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Abstract. To make advances in the fire discipline, as well as in the study of CO; emissions, it is of great
interest to develop a global database with estimators of the degree of biomass consumed by fire, which is defined
as burn severity. In this work we present the first global burn severity database (MOSEV database), which is
based on Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance and burned area (BA)
products from November 2000 to near real time. To build the database we combined Terra MOD09A1 and Aqua
MYDO09A1 surface reflectance products to obtain dense time series of the normalized burn ratio (NBR) spectral
index, and we used the MCD64A1 product to identify BA and the date of burning. Then, we calculated for each
burned pixel the difference of the NBR (dNBR) and its relativized version (RANBR), as well as the post-burn
NBR, which are the most commonly used burn severity spectral indices. The database also includes the pre-burn
NBR used for calculations, the date of the pre- and post-burn NBR, and the date of burning. Moreover, in this
work we have compared the burn severity metrics included in MOSEV (dNBR, RANBR and post-burn NBR)
with the same ones obtained from Landsat-8 scenes which have an original resolution of 30 m. We calculated
the Pearson’s correlation coefficients and the significance of the relationships using 13 pairs of Landsat scenes
randomly distributed across the globe, with a total BA of 6904 km? (n = 32163). Results showed that MOSEV
and Landsat-8 burn severity indices are highly correlated, particularly the post-burn NBR (R = 0.88; P <0.001),
and dNBR (R = 0.74; P <0.001) showed stronger relationships than RANBR (R = 0.42; P <0.001). Differences
between MOSEV and Landsat-8 indices are attributable to variability in reflectance values and to the different
temporal resolution of both satellites (MODIS: 1-2 d; Landsat: 16 d). The database is structured according to the
MODIS tiling system and is freely downloadable at https://doi.org/10.5281/zenodo.4265209 (Alonso-Gonzélez
and Fernandez-Garcia, 2020).

More than half of the land surface on Earth can be affected
by fire, an area about the size of the European Union be-
ing burned annually (Keeley et al., 2011; Moritz et al., 2012;
Andela et al., 2019). Thus, fire is a phenomenon of great in-
terest because of its relevance worldwide but also because of
expected changes in fire regimes as a consequence of global
warming and land use change (Moreira et al., 2020). Among
these changes, previous work has reported that fire weather
seasons have recently increased (18.7 % from 1979 to 2013)
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(Jolly et al., 2015), whereas burned area (BA) has decreased
globally (24.3 % from 1996 to 2015) (Andela et al., 2017;
Forkel et al., 2019) mainly because of the agricultural expan-
sion in fire-dependent savannas (Andela et al., 2017).

The availability of satellite imagery with moderate spa-
tial resolution (250-500 m) and daily or near-daily temporal
resolution has enabled the production of several global BA
products. Among the most accepted are those based on the
Moderate Resolution Imaging Spectrometer (MODIS) (Chu-
vieco et al., 2016), which retrieves information of the en-


https://doi.org/10.5281/zenodo.4265209

1926

tire Earth in 36 spectral bands every 1 to 2d. The MODIS
MCD64A1 C6 product (Giglio et al., 2018) is the standard
NASA BA product and probably the most used by the sci-
entific community (Boschetti et al., 2019; Humber et al.,
2018). The MCD64A1 BA product is calculated with sur-
face reflectance time series and fire active masks (Giglio et
al., 2018) and was recently validated with Landsat imagery
across the globe (stage-3 validation), reaching coefficients
of determination above 0.70 despite an underestimation of
small fires as a consequence of its moderate spatial resolu-
tion (~ 500 m) (Boschetti et al., 2019). Global BA products
are essential to know the patterns of fire occurrence, fire ex-
tent, fire propagation (Rodrigues and Febrer, 2018) and fire
frequency (Andela et al., 2019). Thus, BA products may be
useful to provide an estimation of the global carbon emis-
sions from biomass consumption (Veraverbeke et al., 2015;
van der Werf et al., 2017). However, to go one step further
in determining fire impacts on ecosystems, as well as global
carbon emissions, it is necessary to characterize burned ar-
eas according to the degree of biomass consumption (Keeley,
2009; van der Werf et al., 2017).

