Articles | Volume 6, issue 1
https://doi.org/10.5194/essd-6-221-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/essd-6-221-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A global climatology of total columnar water vapour from SSM/I and MERIS
R. Lindstrot
Institut für Weltraumwissenschaften, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
M. Stengel
Deutscher Wetterdienst, Satellite-Based Climate Monitoring, Dept. Climate and Environment, Strahlenbergerstraße 13, 63067 Offenbach, Germany
M. Schröder
Deutscher Wetterdienst, Satellite-Based Climate Monitoring, Dept. Climate and Environment, Strahlenbergerstraße 13, 63067 Offenbach, Germany
J. Fischer
Institut für Weltraumwissenschaften, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
R. Preusker
Institut für Weltraumwissenschaften, Freie Universität Berlin, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
N. Schneider
Deutscher Wetterdienst, Satellite-Based Climate Monitoring, Dept. Climate and Environment, Strahlenbergerstraße 13, 63067 Offenbach, Germany
T. Steenbergen
Deutscher Wetterdienst, Satellite-Based Climate Monitoring, Dept. Climate and Environment, Strahlenbergerstraße 13, 63067 Offenbach, Germany
B. R. Bojkov
ESA/ESRIN, Via Galileo Galilei, Casella Postale 64, 00044 Frascati, Italy
Related authors
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, https://doi.org/10.5194/amt-8-823-2015, 2015
J. Slobodda, A. Hünerbein, R. Lindstrot, R. Preusker, K. Ebell, and J. Fischer
Atmos. Meas. Tech., 8, 567–578, https://doi.org/10.5194/amt-8-567-2015, https://doi.org/10.5194/amt-8-567-2015, 2015
Short summary
Short summary
In this paper the representativeness of ground-based cloud observatories and their comparability to satellite data and weather prediction models is examined. It is performed by analysing correlation of time series of SEVIRI pixels. The representativeness strongly depends on the used channels and ranges between 1km and over 20km.
C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer
Atmos. Meas. Tech., 7, 3873–3890, https://doi.org/10.5194/amt-7-3873-2014, https://doi.org/10.5194/amt-7-3873-2014, 2014
Short summary
Short summary
Presented here is the FAME-C (Freie Universität Berlin AATSR and MERIS cloud) algorithm, which uses satellite measurements in the visible, near-infrared and infrared part of the spectrum to retrieve cloud macrophysical properties, such as cloud amount and two independent cloud top heights, and cloud optical and microphysical properties, such as cloud top thermodynamic phase, cloud optical thickness and effective radius, which describes the particle size distribution.
J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg
Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, https://doi.org/10.5194/amt-6-2803-2013, 2013
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013, https://doi.org/10.5194/amt-6-359-2013, 2013
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-79, https://doi.org/10.5194/essd-2023-79, 2023
Preprint under review for ESSD
Short summary
Short summary
This manuscript describes CLAAS-3, the Cloud property dAtAset using SEVIRI, Edition 3, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local to continental scale cloud processes and evaluation of climate models, among others.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-133, https://doi.org/10.5194/essd-2023-133, 2023
Preprint under review for ESSD
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-312, https://doi.org/10.5194/amt-2022-312, 2023
Revised manuscript accepted for AMT
Short summary
Short summary
Clouds play an important role in the Arctic climate change. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such clouds measurements from space is not well known. The paper discusses the differences and commonalities between both space & ground-based measurements. We conclude that the satellite dataset, with few exceptions, can be used in the Arctic.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger
Earth Syst. Sci. Data, 12, 2121–2135, https://doi.org/10.5194/essd-12-2121-2020, https://doi.org/10.5194/essd-12-2121-2020, 2020
Short summary
Short summary
We have created a satellite cloud and radiation climatology from the ATSR-2 and AATSR on board ERS-2 and Envisat, respectively, which spans the period 1995–2012. The data set was created using a combination of optimal estimation and neural net techniques. The data set was created as part of the ESA Climate Change Initiative program. The data set has been compared with active CALIOP lidar measurements and compared with MAC-LWP AND CERES-EBAF measurements and is shown to have good performance.
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020, https://doi.org/10.5194/essd-12-647-2020, 2020
Short summary
Short summary
A Fundamental Climate Data Record (FCDR) from satellite-borne microwave radiometers has been created, covering the time period from October 1978 to December 2015. This article describes how the observations are processed, calibrated, corrected, inter-calibrated, and evaluated in order to provide a homogeneous data record of brightness temperatures across 10 different instruments aboard three different satellite platforms.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys., 20, 457–474, https://doi.org/10.5194/acp-20-457-2020, https://doi.org/10.5194/acp-20-457-2020, 2020
Short summary
Short summary
In this study we analyse aerosol and cloud changes over southern China from 2006 to 2015 and investigate their possible interaction mechanisms. Results show decreasing aerosol loads and increasing liquid cloud cover in late autumn. Further analysis based on various satellite data sets shows consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in the evaporation of cloud droplets, thus increasing cloud amount.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh
Earth Syst. Sci. Data, 12, 41–60, https://doi.org/10.5194/essd-12-41-2020, https://doi.org/10.5194/essd-12-41-2020, 2020
Short summary
Short summary
The Cloud_cci AVHRR-PMv3 dataset contains global, cloud and radiative flux properties covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by afternoon satellites of the NOAA POES missions. Validation against CALIOP, BSRN and CERES demonstrates the high quality of the data. The Cloud_cci AVHRR-PMv3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them.
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019, https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary
Short summary
Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms. The LWP data delivered by the satellite instruments SEVIRI and AVHRR together with the data provided by the ground-based radiometer RPG-HATPRO near St. Petersburg, Russia, have been compared. Our study revealed considerable differences between LWP data from SEVIRI and AVHRR in winter over ice-covered relatively small water bodies in this region.
Nikos Benas, Jan Fokke Meirink, Martin Stengel, and Piet Stammes
Atmos. Meas. Tech., 12, 2863–2879, https://doi.org/10.5194/amt-12-2863-2019, https://doi.org/10.5194/amt-12-2863-2019, 2019
Short summary
Short summary
Cloud glory and bow phenomena cause irregularities in satellite-based retrievals of cloud optical and microphysical properties. Here we combine two geostationary satellites over the same areas to analyze retrievals under those conditions. Results show a high sensitivity of retrievals to the assumed width of the cloud droplet size distribution and provide insights into possible improvements in satellite retrievals by appropriately adjusting this assumed parameter.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Salomon Eliasson, Karl Göran Karlsson, Erik van Meijgaard, Jan Fokke Meirink, Martin Stengel, and Ulrika Willén
Geosci. Model Dev., 12, 829–847, https://doi.org/10.5194/gmd-12-829-2019, https://doi.org/10.5194/gmd-12-829-2019, 2019
Short summary
Short summary
To enable fair comparisons of clouds between climate models and the
ESA Cloud_cci climate data record (CDR), we present a tool called the
Cloud_cci simulator. The tool takes into account the geometry and
cloud detection capabilities of the Cloud_cci CDR to allow fair
comparisons. We demonstrate the simulator on two climate models. We
find the impact of time sampling has a large effect on simulated cloud
water amount and that the simulator reduces the cloud cover by about
10 % globally.
Martin Stengel, Cornelia Schlundt, Stefan Stapelberg, Oliver Sus, Salomon Eliasson, Ulrika Willén, and Jan Fokke Meirink
Atmos. Chem. Phys., 18, 17601–17614, https://doi.org/10.5194/acp-18-17601-2018, https://doi.org/10.5194/acp-18-17601-2018, 2018
Short summary
Short summary
We present a new approach to evaluate ERA-Interim reanalysis clouds using satellite observations. A simplified satellite simulator was developed that uses reanalysis fields to emulate clouds as they would have been seen by those satellite sensors which were used to compose Cloud_cci observational cloud datasets. Our study facilitates an adequate evaluation of modelled ERA-Interim clouds using observational datasets, also taking into account systematic uncertainties in the observations.
Rocío Baró, Pedro Jiménez-Guerrero, Martin Stengel, Dominik Brunner, Gabriele Curci, Renate Forkel, Lucy Neal, Laura Palacios-Peña, Nicholas Savage, Martijn Schaap, Paolo Tuccella, Hugo Denier van der Gon, and Stefano Galmarini
Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, https://doi.org/10.5194/acp-18-15183-2018, 2018
Short summary
Short summary
Particles in the atmosphere, such as pollution, desert dust, and volcanic ash, have an impact on meteorology. They interact with incoming radiation resulting in a cooling effect of the atmosphere. Today, the use of meteorology and chemistry models help us to understand these processes, but there are a lot of uncertainties. The goal of this work is to evaluate how these interactions are represented in the models by comparing them to satellite data to see how close they are to reality.
