Articles | Volume 13, issue 5
https://doi.org/10.5194/essd-13-1925-2021
https://doi.org/10.5194/essd-13-1925-2021
Data description paper
 | 
08 May 2021
Data description paper |  | 08 May 2021

MOSEV: a global burn severity database from MODIS (2000–2020)

Esteban Alonso-González and Víctor Fernández-García

Related authors

Ensemble-based data assimilation improves hyperresolution snowpack simulations in forests
Esteban Alonso-González, Adrian Harpold, Jessica D. Lundquist, Cara Piske, Laura Sourp, Kristoffer Aalstad, and Simon Gascoin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2347,https://doi.org/10.5194/egusphere-2025-2347, 2025
Short summary
Future permafrost degradation under climate change in a headwater catchment of central Siberia: quantitative assessment with a mechanistic modelling approach
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024,https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Time series of alpine snow surface radiative-temperature maps from high-precision thermal-infrared imaging
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024,https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404,https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model
Josep Bonsoms, Juan I. López-Moreno, Esteban Alonso-González, César Deschamps-Berger, and Marc Oliva
Nat. Hazards Earth Syst. Sci., 24, 245–264, https://doi.org/10.5194/nhess-24-245-2024,https://doi.org/10.5194/nhess-24-245-2024, 2024
Short summary

Cited articles

Alonso-González, E. and Fernández-García, V.: MOSEV: a global burn severity database from MODIS (2000–2020), Zenodo [data set], https://doi.org/10.5281/zenodo.4265209, last access: 1 November 2020. 
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019. 
Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M., and Humber, M. L.: Global validation of the collection 6 MODIS burned area product, Remote Sens. Environ., 235, 111490, https://doi.org/10.1016/j.rse.2019.111490, 2019. 
Botella-Martínez, M. A. and Fernández-Manso, A: Estudio de la severidad post-incendio en la Comunidad Valenciana comparando los índices dNBR, RdNBR y RBR a partir de imágenes Landsat 8, Revista de Teledetección, 49, 33–47, https://doi.org/10.4995/raet.2017.7095, 2017. 
Download
Short summary
We present the first global burn severity database (MOSEV database), which is based on Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance and burned area products. The database inludes monthly scenes with the dNBR, RdNBR and post-burn NBR spectral indices at 500 m spatial resolution from November 2000 onwards. Moreover, in this work we show that there is a close relationship between the burn severity metrics included in MOSEV and the same ones obtained from Landsat-8.
Share
Altmetrics
Final-revised paper
Preprint