The term used to define the degree of biomass consump-
tion and the overall impact caused by fire on ecosystems is
fire severity (preferred for field measurements) or burn sever-
ity (preferred for remote sensing measurements) (Keeley,
2009). Traditionally, burn severity has been quantified from
Landsat sensors through different methods, including those
based on radiative transfer models (Chuvieco et al., 2006; De
Santis et al., 2009), spectral unmixing (Quintano et al., 2017)
and spectral indices (Chu and Guo, 2014; Fernandez-Garcia
et al., 2018a). Among them, the standard method to quan-
tify burn severity is through the delta normalized burn ratio
(ANBR) (Key and Benson, 2006) spectral index and its rel-
ativized version (RANBR) (Miller and Thode, 2007) which
is less dependent on the pre-fire vegetation and potentially
more suitable than ANBR for comparisons among zones with
different environmental conditions (Miller and Thode, 2007;
Rahman et al., 2018). Both spectral indices are based on the
change caused by fire in near-infrared (NIR) and shortwave-
infrared (SWIR) reflectance, which are highly sensitive to
canopy density and moisture content respectively (Chuvieco,
2010). The dNBR and RANBR indices calculated from Land-
sat have shown a high capacity (R? about 0.75) to correlate
field measurements of biomass consumption and plant mor-
tality in the Mediterranean (Ferndndez-Garcfia et al., 2018a),
temperate (Parks et al., 2014), boreal (Soverel et al., 2011)
and tropical ecosystems (Rozario et al., 2018). Despite the
possibility of calculating burn severity indices with satellites
allowing planetary coverage such as MODIS (Veraverbeke
et al., 2011; Rahman et al., 2018), there are not yet available
products of burn severity at the global scale, which would be
useful to make advances in the fire and CO, sciences.

In this work we present a new burn severity database
based on MODIS Terra and Aqua satellites. The presented
database (MOdis burn SE Verity: MOSEV) provides monthly
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burn severity data (ANBR, RANBR and post-burn NBR) with
global coverage since 2000 at 500 m spatial resolution. Ad-
ditionally, this work describes the algorithm to develop the
database, and we compared the MOSEV burn severity data
with their Landsat-8 equivalents.

2 MOSEV database

2.1 Input data

The MOSEV database was built using the following remote
sensing data available since November 2000 as input (Fig. 1).

— All scenes of MODIS Terra MODO09AI and Aqua
MYDOYAI version 6. Terra MOD(09A1 and Aqua
MYDO0O9AI1 scenes are 8d composites with seven sur-
face reflectance bands and quality information at a spa-
tial resolution of 500 m and global coverage. The re-
flectance value of each pixel is the best possible ob-
servation in the 8 d period, selected according to qual-
ity criteria including cloud cover, cloud shadow, solar
zenith and aerosol loading.

— All scenes of MCDG64A 1 version 6 product. MCD64A1
is a monthly 500 m pixel product that contains daily
global information on burn date, uncertainty in burn
date, quality assurance indicators, and first and last day
of the year of reliable change detection.

MODO09A1, MYDO09A1 and MCD64A1 data were down-
loaded from the Land Processes Distributed Active Archive
Center (LP-DAAC): https://Ipdaac.usgs.gov/ (last access: 1
November 2020).

2.2 Pre-processing

Terra MOD09A1 and Aqua MYDO9A1 scenes were masked
to remove water bodies, glaciers, clouds and snow. Masks
were obtained directly from the MOD09A1 and MYD(09A1
quality bands (surface reflectance 500 m band quality con-
trol flags). Likewise, MOD09A1 and MYDO09A1 scenes not
registering land surface were removed from subsequent anal-
ysis.

2.3 Algorithm overview

The method to obtain burn severity indices was structured in
two steps (Fig. 1): (i) calculation of dense time series of the
normalized burn ratio (NBR) from merged Terra MOD(09A1
and Aqua MYDO09A1 scenes; and (ii) selection of the pre-
and post-fire NBR for each burned pixel and calculation of
differenced burn severity indices (AINBR and RANBR).

2.3.1 Calculation of dense time series of the normalized
burn ratio (NBR)

The normalized burn ratio (NBR) spectral index was calcu-
lated for each Terra MODO09A1 and Aqua MYDO09A1 scene

https://doi.org/10.5194/essd-13-1925-2021
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Figure 1. Methodology flow chart used for building the MOSEV database (2000—present). MOD09A1 and MYDO09A1 are 8 d reflectance
products at 500 m spatial resolution from MODIS Terra and Aqua respectively. MCD64A1 is the monthly MODIS burned area product at
500 m spatial resolution. NBR, dNBR and RANBR are burn severity spectral indices (normalized burn ratio, difference of the NBR and

relativized dNBR respectively).

according to the formula proposed by Lopez-Garcia and
Caselles (1991) (Eq. 1). Terra NBR gaps (masked areas) were
re-filled with the synchronous Aqua NBR values when avail-
able. The combination of Terra and Aqua imagery is use-
ful to reduce cloud contamination and therefore increase the
data availability and decrease uncertainty (Yu et al., 2015;
Muhammad and Thapa, 2021). Thus, we obtained Terra—
Aqua NBR composites with global coverage and a temporal
resolution of 8 d from November 2000 onwards.

(02 — p7)
(02 + p7)
where p2 and p7 are the land surface reflectance values of

bands 2 (841-876nm) and 7 (2105-2155nm) from Terra
MODO09A1 and Aqua MYDO09A1 scenes.