Rita Glowienka-Hense, Andreas Hense, Thomas Spangehl, and Marc Schröder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-141, https://doi.org/10.5194/gmd-2018-141, 2018
Revised manuscript not accepted
Short summary
Short summary
Ensemble forecast verification treats the issues of forecast errors and uncertainty estimated from ensemble spread. We suggest measures based on relative entropy. For continuous variables correlation and the mean ratio of the ensemble spread to climate variance (analysis of variance (anova)) are related to these entropies. For categorical data corresponding scores are deduced that allow the comparison with continuous data.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-554, https://doi.org/10.5194/acp-2018-554, 2018
Preprint withdrawn
Short summary
Short summary
In this study we analyse aerosol and cloud changes over South China and investigate their possible interactions. The results show decreasing aerosol loads and increasing liquid clouds. Further analysis of these changes based on various satellite data sets show consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in evaporation of cloud droplets, thus increasing cloud amount and cover.
Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, and Suranjana Saha
Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, https://doi.org/10.5194/essd-10-1093-2018, 2018
Short summary
Short summary
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An overview of available water vapour data records based on satellite observations and reanalysis is given. If a minimum temporal coverage of 10 years is applied, 22 data records remain. These form the G-VAP data archive, which contains total column water vapour, specific humidity profiles and temperature profiles. The G-VAP data archive is designed to ease intercomparison and climate model evaluation.
Gregory R. McGarragh, Caroline A. Poulsen, Gareth E. Thomas, Adam C. Povey, Oliver Sus, Stefan Stapelberg, Cornelia Schlundt, Simon Proud, Matthew W. Christensen, Martin Stengel, Rainer Hollmann, and Roy G. Grainger
Atmos. Meas. Tech., 11, 3397–3431, https://doi.org/10.5194/amt-11-3397-2018, https://doi.org/10.5194/amt-11-3397-2018, 2018
Short summary
Short summary
Satellites are vital for measuring cloud properties necessary for climate prediction studies. We present a method to retrieve cloud properties from satellite based radiometric measurements. The methodology employed is known as optimal estimation and belongs in the class of statistical inversion methods based on Bayes' theorem. We show, through theoretical retrieval simulations, that the solution is stable and accurate to within 10–20% depending on cloud thickness.
Oliver Sus, Martin Stengel, Stefan Stapelberg, Gregory McGarragh, Caroline Poulsen, Adam C. Povey, Cornelia Schlundt, Gareth Thomas, Matthew Christensen, Simon Proud, Matthias Jerg, Roy Grainger, and Rainer Hollmann
Atmos. Meas. Tech., 11, 3373–3396, https://doi.org/10.5194/amt-11-3373-2018, https://doi.org/10.5194/amt-11-3373-2018, 2018
Short summary
Short summary
This paper presents a new cloud detection and classification framework, CC4CL. It applies a sophisticated optimal estimation method to derive cloud variables from satellite data of various polar-orbiting platforms and sensors (AVHRR, MODIS, AATSR). CC4CL provides explicit uncertainty quantification and long-term consistency for decadal timeseries at various spatial resolutions. We analysed 5 case studies to show that cloud height estimates are very realistic unless optically thin clouds overlap.
Michael Keller, Nico Kröner, Oliver Fuhrer, Daniel Lüthi, Juerg Schmidli, Martin Stengel, Reto Stöckli, and Christoph Schär
Atmos. Chem. Phys., 18, 5253–5264, https://doi.org/10.5194/acp-18-5253-2018, https://doi.org/10.5194/acp-18-5253-2018, 2018
Short summary
Short summary
Deep convection is often associated with thunderstorms and heavy rain events. In this study, the sensitivity of Alpine deep convective events to environmental parameters and climate warming is investigated. To this end, simulations are conducted at resolutions of 12 and 2 km. The results show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences are found in terms of the radiative feedbacks.
Lena Kritten, Rene Preusker, Carsten Brockmann, Tonio Fincke, Sampsa Koponen, and Jürgen Fischer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-5, https://doi.org/10.5194/essd-2018-5, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This article provides the description and validation of a database storing simulated spectra of water remote sensing reflectance. This reflectance is e.g. derived from satellite measurements in order to gain information on ocean and inland water constituents. The database can be used as a forward model for the retrieval of water optical properties. It was generated using a radiative transfer model including all important optical processes in atmosphere and ocean.
Julian Liman, Marc Schröder, Karsten Fennig, Axel Andersson, and Rainer Hollmann
Atmos. Meas. Tech., 11, 1793–1815, https://doi.org/10.5194/amt-11-1793-2018, https://doi.org/10.5194/amt-11-1793-2018, 2018
Short summary
Short summary
Latent heat fluxes (LHF) play a major role in the climate system. Over open ocean, they are increasingly observed by satellite instruments. To access their quality, this research focuses on thorough uncertainty analysis of all LHF-related variables of the HOAPS satellite climatology, in parts making use of novel analysis approaches. Results indicate climatological LHF uncertainies up to 50 W m−2, whereby underlying specific humidities tend to be more uncertain than contributing wind speeds.
Steffen Beirle, Johannes Lampel, Yang Wang, Kornelia Mies, Steffen Dörner, Margherita Grossi, Diego Loyola, Angelika Dehn, Anja Danielczok, Marc Schröder, and Thomas Wagner
Earth Syst. Sci. Data, 10, 449–468, https://doi.org/10.5194/essd-10-449-2018, https://doi.org/10.5194/essd-10-449-2018, 2018
Short summary
Short summary
We present time series of the global distribution of water vapor over more than 2 decades based on satellite measurements from different sensors. A particular focus is the consistency amongst the different sensors to avoid jumps from one instrument to another. This is reached by applying robust and simple retrieval settings consistently. The resulting
Climateproduct allows the study of the temporal evolution of water vapor over the last 20 years on a global scale.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Cornelia Schlundt, Caroline Poulsen, Gareth Thomas, Matthew Christensen, Cintia Carbajal Henken, Rene Preusker, Jürgen Fischer, Abhay Devasthale, Ulrika Willén, Karl-Göran Karlsson, Gregory R. McGarragh, Simon Proud, Adam C. Povey, Roy G. Grainger, Jan Fokke Meirink, Artem Feofilov, Ralf Bennartz, Jedrzej S. Bojanowski, and Rainer Hollmann
Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, https://doi.org/10.5194/essd-9-881-2017, 2017
Short summary
Short summary
We present new cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS. Retrieval systems were developed that include cloud detection and cloud typing followed by optimal estimation retrievals of cloud properties (e.g. cloud-top pressure, effective radius, optical thickness, water path). Special features of all datasets are spectral consistency and rigorous uncertainty propagation from pixel-level data to monthly properties.
Nikos Benas, Stephan Finkensieper, Martin Stengel, Gerd-Jan van Zadelhoff, Timo Hanschmann, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, https://doi.org/10.5194/essd-9-415-2017, 2017
Short summary
Short summary
This study focuses on an evaluation of CLAAS-2 (Cloud property dAtAset using SEVIRI, Edition 2), which was created based on observations from geostationary Meteosat satellites. Using a variety of reference datasets, very good overall agreement is found. This suggests the usefulness of CLAAS-2 in applications ranging from high spatial and temporal resolution cloud process studies to the evaluation of regional climate models.
Sarah Taylor, Philip Stier, Bethan White, Stephan Finkensieper, and Martin Stengel
Atmos. Chem. Phys., 17, 7035–7053, https://doi.org/10.5194/acp-17-7035-2017, https://doi.org/10.5194/acp-17-7035-2017, 2017
Short summary
Short summary
Variability of convective cloud spans a wide range of temporal and spatial scales and is important for global weather and climate. This study uses satellite data from SEVIRI to quantify the diurnal cycle of cloud top temperatures over a large area. Results indicate that in some regions the diurnal cycle apparent in the observations may be significantly impacted by diurnal variability in the accuracy of the retrieval. These results may interest both the observation and modelling communities.
Karl-Göran Karlsson, Kati Anttila, Jörg Trentmann, Martin Stengel, Jan Fokke Meirink, Abhay Devasthale, Timo Hanschmann, Steffen Kothe, Emmihenna Jääskeläinen, Joseph Sedlar, Nikos Benas, Gerd-Jan van Zadelhoff, Cornelia Schlundt, Diana Stein, Stefan Finkensieper, Nina Håkansson, and Rainer Hollmann
Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, https://doi.org/10.5194/acp-17-5809-2017, 2017
Short summary
Short summary
The paper presents the second version of a global climate data record based on satellite measurements from polar orbiting weather satellites. It describes the global evolution of cloudiness, surface albedo and surface radiation during the time period 1982–2015. The main improvements of algorithms are described together with some validation results. In addition, some early analysis is presented of some particularly interesting climate features (Arctic albedo and cloudiness + global cloudiness).
