/WF10081, 2011.
Stevens, J. T., Collins, B. M., Miller, J. D., North, M. P., and Stephens, S.
L.: Changing spatial patterns of stand-replacing fire in California conifer
forests, Forest Ecol. Manag., 405, 28–36,
https://doi.org/10.1016/j.foreco.2017.08.051, 2017.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Veraverbeke, S., Lhermitte, S., Verstraeten, W. W., and Goosens, R.: A
time-integrated MODIS burn severity assessment using the multi-temporal
differenced normalized burn ratio (dNBRMT), Int. J. Appl. Earth Obs.
Geoinformation, 13, 52–58, https://doi.org/10.1016/j.jag.2010.06.006, 2011.
Veraverbeke, S., Rogers, B. M., and Randerson, J. T.: Daily burned area and carbon emissions from boreal fires in Alaska, Biogeosciences, 12, 3579–3601, https://doi.org/10.5194/bg-12-3579-2015, 2015.
Wang, L., Qu, J. J., and Hao, X: Forest fire detection using the normalized
multi-band drought index (NMDI) with satellite measurements, Agric. For.
Meteorol., 148, 1767–1776, https://doi.org/10.1016/j.agrformet.2008.06.005,
2008.
Yu, J., Zhang, G., Yao, T., Xie, H., Zhang, H., Ke, C., and Yao, R.: Developing
Daily Cloud-Free Snow Composite Products From MODIS Terra–Aqua and IMS for
the Tibetan Plateau, IEEE T. Geosci. Remote Sens., 54, 2171–2180,
https://doi.org/10.1109/TGRS.2015.2496950, 2015.
Zhu, Z., Key, C., Ohlen, D., and Benson, N.: Evaluate sensitivities of
burn-severity mapping algorithms for different ecosystems and fire histories
in the United States, Final Report to the Joint Fire Science Program, JFSP
01-1-4-12, USGS, National Center for Earth Resources Observation and Science
Joint Fire Science Program, Sioux Falls, South Dakota, United States of
America, 2006.
Short summary
We present the first global burn severity database (MOSEV database), which is based on Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance and burned area products. The database inludes monthly scenes with the dNBR, RdNBR and post-burn NBR spectral indices at 500 m spatial resolution from November 2000 onwards. Moreover, in this work we show that there is a close relationship between the burn severity metrics included in MOSEV and the same ones obtained from Landsat-8.
We present the first global burn severity database (MOSEV database), which is based on Moderate...
Altmetrics
Final-revised paper
Preprint