NBRMODIS = X 1000, (1)

2.3.2 Selection of the pre- and post-burn NBR and
calculation of burn severity indices

BA locations and dates were obtained from the MCD64A1
product. With the burn date and uncertainty in days, and con-
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sidering the 8 d nature of our Terra—Aqua NBR, we have se-
lected the immediate pre-burn (Eq. 2) and post-burn (Eq. 3)
Terra—Aqua NBR dates for each MCD64A1 burned pixel.

preNBR date<MCD64A1 burn day

— MCD64A1 uncertainty in days 2)
postNBR date>MCD64A1 burn day
+ MCD64A1 uncertainty in days+8d 3)

When NBR values for the immediate pre-burn NBR date
were not available (see Sect. 2.2), the previous NBR image
was selected. In contrast, when NBR values for the immedi-
ate post-burn date were not available, the next NBR image
was selected. These processes were repeated until pre- and
post-burn NBR values were detected for each burned pixel
on a cell by cell basis.

We have obtained the pre-burn NBR value and the post-
burn NBR value from the pre- and post-fire Terra—Aqua NBR
dates which were used to calculate the dNBR and RANBR
value for each burned pixel of the MCD64A1 product. Both
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dNBR and RANBR are bi-temporal spectral indices that ac-
count for the change caused by fire in NIR and SWIR re-
flectance.

The dNBR index is the reference burn severity spectral in-
dex used by the European Forest Fire Information System
(https://effis.jrc.ec.europa.eu/about-effis, last access: 1 May
2021) and by the Monitoring Trends in Burn Severity pro-
gramme of the USA (https://www.mtbs.gov, last access: 1
May 2021), and it was calculated according to Key and Ben-
son (2006) (Eq. 4), dNBR values increasing with burn sever-

1ty.
dNBR = preNBR — postNBR 4)

Likewise, RANBR is also an outspread burn severity spec-
tral index used by the Monitoring Trends in Burn Severity
programme of the USA (https://www.mtbs.gov/, last access:
1 May 2021). RANBR was calculated according to Miller
and Thode (2007) (Eq. 5), higher RANBR values indicating
higher burn severity.

dNBR
RINBR= ——— 5)
|preNBR]|
1000

2.4 Implementation

Burn date from MCD64A1, pre-burn NBR date, post-burn
NBR date, pre-burn NBR, post-burn NBR, dNBR and
RANBR have been written in monthly scenes since Novem-
ber 2000 at a spatial resolution of 500 m (MOSEV database).
All operations to calculate and write the database were car-
ried out in the R programming language using the rspa-
tial/luna (Ghosh et al., 2020) and terra (Hijmans et al., 2020)
libraries and Bash Unix shell command language. All the
calculations and data manipulation were performed at the
supercomputing facilities of the Spanish Research Council
(CSIC).

2.5 Comparison with Landsat burn severity indices

In order to evaluate the MOSEV database, we have com-
pared MOSEV burn severity indices (AINBR, RANBR and
post-burn NBR) with the same indices manually obtained
from higher-spatial-resolution imagery. To perform the com-
parison, we have selected Landsat scenes which have 30 m
spatial resolution and have been the most used imagery
for burn severity assessments (Key and Benson, 2006;
Fernandez-Garcia et al., 2018a). We selected 13 regions of
185 km x 180 km (Landsat-8 tile dimension) with a large ex-
tent of BA and which are randomly distributed across the
globe (See Table Al in the Appendix). Pre- and post-burn
consecutive scenes (16 d span) with low cloud cover (<25 %)
of the Landsat-8 Collection 1 Level-2 product were selected
for each region and downloaded from the USGS Earth Ex-
plorer (https://earthexplorer.usgs.gov/ last access: 1 Novem-
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ber 2020). Landsat-8 Collection 1 Level-2 scenes are com-
posed of seven land surface reflectance bands at a spatial res-
olution of 30 m and a quality band which was used to mask
cloud covered areas. Bands 5 (850-880nm) and 7 (2110-
2290 nm), which are comparable to MODIS bands 2 (841-
876 nm) and 7 (2105-2155 nm), were aggregated and resam-
pled averaging the Landsat values to the MODIS grid in or-
der to match the spatial resolution of the MOSEV products
(500 m). Landsat-8 resampled bands were used to calculate
the pre-burn NBR and the post-burn NBR (Eq. 6), as well as
the dNBR (Eq. 4) and RANBR (Eq. 5) spectral indices.

_ w5 —pD
(05 + p7)

where p5 and p7 are the land surface reflectance values of
Landsat-8 bands 5 (850-880 nm) and 7 (2110-2290 nm) re-
sampled to the spatial resolution of MOSEV products.

To assess the relationships between the burn severity in-
dices included in the MOSEV database with the same ones
derived from Landsat-8, we sampled all available burned pix-
els (n = 32163) of the 13 study regions from both MOSEV
and Landsat-8 dNBR, RANBR and post-burn NBR layers
(Table A1). Then, we performed scatterplots, and we calcu-
lated the Pearson’s correlation coefficients (R) and the sig-
nificance of the correlations (P).