Ralf Bennartz, Heidrun Höschen, Bruno Picard, Marc Schröder, Martin Stengel, Oliver Sus, Bojan Bojkov, Stefano Casadio, Hannes Diedrich, Salomon Eliasson, Frank Fell, Jürgen Fischer, Rainer Hollmann, Rene Preusker, and Ulrika Willén
Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017, https://doi.org/10.5194/amt-10-1387-2017, 2017
Short summary
Short summary
The microwave radiometers (MWR) on board ERS-1, ERS-2, and Envisat provide a continuous time series of brightness temperature observations between 1991 and 2012. Here we report on a new total column water vapour (TCWV) and wet tropospheric correction (WTC) dataset that builds on this time series. The dataset is publicly available under doi:10.5676/DWD_EMIR/V001.
Hannes Diedrich, Falco Wittchen, René Preusker, and Jürgen Fischer
Atmos. Chem. Phys., 16, 8331–8339, https://doi.org/10.5194/acp-16-8331-2016, https://doi.org/10.5194/acp-16-8331-2016, 2016
Short summary
Short summary
As water vapour is the most important greenhouse gas, the remote sensing of total column water vapour (TCWV) is an important part of climate research. The remote sensing from polar orbiting, sun-synchronous satellites has some limitations. This study investigates the representativeness of observations from space regarding these limitations. The mean daily variability of the diurnal cycle of TCWV was quantified using a water vapour data set from ground-based observations.
Karl Bumke, Gert König-Langlo, Julian Kinzel, and Marc Schröder
Atmos. Meas. Tech., 9, 2409–2423, https://doi.org/10.5194/amt-9-2409-2016, https://doi.org/10.5194/amt-9-2409-2016, 2016
Short summary
Short summary
Satellite-derived HOAPS and ERA-Interim reanalysis data were validated against shipboard precipitation measurements. Results show that HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially at low latitudes. However, HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide precipitation rate is close to measurements. ERA-Interim strongly overestimates it in the intertropical convergence zone and southern subtropics.
N. Courcoux and M. Schröder
Earth Syst. Sci. Data, 7, 397–414, https://doi.org/10.5194/essd-7-397-2015, https://doi.org/10.5194/essd-7-397-2015, 2015
Short summary
Short summary
Despite its great importance for the climate, the behaviour and content of water vapour in the troposphere is insufficiently known. The ATOVS instruments onboard polar-orbiting satellites allow the retrieval of water vapour at different altitudes and on global scale. Here a consistent reprocessing of water vapour products derived from the ATOVS instrument from 1999 to 2011 is presented and compared to time series derived from other instruments. The data are freely available at www.cmsaf.eu/wui.
C. K. Carbajal Henken, L. Doppler, R. Lindstrot, R. Preusker, and J. Fischer
Atmos. Meas. Tech., 8, 3419–3431, https://doi.org/10.5194/amt-8-3419-2015, https://doi.org/10.5194/amt-8-3419-2015, 2015
Short summary
Short summary
This work presents a study on the sensitivity of two independent satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity of an oxygen-A absorption band and a thermal infrared based cloud height retrieval, the former being more sensitive to cloud vertical distribution, is exploited by relating the cloud height differences to cloud vertical extent. This could potentially provide additional information on cloud vertical distribution on a global scale.
M. Hummel, C. Hoose, M. Gallagher, D. A. Healy, J. A. Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, and H. Vogel
Atmos. Chem. Phys., 15, 6127–6146, https://doi.org/10.5194/acp-15-6127-2015, https://doi.org/10.5194/acp-15-6127-2015, 2015
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, https://doi.org/10.5194/amt-8-823-2015, 2015
J. Slobodda, A. Hünerbein, R. Lindstrot, R. Preusker, K. Ebell, and J. Fischer
Atmos. Meas. Tech., 8, 567–578, https://doi.org/10.5194/amt-8-567-2015, https://doi.org/10.5194/amt-8-567-2015, 2015
Short summary
Short summary
In this paper the representativeness of ground-based cloud observatories and their comparability to satellite data and weather prediction models is examined. It is performed by analysing correlation of time series of SEVIRI pixels. The representativeness strongly depends on the used channels and ranges between 1km and over 20km.
C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer
Atmos. Meas. Tech., 7, 3873–3890, https://doi.org/10.5194/amt-7-3873-2014, https://doi.org/10.5194/amt-7-3873-2014, 2014
Short summary
Short summary
Presented here is the FAME-C (Freie Universität Berlin AATSR and MERIS cloud) algorithm, which uses satellite measurements in the visible, near-infrared and infrared part of the spectrum to retrieve cloud macrophysical properties, such as cloud amount and two independent cloud top heights, and cloud optical and microphysical properties, such as cloud top thermodynamic phase, cloud optical thickness and effective radius, which describes the particle size distribution.
M. Schröder, R. Roca, L. Picon, A. Kniffka, and H. Brogniez
Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, https://doi.org/10.5194/acp-14-11129-2014, 2014
M. Stengel, A. Kniffka, J. F. Meirink, M. Lockhoff, J. Tan, and R. Hollmann
Atmos. Chem. Phys., 14, 4297–4311, https://doi.org/10.5194/acp-14-4297-2014, https://doi.org/10.5194/acp-14-4297-2014, 2014
A. Kniffka, M. Stengel, M. Lockhoff, R. Bennartz, and R. Hollmann
Atmos. Meas. Tech., 7, 887–905, https://doi.org/10.5194/amt-7-887-2014, https://doi.org/10.5194/amt-7-887-2014, 2014
K. Schamm, M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. Schröder, and P. Stender
Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, https://doi.org/10.5194/essd-6-49-2014, 2014
J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg
Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, https://doi.org/10.5194/amt-6-2803-2013, 2013
B. Dürr, M. Schröder, R. Stöckli, and R. Posselt
Atmos. Meas. Tech., 6, 1883–1901, https://doi.org/10.5194/amt-6-1883-2013, https://doi.org/10.5194/amt-6-1883-2013, 2013
K.-G. Karlsson, A. Riihelä, R. Müller, J. F. Meirink, J. Sedlar, M. Stengel, M. Lockhoff, J. Trentmann, F. Kaspar, R. Hollmann, and E. Wolters
Atmos. Chem. Phys., 13, 5351–5367, https://doi.org/10.5194/acp-13-5351-2013, https://doi.org/10.5194/acp-13-5351-2013, 2013
M. Schröder, M. Jonas, R. Lindau, J. Schulz, and K. Fennig
Atmos. Meas. Tech., 6, 765–775, https://doi.org/10.5194/amt-6-765-2013, https://doi.org/10.5194/amt-6-765-2013, 2013
C. A. Randles, S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, E. Highwood, C. Ryder, B. Harris, J. Huttunen, Y. Ma, R. T. Pinker, B. Mayer, D. Neubauer, R. Hitzenberger, L. Oreopoulos, D. Lee, G. Pitari, G. Di Genova, J. Quaas, F. G. Rose, S. Kato, S. T. Rumbold, I. Vardavas, N. Hatzianastassiou, C. Matsoukas, H. Yu, F. Zhang, H. Zhang, and P. Lu
Atmos. Chem. Phys., 13, 2347–2379, https://doi.org/10.5194/acp-13-2347-2013, https://doi.org/10.5194/acp-13-2347-2013, 2013
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013, https://doi.org/10.5194/amt-6-359-2013, 2013
Related subject area
Meteorology
Data rescue of historical wind observations in Sweden since the 1920s
LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond
EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland
Combined wind lidar and cloud radar for high-resolution wind profiling
An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020
TPHiPr: a long-term (1979–2020) high-accuracy precipitation dataset (1∕30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations
The AntAWS dataset: a compilation of Antarctic automatic weather station observations
HiTIC-Monthly: a monthly high spatial resolution (1 km) human thermal index collection over China during 2003–2020
A long-term 1 km monthly near-surface air temperature dataset over the Tibetan glaciers by fusion of station and satellite observations
East Asia Reanalysis System (EARS)
The EUPPBench postprocessing benchmark dataset v1.0
A global dataset of daily maximum and minimum near-surface air temperature at 1 km resolution over land (2003–2020)
GSDM-WBT: global station-based daily maximum wet-bulb temperature data for 1981–2020
A new daily gridded precipitation dataset based on gauge observations across mainland China
Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region
CHELSA-W5E5: Daily 1 km meteorological forcing data for climate impact studies
The hourly wind-bias-adjusted precipitation data set from the Environment and Climate Change Canada automated surface observation network (2001–2019)
The PANDA automatic weather station network between the coast and Dome A, East Antarctica
Enhanced automated meteorological observations at the Canadian Arctic Weather Science (CAWS) supersites