NBRoL1 x 1000, 6)

3 Data description

The MOSEV database (doi:10.5281/zenodo.4265209,
Alonso-Gonzdlez and Fernandez-Garcia, 2020) is composed
of monthly scenes from November 2000 onwards with
a spatial resolution of 500m. The scenes are organized
following the tiling system of MODIS (sinusoidal tile grid).
In total, the database is structured in 246 non-overlapping
tiles that cover an area of 10°x10° on the Equator (Fig. 2).
The name of each MOSEV scene encodes the year, Julian
day indicating the month and MODIS tile. For instance, the
MOSEV A2019305.h31v11 scene corresponds to the year
2019, month of November (month ended on the Julian day
305) and h31v11 MODIS tile.

Each MOSEV scene is composed of seven layers (Ta-
ble 1; Fig. 3): dNBR, RdANBR, pre-burn NBR, post-burn
NBR, pre-burn selected date, post-burn selected date and the
burn date from MCD64A1. In all layers we assigned the val-
ues of —32 767 to unburned land, 32 767 to water bodies and
—18 000 to those areas where it was not possible to fill with
a severity value or the severity value was out of the allowed
range.

— dNBR. The valid range in the MOSEV database corre-
sponds to their mathematical feasible range (—2000 to
2000) (see Eq. 4), although values above 1200 are not
usual (Key and Benson, 2006).

— RANBR. The valid range in the MOSEV database was
bounded from —4000 to 4000 since values outside these

https://doi.org/10.5194/essd-13-1925-2021
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Figure 2. MODIS sinusoidal tiling system and available MOSEV tiles.

Table 1. Layers of the MOSEV product.

T

Layer Units Type Valid range  Unburned land ~ Water ~ No data
dNBR Unitless  16bit  —2000 to 2000 —32767 32767 —18000
RANBR Unitless  16bit  —4000 to 4000 —32767 32767 —18000
preNBR Unitless  16bit  —1000 to 1000 —32767 32767 —18000
postNBR Unitless  16bit  —1000 to 1000 —32767 32767 —18000
preburn_selected_date Cycles 16 bit >0 —32767 32767 —18000
postburn_selected_date Cycles 16 bit >0 —32767 32767 —18000
burndate_from_MCD64A1 Days 16 bit 1 to 366 —-32767 32767 —18000

limits are feasible (see Eq. 5) but anomalous (Miller and
Thode, 2007; Miller et al., 2009).

— Pre- and post-burn NBR. Both spectral indices are
the Terra—Aqua composites used in the calculation of
dNBR and RANBR. Likewise, the post-burn NBR is the
most common mono-temporal burn severity spectral in-
dex, its value decreasing as burn severity increases. The
pre- and post-burn NBR valid range in the MOSEV
database corresponds to their mathematically feasible
range (—1000 to 1000) (see Eq. 1).

— Pre- and post-burn selected dates. These are estimators
of the pre- and post-burn NBR dates and represent the
number of iterations necessary to find available pre- and
post-burn NBR values. Specifically, a value of O in the
selected date indicates that the NBR date is the immedi-
ate NBR according to the Eq. (2) (pre-burn) and Eq. (3)
(post-burn). A value of 1 indicates that the immediate
NBR value was not available, and the previous (in the
case of the pre-fire) or the next (in the case of post-fire)
NBR value was used instead.

— Burn date from MCDG64A1. This is the date of burning
in Julian days registered in the MCD64A1 BA product.

https://doi.org/10.5194/essd-13-1925-2021

It was used as the basis for identifying the pre- and post-
burn selected dates and pre- and post-burn NBR values.

In order to reduce the overall size of the database, the MO-
SEV scenes where no fires were detected are composed of
a single empty layer entitled “burndate_from_MCD64A1”.
We did it in this way in order to maintain the same num-
ber of MOSEYV files per tile even in the unburned scenar-
ios, similar to the original MCD64A1 product. Each MO-
SEV file is a multi- or single-band GeoTIFF in 16-bit in-
tegers, compressed using the lossless compression algo-
rithm Lempel-Ziv—Welch (LZW). The MOSEV scenes are
distributed as a zipped file, constituted by all the scenes
of each tile. The complete dataset can be freely down-
loaded at https://doi.org/10.5281/zenodo.4265209 (Alonso-
Gonzalez and Fernandez-Garcia, 2020).

4 Results and discussion

In this work we have developed the MOSEV product, which
is a global burn severity database based on MODIS Terra
and Aqua surface reflectance and MODIS BA products. The
database includes ANBR, RANBR and NBR burn severity in-
dices at 500 m pixel size, which are usually calculated at lo-
cal scale using higher-resolution imagery, traditionally with
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https://doi.org/10.5281/zenodo.4265209

1930 E. Alonso-Gonzalez and V. Fernandez-Garcia: A global burn severity database

207'0"8

29730'0"S

RdNBR
M High: 2956

dNBR
M High: 1083

Low: -841 Low: -1689

Pre-NBR
High: 774

Post-NBR
High: 578

B Low: -652 = Low:-518

Preburn date
0

Burn date (JD)
305

33
T T T

"0TE 15400E 154300°E

Figure 3. Example of the layers included in a MOSEV scene
(A2019305.h31v11) representing some of the 2019 wildfires in
Australia (New South Wales). Spectral indices ANBR, RANBR, pre-
NBR and post-NBR are unitless. The pre-burn and post-burn dates
indicate the number of cycles or iterations necessary to find avail-
able NBR values (each cycle added to 0 corresponds to a difference
of 8d). The burn date is expressed in Julian days. White areas are
water bodies (value of 32 767), and black areas are unburned land
(value of —32767).

Landsat scenes (Chuvieco, 2010; Key and Benson, 2006;
Miller and Thode, 2007; Fernandez-Garcia et al., 2018a) and
more recently with Sentinel-2 scenes (Fernandez-Manso et
al., 2016).
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4.1 Comparison with Landsat burn severity indices

The probability density functions of MOSEV and Landsat
burn severity indices (ANBR, RANBR and post-burn NBR),
as well as their relationships, are shown in Fig. 4. In gen-
eral, results showed a high similarity between MOSEV and
Landsat probability density functions, with values more con-
centrated to the mean for Landsat indices and a slight nega-
tive bias for the three spectral indices as MOSEV mean val-
ues tended to be lower than those in Landsat data (Table 2).
MOSEYV and Landsat burn severity indices were highly cor-
related (P <0.001) for the three burn severity indices. Specif-
ically, the post-burn NBR showed a higher correlation coef-
ficient (R = 0.88) than ANBR (R = 0.74) and RANBR (R =
0.42).

Previous research has found discrepancies in surface re-
flectance when comparing both MODIS and Landsat satel-
lites (Feng et al., 2013; Veraverbeke et al., 2011; Ke et al.,
2015; Potapov et al., 2020). These differences could be ex-
plained by several reasons. (i) The higher temporal resolu-
tion of MODIS imagery used to build the database enables
us to use pre-fire information very close to the burning event.
This has a significant influence on the pre-burn NBR values,
which typically decrease as the fire season approaches and
when drought conditions are more severe (Wang et al., 2008).
This fact explains the lower pre-burn NBR values and the
higher proportion of negative values in the MOSEV product
compared with Landsat (Fig. A1, Table A2) which unavoid-
ably lead to some differences in dNBR and RANBR values
and could contribute to a higher proportion of negative val-
ues in these indices in the MOSEV database (Table 2). Also
the post-fire information in the MOSEV product is very close
to the burning event, thus potentially allowing a better assess-
ment of burn severity compared with the lower temporal res-
olution of the Landsat constellation. (ii) There are potential
errors in radiometric gains from Landsat imagery, which are
used for rescaling digital numbers to radiance values (Chan-
der et al., 2009). (iii) Saturation problems in bright surfaces
have been detected by Feng et al. (2013) in Landsat imagery
but not for MODIS. This effect may influence the quality of
the pre-fire NIR and the post-fire SWIR reflectance, which
have high values in severely burned areas (Key and Benson,
2006). (iv) Differences in imagery pre-processing may af-
fect the final reflectance values. In this sense, Landsat im-
agery is resampled using a cubic convolution method (uses
16 nearest-neighbour data points) in the geometric correction
stage (Landsat 8 Data Users Handbook Version 5.0, 2019),
whereas MODIS reflectance products are resampled using
bilinear interpolation (four nearest-neighbour data points)
(MODIS Science Data Support Team, 1997). The use of
cubic convolution method smooths reflectance values more
than bilinear interpolation, contributing to moderate extreme
values. This assumption is supported by the probability den-
sity functions (Fig. 4) which show a higher abundance of ex-
treme values for the spectral indices when calculated from
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Table 2. Mean values and proportion of positive and negative values of the burn severity spectral indices included in the MOSEV database
(dNBR, RANBR and post-burn NBR spectral indices) and the equivalent obtained from 13 Landsat-8 scenes randomly distributed across the

globe (n = 32163).

Layer MOSEV  Landsat MOSEV Landsat MOSEV Landsat

(mean) (mean) (% positive) (% positive) (% negative) (% negative)
dNBR 210.3 216.7 92.0 98.8 8.0 1.2
RANBR 616.0 651.5 92.0 98.8 8.0 1.2
postNBR —68.4 —54.7 27.4 29.4 72.6 70.6

MODIS instead of Landsat. Similarly, it was necessary to re-
sample the Landsat products to the MODIS grid to make it
comparable considering the big resolution shift, introducing
some obvious and unavoidable uncertainty.