Database of the Italian disdrometer network
Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium
Combined high-resolution rainfall and wind data collected for 3 months on a wind farm 110 km southeast of Paris (France)
Sub-mesoscale observations of convective cold pools with a dense station network in Hamburg, Germany
Observational data from uncrewed systems over Southern Great Plains
EMO-5: a high-resolution multi-variable gridded meteorological dataset for Europe
GPRChinaTemp1km: a high-resolution monthly air temperature data set for China (1951–2020) based on machine learning
STAR NDSI collection: a cloud-free MODIS NDSI dataset (2001–2020) for China
A global dataset of spatiotemporally seamless daily mean land surface temperatures: generation, validation, and analysis
Historical and future weather data for dynamic building simulations in Belgium using the regional climate model MAR: typical and extreme meteorological year and heatwaves
Hourly historical and near-future weather and climate variables for energy system modelling
HCPD-CA: high-resolution climate projection dataset in central Asia
Development of East Asia Regional Reanalysis based on advanced hybrid gain data assimilation method and evaluation with E3DVAR, ERA-5, and ERA-Interim reanalysis
EUREC4A observations from the SAFIRE ATR42 aircraft
Observations of marine cold-air outbreaks: a comprehensive data set of airborne and dropsonde measurements from the Springtime Atmospheric Boundary Layer Experiment (STABLE)
Water vapor in cold and clean atmosphere: a 3-year data set in the boundary layer of Dome C, East Antarctic Plateau
Resilient dataset of rain clusters with life cycle evolution during April to June 2016–2020 over eastern Asia based on observations from the GPM DPR and Himawari-8 AHI
Dataset of daily near-surface air temperature in China from 1979 to 2018
C3ONTEXT: a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT
The Large eddy Observatory, Voitsumra Experiment 2019 (LOVE19) with high-resolution, spatially distributed observations of air temperature, wind speed, and wind direction from fiber-optic distributed sensing, towers, and ground-based remote sensing
Homogenized century-long surface incident solar radiation over Japan
EUREC4A's Maria S. Merian ship-based cloud and micro rain radar observations of clouds and precipitation
Deployment of the C-band radar Poldirad on Barbados during EUREC4A
Remote and autonomous measurements of precipitation for the northwestern Ross Ice Shelf, Antarctica
High-frequency observation during sand and dust storms at the Qingtu Lake Observatory
10 years of temperature and wind observation on a 45 m tower at Dome C, East Antarctic plateau
Global balanced wind derived from SABER temperature and pressure observations and its validations
EUREC4A's HALO
JOANNE: Joint dropsonde Observations of the Atmosphere in tropical North atlaNtic meso-scale Environments
John Erik Engström, Lennart Wern, Sverker Hellström, Erik Kjellström, Chunlüe Zhou, Deliang Chen, and Cesar Azorin-Molina
Earth Syst. Sci. Data, 15, 2259–2277, https://doi.org/10.5194/essd-15-2259-2023, https://doi.org/10.5194/essd-15-2259-2023, 2023
Short summary
Short summary
Newly digitized wind speed observations provide data from the time period from around 1920 to the present, enveloping one full century of wind measurements. The results of this work enable the investigation of the historical variability and trends in surface wind speed in Sweden for
the last century.
Ulrike Herzschuh, Thomas Böhmer, Chenzhi Li, Manuel Chevalier, Raphaël Hébert, Anne Dallmeyer, Xianyong Cao, Nancy H. Bigelow, Larisa Nazarova, Elena Y. Novenko, Jungjae Park, Odile Peyron, Natalia A. Rudaya, Frank Schlütz, Lyudmila S. Shumilovskikh, Pavel E. Tarasov, Yongbo Wang, Ruilin Wen, Qinghai Xu, and Zhuo Zheng
Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, https://doi.org/10.5194/essd-15-2235-2023, 2023
Short summary
Short summary
Climate reconstruction from proxy data can help evaluate climate models. We present pollen-based reconstructions of mean July temperature, mean annual temperature, and annual precipitation from 2594 pollen records from the Northern Hemisphere, using three reconstruction methods (WA-PLS, WA-PLS_tailored, and MAT). Since no global or hemispheric synthesis of quantitative precipitation changes are available for the Holocene so far, this dataset will be of great value to the geoscientific community.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
Santiago Beguería, Dhais Peña-Angulo, Víctor Trullenque-Blanco, and Carlos González-Hidalgo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-63, https://doi.org/10.5194/essd-2023-63, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
A gridded data set on monthly precipitation over mainland Spain between spanning 1916–2020. The dataset combines ground observations from the Spanish National Climate Data Bank and new data rescued from meteorological yearbooks published prior to 1951 which almost doubled the number of weather stations available during the first decades of the 20th century. Geostatistical techniques were used to interpolate a regular 10x10 km grid.
José Dias Neto, Louise Nuijens, Christine Unal, and Steven Knoop
Earth Syst. Sci. Data, 15, 769–789, https://doi.org/10.5194/essd-15-769-2023, https://doi.org/10.5194/essd-15-769-2023, 2023
Short summary
Short summary
This paper describes a dataset from a novel experimental setup to retrieve wind speed and direction profiles, combining cloud radars and wind lidar. This setup allows retrieving profiles from near the surface to the top of clouds. The field campaign occurred in Cabauw, the Netherlands, between September 13th and October 3rd 2021. This paper also provides examples of applications of this dataset (e.g. studying atmospheric turbulence, validating numerical atmospheric models).
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary
Short summary
We developed a 5 min global integrated water vapour (IWV) product from 12 552 ground-based GPS stations in 2020. It contains more than 1 billion IWV estimates. The dataset is an enhanced version of the existing operational GPS IWV dataset from the Nevada Geodetic Laboratory. The enhancement is reached by using accurate meteorological information from ERA5 for the GPS IWV retrieval with a significantly higher spatiotemporal resolution. The dataset is recommended for high-accuracy applications.
Yaozhi Jiang, Kun Yang, Youcun Qi, Xu Zhou, Jie He, Hui Lu, Xin Li, Yingying Chen, Xiaodong Li, Bingrong Zhou, Ali Mamtimin, Changkun Shao, Xiaogang Ma, Jiaxin Tian, and Jianhong Zhou
Earth Syst. Sci. Data, 15, 621–638, https://doi.org/10.5194/essd-15-621-2023, https://doi.org/10.5194/essd-15-621-2023, 2023
Short summary
Short summary
Our work produces a long-term (1979–2020) high-resolution (1/30°, daily) precipitation dataset for the Third Pole (TP) region by merging an advanced atmospheric simulation with high-density rain gauge (more than 9000) observations. Validation shows that the produced dataset performs better than the currently widely used precipitation datasets in the TP. This dataset can be used for hydrological, meteorological and ecological studies in the TP.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Hui Zhang, Ming Luo, Yongquan Zhao, Lijie Lin, Erjia Ge, Yuanjian Yang, Guicai Ning, Jing Cong, Zhaoliang Zeng, Ke Gui, Jing Li, Ting On Chan, Xiang Li, Sijia Wu, Peng Wang, and Xiaoyu Wang
Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023, https://doi.org/10.5194/essd-15-359-2023, 2023
Short summary
Short summary
We generate the first monthly high-resolution (1 km) human thermal index collection (HiTIC-Monthly) in China over 2003–2020, in which 12 human-perceived temperature indices are generated by LightGBM. The HiTIC-Monthly dataset has a high accuracy (R2 = 0.996, RMSE = 0.693 °C, MAE = 0.512 °C) and describes explicit spatial variations for fine-scale studies. It is freely available at https://zenodo.org/record/6895533 and https://data.tpdc.ac.cn/disallow/036e67b7-7a3a-4229-956f-40b8cd11871d.
Jun Qin, Weihao Pan, Min He, Ning Lu, Ling Yao, Hou Jiang, and Chenghu Zhou
Earth Syst. Sci. Data, 15, 331–344, https://doi.org/10.5194/essd-15-331-2023, https://doi.org/10.5194/essd-15-331-2023, 2023
Short summary
Short summary
To enrich a glacial surface air temperature (SAT) product of a long time series, an ensemble learning model is constructed to estimate monthly SATs from satellite land surface temperatures at a spatial resolution of 1 km, and long-term glacial SATs from 1961 to 2020 are reconstructed using a Bayesian linear regression. This product reveals the overall warming trend and the spatial heterogeneity of warming on TP glaciers and helps to monitor glacier warming, analyze glacier evolution, etc.