Likewise, we detected variability in the correlations be-
tween MOSEV and Landsat among the three studied burn
severity indices. The higher correspondence of the pre-burn
and post-burn NBR spectral indices suggests that the mono-
temporal approach contributes to achieve higher correlations
(see post-NBR in Fig. 4 and pre-NBR in Fig. Al). In con-
trast, combining the information of two scenes (bi-temporal
approach) entails higher differences in satellite reflectance
and therefore in bi-temporal spectral indices (ANBR and
RdANBR). Focusing on dNBR and RANBR, we found higher
correlations between MOSEV and LANDSAT dNBR than
RANBR, which can be the direct consequence of the RAINBR
algorithm (see Eq. 5) as low pre-burn NBR absolute val-
ues may cause really high and even anomalous RANBR val-
ues, generating heteroscedasticity (see Fig. 4). However, in
general both burn severity products showed good levels of
agreement considering the unavoidable uncertainties associ-
ated with the very different nature of Landsat and MODIS.
Thus, the comparison of MOSEV and Landsat burn sever-
ity proves the consistency of the developed algorithm, the
dNBR relationships being similar (Veraverbeke et al., 2011)
or even better (Rahman et al., 2018) than those found in pre-
vious studies that compared retrieved burn severity informa-
tion from both products.

4.2 Indices interpretation and validity

NBR, dNBR and RdANBR spectral indices were developed to
provide optimum measurements of fire effects and biomass
consumption from multispectral imagery (Key and Benson,
2006; Miller and Thode, 2007). The three indices are based
on the change caused by burning on NIR and SWIR re-
flectance. NIR reflectance is highly sensitive to canopy den-
sity, being lower in burned than in vegetated areas. In con-
trast, SWIR reflectance is sensitive to moisture content and
ash and is significantly higher in burned areas than in veg-
etated zones. The NBR index (L6pez-Garcia and Caselles,
1991) uses this information to estimate burn severity from a
mono-temporal approach. In general, high positive NBR val-
ues indicate vegetated areas, whereas bare soil and burned
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areas present low and usually negative NBR values: the
more negative, the more severely burned. The validation
of burn severity indices has been widely addressed using
Landsat imagery and field measurements at a similar spa-
tial resolution (~ 30 m) because of the high difficulty of tak-
ing accurate field measurements at coarser spatial scales.
The most popular field measurements to assess the perfor-
mance of burn severity spectral indices are those indices
based on the composite burn index (CBI) (Key and Ben-
son, 2006), which combines information on fuel consump-
tion and related changes caused by fire, including plant mor-
tality, char height and soil colour. In general, the literature
shows high variability in the goodness-of-fit between NBR-
and CBI-type indices. For instance, Picotte and Robertson
(2011) found R? values ranging from 0.61 to 0.86 in differ-
ent ecosystems across North America the following months
after fire; De Santis and Chuvieco (2009) reported R? val-
ues between 0.32 and 0.66, largely varying depending on the
CBI-type index used; and Ferndndez-Garcia et al. (2018a)
obtained R? values between 0.69 and 0.88 for different for-
est ecosystems on the Iberian Peninsula. Although NBR has
a proven capacity to indicate burn severity, it is usually over-
come by differenced indices such as the INBR and RANBR,
which account for the pre-burn conditions (Key and Benson,
2006; Fernandez-Garcia et al., 2018a).

The dNBR and RdANBR indices provide quantitative mea-
surement of the environmental change between the pre- and
post-burn situation (i.e. biomass consumption and related
changes) (Key and Benson, 2006). The dNBR is a measure-
ment of severity understood as absolute change, whereas the
RANBR was designed to relativize the dNBR to the pre-fire
situation; thus, the total combustion of areas with different
amounts of vegetation would lead to similar RANBR val-
ues, but ANBR would be higher in the most vegetated area
(Miller and Thode, 2007). The performance of both dNBR
and RANBR indices obtained from Landsat has been vali-
dated in numerous studies across the globe. For instance, Zhu
et al. (2006) reported mean R? values of 0.67 (ANBR) and
0.60 (RANBR) when correlating CBI in different ecosystems
in North America; Parks et al. (2014) found mean R? values
of 0.76 (ANBR) and 0.77 (RANBR) in the western United
States; Ferndndez-Garcia et al. (2018a) used a CBI-type in-
dex to analyse the goodness-of-fit of both ANBR (R* = 0.81)
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for further information.

and RANBR (R? = 0.78) indices in forest ecosystems on the
Iberian Peninsula; Cai and Wang (2020) found a better per-
formance of dNBR (R? = 0.84) than RANBR (R? = 0.79)
when correlating a descriptive burn severity index in south-
east China; and Rozario et al. (2018) found that INBR (R? =
0.56) and RANBR (R? = 0.58) indices were able to indicate
the percentage of scorched vegetation in tropical dry forests
of Costa Rica.