Jinfang Yin, Xudong Liang, Yanxin Xie, Feng Li, Kaixi Hu, Lijuan Cao, Feng Chen, Haibo Zou, Feng Zhu, Xin Sun, jianjun Xu, Geli Wang, Ying Zhao, and Juanjuan Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-429, https://doi.org/10.5194/essd-2022-429, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
A collection of regional reanalysis datasets has been produced. However, little attention has been paid to East Asia, and there is no long-term, physically consistent regional reanalysis data available. The East Asia Reanalysis System was developed using the WRF model and GSI data assimilation system. A 39-year (1980–2018) reanalysis dataset is available for the East Asia region, at a high temporal (of 3 h) and spatial resolution (of 12 km), for mesoscale weather and regional climate studies.
Jonathan Demaeyer, jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-465, https://doi.org/10.5194/essd-2022-465, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of Central Europe, and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2-meter temperature forecasts is performed.
Tao Zhang, Yuyu Zhou, Kaiguang Zhao, Zhengyuan Zhu, Gang Chen, Jia Hu, and Li Wang
Earth Syst. Sci. Data, 14, 5637–5649, https://doi.org/10.5194/essd-14-5637-2022, https://doi.org/10.5194/essd-14-5637-2022, 2022
Short summary
Short summary
We generated a global 1 km daily maximum and minimum near-surface air temperature (Tmax and Tmin) dataset (2003–2020) using a novel statistical model. The average root mean square errors ranged from 1.20 to 2.44 °C for Tmax and 1.69 to 2.39 °C for Tmin. The gridded global air temperature dataset is of great use in a variety of studies such as the urban heat island phenomenon, hydrological modeling, and epidemic forecasting.
Jianquan Dong, Stefan Brönnimann, Tao Hu, Yanxu Liu, and Jian Peng
Earth Syst. Sci. Data, 14, 5651–5664, https://doi.org/10.5194/essd-14-5651-2022, https://doi.org/10.5194/essd-14-5651-2022, 2022
Short summary
Short summary
We produced a new dataset of global station-based daily maximum wet-bulb temperature (GSDM-WBT) through the calculation of wet-bulb temperature, data quality control, infilling missing values, and homogenization. The GSDM-WBT covers the complete daily series of 1834 stations from 1981 to 2020. The GSDM-WBT dataset handles stations with many missing values and possible inhomogeneities, which could better support the studies on global and regional humid heat events.
Jingya Han, Chiyuan Miao, Jiaojiao Gou, Haiyan Zheng, Qi Zhang, and Xiaoying Guo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-373, https://doi.org/10.5194/essd-2022-373, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Constructing a high-quality, long-term daily precipitation dataset is essential to current hydrometeorology research. This study aims to construct a long-term daily precipitation dataset with different spatial resolutions based on 2,839 gauge observations. The constructed precipitation dataset shows reliable quality compared with the other available precipitation products, and is expected to facilitate the advancement of drought monitoring, flood forecasting, and hydrological modeling.
Benjamin Fersch, Andreas Wagner, Bettina Kamm, Endrit Shehaj, Andreas Schenk, Peng Yuan, Alain Geiger, Gregor Moeller, Bernhard Heck, Stefan Hinz, Hansjörg Kutterer, and Harald Kunstmann
Earth Syst. Sci. Data, 14, 5287–5307, https://doi.org/10.5194/essd-14-5287-2022, https://doi.org/10.5194/essd-14-5287-2022, 2022
Short summary
Short summary
In this study, a comprehensive multi-disciplinary dataset for tropospheric water vapor was developed. Geodetic, photogrammetric, and atmospheric modeling and data fusion techniques were used to obtain maps of water vapor in a high spatial and temporal resolution. It could be shown that regional weather simulations for different seasons benefit from assimilating these maps and that the combination of the different observation techniques led to positive synergies.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-367, https://doi.org/10.5194/essd-2022-367, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
We present the first 1km, daily, global climate dataset for climate impact studies. We show that the high resolution data has a decreased bias, and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Craig D. Smith, Eva Mekis, Megan Hartwell, and Amber Ross
Earth Syst. Sci. Data, 14, 5253–5265, https://doi.org/10.5194/essd-14-5253-2022, https://doi.org/10.5194/essd-14-5253-2022, 2022
Short summary
Short summary
It is well understood that precipitation gauges underestimate the measurement of solid precipitation (snow) as a result of systematic bias caused by wind. Relationships between the wind speed and gauge catch efficiency of solid precipitation have been previously established and are applied to the hourly precipitation measurements made between 2001 and 2019 in the automated Environment and Climate Change Canada observation network. The adjusted data are available for download and use.
Minghu Ding, Xiaowei Zou, Qizhen Sun, Diyi Yang, Wenqian Zhang, Lingen Bian, Changgui Lu, Ian Allison, Petra Heil, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5019–5035, https://doi.org/10.5194/essd-14-5019-2022, https://doi.org/10.5194/essd-14-5019-2022, 2022
Short summary
Short summary
The PANDA automatic weather station (AWS) network consists of 11 stations deployed along a transect from the coast (Zhongshan Station) to the summit of the East Antarctic Ice Sheet (Dome A). It covers the different climatic and topographic units of East Antarctica. All stations record hourly air temperature, relative humidity, air pressure, wind speed and direction at two or three heights. The PANDA AWS dataset commences from 1989 and is planned to be publicly available into the future.
Zen Mariani, Laura Huang, Robert Crawford, Jean-Pierre Blanchet, Shannon Hicks-Jalali, Eva Mekis, Ludovick Pelletier, Peter Rodriguez, and Kevin Strawbridge
Earth Syst. Sci. Data, 14, 4995–5017, https://doi.org/10.5194/essd-14-4995-2022, https://doi.org/10.5194/essd-14-4995-2022, 2022
Short summary
Short summary
Environment and Climate Change Canada (ECCC) commissioned two supersites in Iqaluit (64°N, 69°W) and Whitehorse (61°N, 135°W) to provide new and enhanced automated and continuous altitude-resolved meteorological observations as part of the Canadian Arctic Weather Science (CAWS) project. These observations are being used to test new technologies, provide recommendations to the optimal Arctic observing system, and evaluate and improve the performance of numerical weather forecast systems.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-317, https://doi.org/10.5194/essd-2022-317, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
The paper describes the database of 1-minute Drop Size Distribution (DSD) of atmospheric precipitation collected by the italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological, and hydrological uses to telecommunications, agriculture, and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Eva Beele, Maarten Reyniers, Raf Aerts, and Ben Somers
Earth Syst. Sci. Data, 14, 4681–4717, https://doi.org/10.5194/essd-14-4681-2022, https://doi.org/10.5194/essd-14-4681-2022, 2022
Short summary
Short summary
This paper presents crowdsourced data from the Leuven.cool network, a citizen science network of around 100 low-cost weather stations distributed across Leuven, Belgium. The temperature data have undergone a quality control (QC) and correction procedure. The procedure consists of three levels that remove implausible measurements while also correcting for between-station and station-specific temperature biases.
Auguste Gires, Jerry Jose, Ioulia Tchiguirinskaia, and Daniel Schertzer
Earth Syst. Sci. Data, 14, 3807–3819, https://doi.org/10.5194/essd-14-3807-2022, https://doi.org/10.5194/essd-14-3807-2022, 2022
Short summary
Short summary
The Hydrology Meteorology and Complexity laboratory of École des Ponts ParisTech (https://hmco.enpc.fr) has made a data set of high-resolution atmospheric measurements (rainfall, wind, temperature, pressure, and humidity) available. It comes from a campaign carried out on a meteorological mast located on a wind farm in the framework of the Rainfall Wind Turbine or Turbulence project (RW-Turb; supported by the French National Research Agency – ANR-19-CE05-0022).
Bastian Kirsch, Cathy Hohenegger, Daniel Klocke, Rainer Senke, Michael Offermann, and Felix Ament
Earth Syst. Sci. Data, 14, 3531–3548, https://doi.org/10.5194/essd-14-3531-2022, https://doi.org/10.5194/essd-14-3531-2022, 2022
Short summary
Short summary
Conventional observation networks are too coarse to resolve the horizontal structure of kilometer-scale atmospheric processes. We present the FESST@HH field experiment that took place in Hamburg (Germany) during summer 2020 and featured a dense network of 103 custom-built, low-cost weather stations. The data set is capable of providing new insights into the structure of convective cold pools and the nocturnal urban heat island and variations of local temperature fluctuations.