The values of both dNBR and RANBR increase propor-
tionally to burn severity, and in general, values below zero in-
dicate unburned or recovered areas. The dNBR and RdANBR
continuous data can be used to differentiate burn severity cat-
egories. The number of classes and burn severity thresholds

Earth Syst. Sci. Data, 13, 1925-1938, 2021

is entirely up to the user’s objective, and empirical thresh-
olding based on the relationships with field data is useful
to provide ecological meaning to the spectral-index-based
categories (Key and Benson, 2006; Fernandez-Garcia et al.,
2018b). An option when field data are not available is to
define thresholds according to the literature (Rozario et al.,
2018). In this sense, Key and Benson (2006) provided six
dNBR thresholds to differentiate seven burn severity cat-
egories, whereas Miller and Thode (2007) provided three
thresholds (41, 176 and 366 for dANBR; 69, 315 and 640
for RANBR) to differentiate unchanged, low, moderate and
high severities in forest ecosystems of North America with
the post-fire image taken 1 year after fire. Preferred thresh-
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old values are higher when the post-fire image is closer to the
fire date (Key and Benson, 2006), as is the case of MOSEV
indices. Examples of thresholds in forest ecosystems with
the post-fire images taken immediately after fire are those
provided by Botella-Martinez and Fernandez-Manso (2017)
which differentiated unburned, low, moderate and high with
three threshold values (160, 260 and 481 for dNBR; 230, 475
and 835 for RANBR).

4.3 Advancements and limitations

The main asset of the MOSEV database is that it is the first
global burn severity database which complements the exist-
ing global BA data such as the FireCCI5S0 (Chuvieco et al.,
2018) or the MCD64A1 C6 products (Giglio et al., 2018).
One of the most important strengths of MOSEV is a conse-
quence of MODIS revisit time (1 to 2d), which is shorter
than Landsat-8 (16d) and Sentinel-2 (5d). This high tem-
poral resolution allowed us to obtain dense free-cloud NBR
time series that can be indispensable to calculate burn sever-
ity indices in regions of persistent cloud cover. In fact, Ju and
Roy (2008) show that the probability of finding two consec-
utive Landsat scenes within a month is 0.63 globally but near
0 in many regions such as Russia and Canada and many areas
of Central Africa among others. Likewise, another improve-
ment of MOSEYV burn severity indices over indices calcu-
lated from other satellites such as Landsat or Sentinel is the
higher temporal consistency of the data, as Terra and Aqua
satellites have used the same MODIS sensor since 2000.

The main limitation of the MOSEV database is related
to its spatial resolution of 500 m, which impedes account-
ing for fine-grain spatial heterogeneity. However, this spatial
resolution enables the study of burn severity at regional and
planetary scale with low computational costs. Another fact
to consider is the error in the classification of burned areas
in the MCD64A1 BA product on which MOSEYV is based.
In this sense, Giglio et al. (2018) reported a global commis-
sion error (CE) of 24 % and an omission error (OE) of 37 %,
whereas Boschetti et al. (2019) in a stage-3 validation indi-
cated a global CE of 40 % and an OE of 73 %. The lowest
errors were detected in regions where fires are larger and fire
scars persistent, such as in boreal forests.

4.4 Potential applications

Burn severity metrics from the MOSEV database can be
useful to analyse temporal trends in burn severity, to study
the global spatial patterns of burn severity, to identify areas
where the post-fire recovery of soil and vegetation can be
endangered and to enhance global models of carbon emis-
sions, among other applications. In addition, it will constitute
a cost-effective way of monitoring the global burn severity in
a close to real time way as MOSEV could be upgraded to the
same temporal frequency as the MCD64A1 product.
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In relation to the temporal trends of burn severity, it is
common in the fire ecology literature to assume increases in
burn severity owing to climate change (e.g. Garcia-Llamas et
al., 2019; Moreira et al., 2020). However, there is little evi-
dence of that at the planetary scale since there was no global
burn severity data. Previous studies in that line have analysed
temporal trends in burn severity at the regional scale, mainly
in the USA and Europe (Fried et al., 2004; Parks et al., 2016;
Picotte et al., 2016). With the MOSEYV database it is possible
to study global trends in burn severity and study relationships
between burn severity and global change.

Spatial patterns of fire occurrence and burn severity have
also captured the interest of several researchers (e.g. Duffy et
al., 2007; Kennedy and Johnson, 2014; Stevens et al., 2017),
but research at the global scale is limited to the study of BA
(Andela et al., 2017). Thus, the MOSEV database opens the
possibility of expanding the study of fire patterns to the plan-
etary scale including the variable burn severity.