Fan Mei, Mikhail S. Pekour, Darielle Dexheimer, Gijs de Boer, RaeAnn Cook, Jason Tomlinson, Beat Schmid, Lexie A. Goldberger, Rob Newsom, and Jerome D. Fast
Earth Syst. Sci. Data, 14, 3423–3438, https://doi.org/10.5194/essd-14-3423-2022, https://doi.org/10.5194/essd-14-3423-2022, 2022
Short summary
Short summary
This work focuses on an expanding number of data sets observed using ARM TBS (133 flights) and UAS (seven flights) platforms by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility. These data streams provide new perspectives on spatial variability of atmospheric and surface parameters, helping to address critical science questions in Earth system science research, such as the aerosol–cloud interaction in the boundary layer.
Vera Thiemig, Goncalo N. Gomes, Jon O. Skøien, Markus Ziese, Armin Rauthe-Schöch, Elke Rustemeier, Kira Rehfeldt, Jakub P. Walawender, Christine Kolbe, Damien Pichon, Christoph Schweim, and Peter Salamon
Earth Syst. Sci. Data, 14, 3249–3272, https://doi.org/10.5194/essd-14-3249-2022, https://doi.org/10.5194/essd-14-3249-2022, 2022
Short summary
Short summary
EMO-5 is a free and open European high-resolution (5 km), sub-daily, multi-variable (precipitation, temperatures, wind speed, solar radiation, vapour pressure), multi-decadal meteorological dataset based on quality-controlled observations coming from almost 30 000 stations across Europe, and is produced in near real-time. EMO-5 (v1) covers the time period from 1990 to 2019. In this paper, we have provided insight into the source data, the applied methods, and the quality assessment of EMO-5.
Qian He, Ming Wang, Kai Liu, Kaiwen Li, and Ziyu Jiang
Earth Syst. Sci. Data, 14, 3273–3292, https://doi.org/10.5194/essd-14-3273-2022, https://doi.org/10.5194/essd-14-3273-2022, 2022
Short summary
Short summary
We used three machine learning models and determined that Gaussian process regression (GPR) is best suited to the interpolation of air temperature data for China. The GPR-derived results were compared with that of traditional interpolation techniques and existing data sets and it was found that the accuracy of the GPR-derived data was better. Finally, we generated a gridded monthly air temperature data set with 1 km resolution and high accuracy for China (1951–2020) using the GPR model.
Yinghong Jing, Xinghua Li, and Huanfeng Shen
Earth Syst. Sci. Data, 14, 3137–3156, https://doi.org/10.5194/essd-14-3137-2022, https://doi.org/10.5194/essd-14-3137-2022, 2022
Short summary
Short summary
Snow variation is a vital factor in global climate change. Satellite-based approaches are effective for large-scale environmental monitoring. Nevertheless, the high cloud fraction seriously impedes the remote-sensed investigation. Therefore, a recent 20-year cloud-free snow cover collection in China is generated for the first time. This collection can serve as a basic dataset for hydrological and climatic modeling to explore various critical environmental issues.
Falu Hong, Wenfeng Zhan, Frank-M. Göttsche, Zihan Liu, Pan Dong, Huyan Fu, Fan Huang, and Xiaodong Zhang
Earth Syst. Sci. Data, 14, 3091–3113, https://doi.org/10.5194/essd-14-3091-2022, https://doi.org/10.5194/essd-14-3091-2022, 2022
Short summary
Short summary
Daily mean land surface temperature (LST) acquired from satellite thermal sensors is crucial for various applications such as global and regional climate change analysis. This study proposed a framework to generate global spatiotemporally seamless daily mean LST products (2003–2019). Validations show that the products outperform the traditional method with satisfying accuracy. Our further analysis reveals that the LST-based global land surface warming rate is 0.029 K yr−1 from 2003 to 2019.
Sébastien Doutreloup, Xavier Fettweis, Ramin Rahif, Essam Elnagar, Mohsen S. Pourkiaei, Deepak Amaripadath, and Shady Attia
Earth Syst. Sci. Data, 14, 3039–3051, https://doi.org/10.5194/essd-14-3039-2022, https://doi.org/10.5194/essd-14-3039-2022, 2022
Short summary
Short summary
This data set provides historical (1980–2014) and future (2015–2100) weather data for 12 cities in Belgium. This data set is intended for architects or building or energy designers. In particular, it makes available to all users hourly open-access weather data according to certain standards to recreate a Typical and an Extreme Meteorological Year. In addition, it provides hourly data on heatwaves from 1980 to 2100. Weather data were produced from the outputs of the MAR model simulations.
Hannah C. Bloomfield, David J. Brayshaw, Matthew Deakin, and David Greenwood
Earth Syst. Sci. Data, 14, 2749–2766, https://doi.org/10.5194/essd-14-2749-2022, https://doi.org/10.5194/essd-14-2749-2022, 2022
Short summary
Short summary
There is a global increase in renewable generation to meet carbon targets and reduce the impacts of climate change. Renewable generation and electricity demand depend on the weather. This means there is a need for high-quality weather data for energy system modelling. We present a new European-level, 70-year dataset which has been specifically designed to support the energy sector. We provide hourly, sub-national climate outputs and include the impacts of near-term climate change.
Yuan Qiu, Jinming Feng, Zhongwei Yan, and Jun Wang
Earth Syst. Sci. Data, 14, 2195–2208, https://doi.org/10.5194/essd-14-2195-2022, https://doi.org/10.5194/essd-14-2195-2022, 2022
Short summary
Short summary
A high-resolution climate projection dataset in central Asia, named the HCPD-CA dataset, is derived from the dynamically downscaled results based on three bias-corrected global climate models and contains 4 geostatic variables and 10 meteorological elements that are widely used to drive ecological and hydrological models. This dataset can serve as a scientific basis for assessing the potential impacts of projected climate changes over central Asia on many sectors.
Eun-Gyeong Yang, Hyun Mee Kim, and Dae-Hui Kim
Earth Syst. Sci. Data, 14, 2109–2127, https://doi.org/10.5194/essd-14-2109-2022, https://doi.org/10.5194/essd-14-2109-2022, 2022
Short summary
Short summary
The East Asia Regional Reanalysis (EARR) system is developed based on the advanced hybrid gain data assimilation method (AdvHG) using the Weather Research and Forecasting (WRF) model and conventional observations. Based on EARR, high-resolution regional reanalysis and reforecast fields are produced with 12 km horizontal resolution over East Asia for the period 2010–2019. Compared to ERA5, EARR represents precipitation better for January and July 2017 over East Asia.
Sandrine Bony, Marie Lothon, Julien Delanoë, Pierre Coutris, Jean-Claude Etienne, Franziska Aemisegger, Anna Lea Albright, Thierry André, Hubert Bellec, Alexandre Baron, Jean-François Bourdinot, Pierre-Etienne Brilouet, Aurélien Bourdon, Jean-Christophe Canonici, Christophe Caudoux, Patrick Chazette, Michel Cluzeau, Céline Cornet, Jean-Philippe Desbios, Dominique Duchanoy, Cyrille Flamant, Benjamin Fildier, Christophe Gourbeyre, Laurent Guiraud, Tetyana Jiang, Claude Lainard, Christophe Le Gac, Christian Lendroit, Julien Lernould, Thierry Perrin, Frédéric Pouvesle, Pascal Richard, Nicolas Rochetin, Kevin Salaün, Alfons Schwarzenboeck, Guillaume Seurat, Bjorn Stevens, Julien Totems, Ludovic Touzé-Peiffer, Gilles Vergez, Jessica Vial, Leonie Villiger, and Raphaela Vogel
Earth Syst. Sci. Data, 14, 2021–2064, https://doi.org/10.5194/essd-14-2021-2022, https://doi.org/10.5194/essd-14-2021-2022, 2022
Short summary
Short summary
The French ATR42 research aircraft participated in the EUREC4A international field campaign that took place in 2020 over the tropical Atlantic, east of Barbados. We present the extensive instrumentation of the aircraft, the research flights and the different measurements. We show that the ATR measurements of humidity, wind, aerosols and cloudiness in the lower atmosphere are robust and consistent with each other. They will make it possible to advance understanding of cloud–climate interactions.
Janosch Michaelis, Amelie U. Schmitt, Christof Lüpkes, Jörg Hartmann, Gerit Birnbaum, and Timo Vihma
Earth Syst. Sci. Data, 14, 1621–1637, https://doi.org/10.5194/essd-14-1621-2022, https://doi.org/10.5194/essd-14-1621-2022, 2022
Short summary
Short summary
A major goal of the Springtime Atmospheric Boundary Layer Experiment (STABLE) aircraft campaign was to observe atmospheric conditions during marine cold-air outbreaks (MCAOs) originating from the sea-ice-covered Arctic ocean. Quality-controlled measurements of several meteorological variables collected during 15 vertical aircraft profiles and by 22 dropsondes are presented. The comprehensive data set may be used for validating model results to improve the understanding of future trends in MCAOs.
Christophe Genthon, Dana E. Veron, Etienne Vignon, Jean-Baptiste Madeleine, and Luc Piard
Earth Syst. Sci. Data, 14, 1571–1580, https://doi.org/10.5194/essd-14-1571-2022, https://doi.org/10.5194/essd-14-1571-2022, 2022
Short summary
Short summary
The surface atmosphere of the high Antarctic Plateau is very cold and clean. Such conditions favor water vapor supersaturation. A 3-year quasi-continuous series of atmospheric moisture in a ~40 m atmospheric layer at Dome C is reported that documents time variability, vertical profiles and occurrences of supersaturation. Supersaturation with respect to ice is frequently observed throughout the column, with relative humidities occasionally reaching values near liquid water saturation.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022, https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, Essam Heggy, and Zhihao Qin
Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022, https://doi.org/10.5194/essd-14-1413-2022, 2022
Short summary
Short summary
Air temperature is an important parameter reflecting climate change, and the current method of obtaining daily temperature is affected by many factors. In this study, we constructed a temperature model based on weather conditions and established a correction equation. The dataset of daily air temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. Accuracy verification shows that the dataset has reliable accuracy and high spatial resolution.
Hauke Schulz
Earth Syst. Sci. Data, 14, 1233–1256, https://doi.org/10.5194/essd-14-1233-2022, https://doi.org/10.5194/essd-14-1233-2022, 2022
Short summary
Short summary
Trade wind clouds are often organized on the mesoscale (O(100 km)), forming different cloud patterns. We present C3ONTEXT (a Common Consensus on Convective OrgaNizaTion during the EUREC4A eXperimenT), a dataset that contains information about the mesoscale cloud patterns identified during the EUREC4A (Elucidating the role of clouds–circulation coupling in climate) field campaign in January–February 2020 and thereby provide the mesoscale context for the campaign's measurements.
Karl Lapo, Anita Freundorfer, Antonia Fritz, Johann Schneider, Johannes Olesch, Wolfgang Babel, and Christoph K. Thomas
Earth Syst. Sci. Data, 14, 885–906, https://doi.org/10.5194/essd-14-885-2022, https://doi.org/10.5194/essd-14-885-2022, 2022
Short summary
Short summary
The layer of air near the surface is poorly understood during conditions with weak winds. Further, it is even difficult to observe. In this experiment we used distributed temperature sensing to observe air temperature and wind speed at thousands of points simultaneously every couple of seconds. This incredibly rich data set can be used to examine and understand what drives the mixing between the atmosphere and surface during these weak-wind periods.
Qian Ma, Kaicun Wang, Yanyi He, Liangyuan Su, Qizhong Wu, Han Liu, and Youren Zhang
Earth Syst. Sci. Data, 14, 463–477, https://doi.org/10.5194/essd-14-463-2022, https://doi.org/10.5194/essd-14-463-2022, 2022
Short summary
Short summary
Surface incident solar radiation plays a key role in atmospheric circulation, the water cycle, and ecological equilibrium on Earth. A homogenized century-long surface incident solar radiation dataset was obtained over Japan.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Martin Hagen, Florian Ewald, Silke Groß, Lothar Oswald, David A. Farrell, Marvin Forde, Manuel Gutleben, Johann Heumos, Jens Reimann, Eleni Tetoni, Gregor Köcher, Eleni Marinou, Christoph Kiemle, Qiang Li, Rebecca Chewitt-Lucas, Alton Daley, Delando Grant, and Kashawn Hall
Earth Syst. Sci. Data, 13, 5899–5914, https://doi.org/10.5194/essd-13-5899-2021, https://doi.org/10.5194/essd-13-5899-2021, 2021
Short summary
Short summary
The German polarimetric weather radar Poldirad was deployed for the international campaign EUREC4A on Barbados. The focus was monitoring clouds and precipitation in the trade wind region east of Barbados. Observations were with a temporal sequence of 5 min and a maximum range of 375 km. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution show the potential for further studies on the life cycle of precipitating shallow cumulus clouds.
Mark W. Seefeldt, Taydra M. Low, Scott D. Landolt, and Thomas H. Nylen
Earth Syst. Sci. Data, 13, 5803–5817, https://doi.org/10.5194/essd-13-5803-2021, https://doi.org/10.5194/essd-13-5803-2021, 2021
Short summary
Short summary
The Antarctic Precipitation System project deployed and maintained four sites across Antarctica from November 2017 to November 2019. The goals for the project included the collection of in situ observations of precipitation in Antarctica, an improvement in the understanding of precipitation in Antarctica, and the ability to validate precipitation data from atmospheric numerical models. The collected dataset represents some of the first year-round observations of precipitation in Antarctica.
Xuebo Li, Yongxiang Huang, Guohua Wang, and Xiaojing Zheng
Earth Syst. Sci. Data, 13, 5819–5830, https://doi.org/10.5194/essd-13-5819-2021, https://doi.org/10.5194/essd-13-5819-2021, 2021
Short summary
Short summary
High-frequency observatory data (50 Hz 3D wind velocity, 50 Hz temperature and 1 Hz PM10) for studying the features of the fluid and dust field during sand and dust storms were presented. It is anticipated that data collected in this work will be of utility not only specifically for the boundary layer community in building a model for sand and dust storms but also broadly for communities studying the exchange of the dust and fluid field and energy transfer for the particle-laden two-phase flow.
Christophe Genthon, Dana Veron, Etienne Vignon, Delphine Six, Jean-Louis Dufresne, Jean-Baptiste Madeleine, Emmanuelle Sultan, and François Forget
Earth Syst. Sci. Data, 13, 5731–5746, https://doi.org/10.5194/essd-13-5731-2021, https://doi.org/10.5194/essd-13-5731-2021, 2021
Short summary
Short summary
A 10-year dataset of observation in the atmospheric boundary layer at Dome C on the high Antarctic plateau is presented. This is obtained with sensors at six levels along a tower higher than 40 m. The temperature inversion can reach more than 25 °C along the tower in winter, while full mixing by convection can occur in summer. Different amplitudes of variability for wind and temperature at the different levels reflect different signatures of solar vs. synoptic forcing of the boundary layer.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Geet George, Bjorn Stevens, Sandrine Bony, Robert Pincus, Chris Fairall, Hauke Schulz, Tobias Kölling, Quinn T. Kalen, Marcus Klingebiel, Heike Konow, Ashley Lundry, Marc Prange, and Jule Radtke
Earth Syst. Sci. Data, 13, 5253–5272, https://doi.org/10.5194/essd-13-5253-2021, https://doi.org/10.5194/essd-13-5253-2021, 2021
Short summary
Short summary
Dropsondes measure atmospheric parameters such as temperature, pressure, humidity and horizontal winds. The EUREC4A field campaign deployed 1215 dropsondes during January–February 2020 in the north Atlantic trade-wind region in order to characterize the thermodynamic and the dynamic structure of the atmosphere, primarily at horizontal scales of ~ 200 km. We present JOANNE, the dataset that provides these dropsonde measurements and thereby a rich characterization of the trade-wind atmosphere.
Cited articles
Albert, P., Bennartz, R., Preusker, R., Leinweber, R., and Fischer, J.: Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer (MODIS), J. Atmos. Ocean. Tech., 22, 309–314, 2005.
Alishouse, J. C., Snyder, S. A., Jennifer, V., and Ferraro, R. R.: Determination of oceanic total precipitable water from the SSM/I, IEEE T. Geosci. Remote, 28, 811–816, 1990.
Allan, R. P., Ringer, M. A., and Slingo, A.: Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water-vapour channel radiances, Q. J. Roy. Meteor. Soc., 129, 3371–3389, https://doi.org/10.1256/qj.02.217, 2003.
Allan, R. P., Liu, C., Zahn, M., Lavers, D., Koukouvagias, E., and Bodas-Salcedo, A.: Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations, Surv. Geophys., 35, 533–552, https://doi.org/10.1007/s10712-012-9213-z, 2014.
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010.
Bennartz, R. and Fischer, J.: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared, J. Quant. Spectrosc. Ra., 66, 539–553, 2000.