Burn severity is a variable of high interest to predict
ecosystem responses (Keeley, 2009). Among the most rele-
vant ecosystem responses for forest managers is soil erosion
(De Luis et al., 2003) and vegetation recovery (Fernidndez-
Garcia et al., 2018b, 2019, 2020). Thus, MOSEYV burn sever-
ity indices may serve as a tool for land managers to roughly
identify target areas for post-fire forest management, as well
as to study predictors of burn severity which could be useful
for pre-fire management (Garcia-Llamas et al., 2019).

Moreover, previous work has shown the importance of in-
cluding burn severity metrics as predictors of CO; emissions
caused by fires (e.g. Veraverbeke et al., 2015; van der Werf
et al., 2017). The MOSEV database will be useful for the
enhancement of global CO, emission models.

5 Data availability

The MOSEV database is freely downloadable at
https://doi.org/10.5281/zenodo.4265209 (Alonso-Gonzélez
and Fernandez-Garcia, 2020).

6 Conclusions

We have introduced the newly developed MOSEV database,
which is the first burn severity database with global coverage,
available from November 2000 onwards. The algorithm used
to build the database is based on MODIS Terra and Aqua
surface reflectance imagery, as well as on the MCD64A1 BA
product. MOSEV data include seven layers at 500 m pixel
size with the most commonly used burn severity spectral
indices (ANBR, RANBR and post-burn NBR), the pre-burn
NBR, estimators of the date of the pre- and post-burn MODIS
surface reflectance scenes used for calculations and the date
of burning. The burn severity indices from MOSEV showed
consistent relationships with Landsat-derived burn severity
indices, which have been the most used for burn severity as-
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sessments. Thus, this database could be the basis to accom-
plish future studies of burn severity at the global scale in a
computationally cost-effective way, as well as research on
where burn severity could be a relevant factor such as in for-
est management and CO; emissions research.
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Table A1. Scenes and number of pixels (n) used to compare MOSEV and Landsat-8-derived (L8) burn severity indices (INBR, RANBR and
post-burn NBR).

Location n  MOSEV scene Pre-burn L8 scene Post-burn L8 scene
Brazil 450 MOSEV.A2019213.h11v09  LC082320652019081201T1-SC20200607111702  LC082320652019082801T1-SC20200607111630
Nepal 1082 MOSEV.A2019121.h25v06  LC081430402019050901T1-SC20200607111858 LC081430402019052501T1-SC20200607111838
USA 133 MOSEV.A2019274.h08v05 LC080370362019100901T1-SC20200607111820  LC080370362019102501T1-SC20200607111815
Russia 2188 MOSEV.A2019182.h24v02 LCO081170172019072201T1-SC20200607111752  LC081170172019080701T1-SC20200607111749
Senegal 9245 MOSEV.A2019032.h16v07  LC082040512019021301T1-SC20200607111948  LC082040512019021301T1-SC20200607111808
Kazakhstan 2091 MOSEV.A019244.h22v03 LC081510252019092201T1-SC20200607111850  LCO081510252019100801T1-SC20200607111857
Zambia 8863 MOSEV.A2019182.h20v10 LC081730702019071401T1-SC20200607111924  LC081730702019073001T1-SC20200607111814
Bolivia 83 MOSEV.A2019182.h11v10  LC080010712019070901T1-SC20200607111740  LC080010712019072501T1-SC20200607111831
Canada 17  MOSEV.A019182.h12v02 LC080610152019062701T1-SC20200607111838  LC080610152019071301T1-SC20200607111857
South Africa 371 MOSEV.A2019001.h19v12  LC081750842019010101T1-SC20200607111855 LC081750842019011701T1-SC20200607111857
Kazakhstan 5130 MOSEV.A2019182.h23v04  LC081520272019071101T1-SC20200607111844  LC081520272019072701T1-SC20200607111833
Mozambique 1103 MOSEV.A2019213.h21v10 LC081670742019080501T1-SC20200607111843  LC081670742019082101T1-SC20200607111845
Russia 1407 MOSEV.A2019091.h19v03  LCO081880222019040201T1-SC20200607111738 LC081880222019041801T1-SC20200607111829
Total 32163
R =0.89
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Figure A1. Gaussian kernel densities (a) and scatterplots (b) showing the relationships between the pre-burn NBR spectral index included
in the MOSEV database and the equivalent obtained from 13 Landsat-8 scenes randomly distributed across the globe (n =32163). R is
Pearson’s correlation coefficient, and Dens. signifies density.

Table A2. Mean values and proportion of positive and negative values of the pre-burn NBR spectral index included in the MOSEV database
and the equivalent obtained from 13 Landsat-8 scenes randomly distributed across the globe (n = 32163).

Layer MOSEV  Landsat MOSEV Landsat MOSEV Landsat
(mean) (mean) (% positive) (% positive) (% negative) (% negative)
preNBR 128.5 161.0 72.2 82.7 27.8 17.3
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