Bennartz, R. and Fischer, J.: Retrieval of columnar water vapour over land from back-scattered solar radiation using the Medium Resolution Imaging Spectrometer (MERIS), Remote Sens. Environ., 78, 271–280, 2001.
Berg, W. K., Sapiano, M. R. P., Horsman, J., and Kummerow, C. D.: Improved Geolocation and Earth Incidence Angle Information for a Fundamental Climate Data Record of the SSM/I Sensors., IEEE T. Geosci. Remote, 51, 1504–1513, 2013.
Cess, R. D. and Potter, G. L.: Exploratory studies of cloud radiative forcing with a general circulation model, Tellus A, 39, 460–473, https://doi.org/10.1111/j.1600-0870.1987.tb00321.x, 1987.
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from Photographs of the Sun`s Glitter, J. Opt. Soc. Am., 44, 838–850, 1954.
Deblonde, G.: NWP SAF User`s Guide: Standalone 1D-var scheme for the SSM/I, SSMIS and AMSU, NWPSAF-MO-UD-001 Version 1.0, 2001.
Delwart, S., Preusker, R., Bourg, L., Santer, R., Ramon, D., and Fischer, J.: MERIS inflight spectral calibration, Int. J. Remote. Sens., 28, 479–496, 2007.
Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Quantification of uncertainties of water vapour column retrievals using future instruments, Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013, 2013.
Doppler, L., Preusker, R., Bennartz, R., and Fischer, J.: k-bin and k-IR: k-distribution methods without correlation approximation for non-fixed instrument response function and extension to the thermal infrared–Applications to satellite remote sensing, J. Quant. Spectrosc. Ra., 133, 382–395, https://doi.org/10.1016/j.jqsrt.2013.09.001, 2014.
Elsaesser, G. S. and Kummerow, C. D.: Toward a Fully Parametric Retrieval of the Nonraining Parameters over the Global Oceans, J. Applied Meteorol. Clim., 47, 1599, https://doi.org/10.1175/2007JAMC1712.1, 2008.
Fell, F. and Fischer, J.: Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method, J. Quant. Spectrosc. Ra., 3, 351–388, 2001.
Forster, P. D. F. and Collins, M.: Quantifying the water vapour feedback associated with post-Pinatubo cooling, Clim. Dynam., 23, 207–214, 2004.
Gao, B.-C. and Kaufman, Y. J.: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels, J. Geophys. Res., 108, 4389, https://doi.org/10.1029/2002JD003023, 2003.
Hollinger, J. P.: DMSP Special Sensor Microwave Imager Calibration/Validation, NRL Final Rep., Vol. I, Tech. rep., Nav. Res. Lab., Washington, DC, 1991.
Hollstein, A. and Fischer, J.: Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique, J. Quant. Spectrosc. Ra., 113, 536–548, https://doi.org/10.1016/j.jqsrt.2012.01.010, 2012.
Kiehl, J. and Trenberth, K. E.: Earth's Annual Global Mean Energy Budget, B. Am. Meteorol. Soc., 78, 197–208, 1997.
Koepke, P.: Effective reflectance of oceanic whitecaps, Appl. Optics, 23, 1816–1824, 1984.
Lindstrot, R., Preusker, R., and Fischer, J.: The empirical correction of stray light in the MERIS oxygen A band channel, J. Atmos. Ocean. Tech., 27, 1185–1194, 2010.
Lindstrot, R., Preusker, R., Diedrich, H., Doppler, L., Bennartz, R., and Fischer, J.: 1D-Var retrieval of daytime total columnar water vapour from MERIS measurements, Atmos. Meas. Tech., 5, 631–646, https://doi.org/10.5194/amt-5-631-2012, 2012.
MERIS Quality Working Group: MERIS 3rd data reprocessing, Software and ADF updates, Tech. Rep. A879.NT.008.ACRI-ST, ACRI, 2011.
Mieruch, S., Schröder, M., Noël, S., and Schulz, J.: Comparison of monthly means of global total column water vapor retrieved from independent satellite observations, J. Geophys. Res.-Atmos., 115, D23310, https://doi.org/10.1029/2010JD013946, 2010.
O'Gorman, P. A. and Muller, C. J.: How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?, Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207, 2010.
Phalippou, L.: Variational retrieval of humidity profile, wind speed and cloud liquid-water path with the SSM/I: Potential for numerical weather prediction, Q. J. Ror. Meteor. Soc., 122, 327–355, 1996.
Pougatchev, N., August, T., Calbet, X., Hultberg, T., Oduleye, O., Schlüssel, P., Stiller, B., Germain, K. St., and Bingham, G.: IASI temperature and water vapor retrievals – error assessment and validation, Atmos. Chem. Phys., 9, 6453–6458, https://doi.org/10.5194/acp-9-6453-2009, 2009.
Preusker, R. and Lindstrot, R.: Remote sensing of cloud-top pressure using moderately resolved measurements within the oxygen A band – a sensitivity study, J. Appl. Meteorol. Clim., 48, 1562–1574, 2009.
Preusker, R., Hünerbein, A., Fischer, J., Brockmann, C., and Krämer, U.: MERIS GLOBAL LAND SURFACE ALBEDO MAPS – ATBD CLOUD DETECTION, Algorithm theoretical basis document, Freie Universität Berlin, 2008.
Randel, D. L., Vonder Haar, T. H., Ringerud, M. A., Stephens, G. L., Greenwald, T. J., and Combs, C. L.: A new global water vapor dataset, B. Am. Meteorol. Soc., 77, 1233–1246, 1996.
Rast, M., Bezy, J. L., and Bruzzi, S.: The ESA Medium Resolution Imaging Spectrometer MERIS - A review of the instrument and its mission, Int. J. Remote Sens., 20, 1681–1702, 1999.
Rodgers, C.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, London, 2000.
Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.-P., Chance, K., Coudert, L., Dana, V., Devi, V., Fally, S., Flaud, J.-M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.-Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger, M., Simeckova, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A., and Auwera, J. V.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Sapiano, M. R. P., Berg, W. K., McKague, D. S., and Kummerow, C. D.: Toward an Intercalibrated Fundamental Climate Data Record of the SSM/I Sensors, IEEE T. Geosci. Remote, 51, 1492–1503, https://doi.org/10.1109/TGRS.2012.2206601, 2013.
Schlüssel, P. and Emery, W. J.: Atmospheric water vapour over oceans from SSM/I measurements, Int. J. Remote Sens., 11, 753–766, https://doi.org/10.1080/01431169008955055, 1990.
Schröder, M., Jonas, M., Lindau, R., Schulz, J., and Fennig, K.: The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite, Atmos. Meas. Tech., 6, 765–775, https://doi.org/10.5194/amt-6-765-2013, 2013.
Schulz, J., Schluessel, P., and Grassl, H.: Water vapour in the atmospheric boundary layer over oceans from SSM/I measurements, Int. J. Remote Sens., 14, 2773–2789, https://doi.org/10.1080/01431169308904308, 1993.
Semunegus, H.: Remote Sensing Systems Version-6 Special Sensor Microwave/Imager Fundamental Climate Data Record, Climate Algorithm Theoretical Basis Document CDRP-ATBD-0100, Climate Data Record (CDR) Program, 2011.
Soden, B. J., Wetherald, R. T., Stenchikov, G. L., and Robock, A.: Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor, Science, 296, 727–730, https://doi.org/10.1126/science.296.5568.727, 2002.
Sohn, B.-J. and Bennartz, R.: Contribution of water vapor to observational estimates of longwave cloud radiative forcing, J. Geophys. Res.-Atmos., 113, D20107, https://doi.org/10.1029/2008JD010053, 2008.
Susskind, J., Barnet, C. D., and Blaisdell, J. M.: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE T. Geosci. Remote, 41, 390–409, 2003.
Trenberth, K. E. and Stepaniak, D. P.: Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales, J. Climate, 16, 3691–3705, 2003a.
Trenberth, K. E. and Stepaniak, D. P.: Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation, J. Climate, 16, 3706–3722, 2003b.
Trenberth, K. E., Fasullo, J. T., and Smith, L.: Trends and variability in column-integrated atmospheric water vapor, Clim. Dynam., 24, 741–758, https://doi.org/10.1007/s00382-005-0017-4, 2005.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., and Zhai, P.: Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy budget, B. Am. Meteorol. Soc., 90, 311–323, https://doi.org/10.1175/2008BAMS2634.1, 2008.
Vonder Haar, T. H., Bytheway, J. L., and Forsythe, J. M.: Weather and climate analyses using improved global water vapor observations, Geophys. Res. Lett., 39, L15802, https://doi.org/10.1029/2012GL052094, 2012.
Wentz, F.: A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res., 102, 8703–8718, 1997.