16 Jun 2014
16 Jun 2014
A global climatology of total columnar water vapour from SSM/I and MERIS
R. Lindstrot et al.
Related authors
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, https://doi.org/10.5194/amt-8-823-2015, 2015
J. Slobodda, A. Hünerbein, R. Lindstrot, R. Preusker, K. Ebell, and J. Fischer
Atmos. Meas. Tech., 8, 567–578, https://doi.org/10.5194/amt-8-567-2015, https://doi.org/10.5194/amt-8-567-2015, 2015
Short summary
Short summary
In this paper the representativeness of ground-based cloud observatories and their comparability to satellite data and weather prediction models is examined. It is performed by analysing correlation of time series of SEVIRI pixels. The representativeness strongly depends on the used channels and ranges between 1km and over 20km.
C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer
Atmos. Meas. Tech., 7, 3873–3890, https://doi.org/10.5194/amt-7-3873-2014, https://doi.org/10.5194/amt-7-3873-2014, 2014
Short summary
Short summary
Presented here is the FAME-C (Freie Universität Berlin AATSR and MERIS cloud) algorithm, which uses satellite measurements in the visible, near-infrared and infrared part of the spectrum to retrieve cloud macrophysical properties, such as cloud amount and two independent cloud top heights, and cloud optical and microphysical properties, such as cloud top thermodynamic phase, cloud optical thickness and effective radius, which describes the particle size distribution.
J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg
Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, https://doi.org/10.5194/amt-6-2803-2013, 2013
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013, https://doi.org/10.5194/amt-6-359-2013, 2013
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-491, https://doi.org/10.5194/amt-2020-491, 2021
Preprint under review for AMT
Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger
Earth Syst. Sci. Data, 12, 2121–2135, https://doi.org/10.5194/essd-12-2121-2020, https://doi.org/10.5194/essd-12-2121-2020, 2020
Short summary
Short summary
We have created a satellite cloud and radiation climatology from the ATSR-2 and AATSR on board ERS-2 and Envisat, respectively, which spans the period 1995–2012. The data set was created using a combination of optimal estimation and neural net techniques. The data set was created as part of the ESA Climate Change Initiative program. The data set has been compared with active CALIOP lidar measurements and compared with MAC-LWP AND CERES-EBAF measurements and is shown to have good performance.
Karsten Fennig, Marc Schröder, Axel Andersson, and Rainer Hollmann
Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020, https://doi.org/10.5194/essd-12-647-2020, 2020
Short summary
Short summary
A Fundamental Climate Data Record (FCDR) from satellite-borne microwave radiometers has been created, covering the time period from October 1978 to December 2015. This article describes how the observations are processed, calibrated, corrected, inter-calibrated, and evaluated in order to provide a homogeneous data record of brightness temperatures across 10 different instruments aboard three different satellite platforms.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys., 20, 457–474, https://doi.org/10.5194/acp-20-457-2020, https://doi.org/10.5194/acp-20-457-2020, 2020
Short summary
Short summary
In this study we analyse aerosol and cloud changes over southern China from 2006 to 2015 and investigate their possible interaction mechanisms. Results show decreasing aerosol loads and increasing liquid cloud cover in late autumn. Further analysis based on various satellite data sets shows consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in the evaporation of cloud droplets, thus increasing cloud amount.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Stephan Finkensieper, Benjamin Würzler, Daniel Philipp, Rainer Hollmann, Caroline Poulsen, Matthew Christensen, and Gregory McGarragh
Earth Syst. Sci. Data, 12, 41–60, https://doi.org/10.5194/essd-12-41-2020, https://doi.org/10.5194/essd-12-41-2020, 2020
Short summary
Short summary
The Cloud_cci AVHRR-PMv3 dataset contains global, cloud and radiative flux properties covering the period of 1982 to 2016. The properties were retrieved from AVHRR measurements recorded by afternoon satellites of the NOAA POES missions. Validation against CALIOP, BSRN and CERES demonstrates the high quality of the data. The Cloud_cci AVHRR-PMv3 dataset allows for a large variety of climate applications that build on cloud properties, radiative flux properties and/or the link between them.
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019, https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary
Short summary
Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms. The LWP data delivered by the satellite instruments SEVIRI and AVHRR together with the data provided by the ground-based radiometer RPG-HATPRO near St. Petersburg, Russia, have been compared. Our study revealed considerable differences between LWP data from SEVIRI and AVHRR in winter over ice-covered relatively small water bodies in this region.
Nikos Benas, Jan Fokke Meirink, Martin Stengel, and Piet Stammes
Atmos. Meas. Tech., 12, 2863–2879, https://doi.org/10.5194/amt-12-2863-2019, https://doi.org/10.5194/amt-12-2863-2019, 2019
Short summary
Short summary
Cloud glory and bow phenomena cause irregularities in satellite-based retrievals of cloud optical and microphysical properties. Here we combine two geostationary satellites over the same areas to analyze retrievals under those conditions. Results show a high sensitivity of retrievals to the assumed width of the cloud droplet size distribution and provide insights into possible improvements in satellite retrievals by appropriately adjusting this assumed parameter.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Salomon Eliasson, Karl Göran Karlsson, Erik van Meijgaard, Jan Fokke Meirink, Martin Stengel, and Ulrika Willén
Geosci. Model Dev., 12, 829–847, https://doi.org/10.5194/gmd-12-829-2019, https://doi.org/10.5194/gmd-12-829-2019, 2019
Short summary
Short summary
To enable fair comparisons of clouds between climate models and the
ESA Cloud_cci climate data record (CDR), we present a tool called the
Cloud_cci simulator. The tool takes into account the geometry and
cloud detection capabilities of the Cloud_cci CDR to allow fair
comparisons. We demonstrate the simulator on two climate models. We
find the impact of time sampling has a large effect on simulated cloud
water amount and that the simulator reduces the cloud cover by about
10 % globally.
Martin Stengel, Cornelia Schlundt, Stefan Stapelberg, Oliver Sus, Salomon Eliasson, Ulrika Willén, and Jan Fokke Meirink
Atmos. Chem. Phys., 18, 17601–17614, https://doi.org/10.5194/acp-18-17601-2018, https://doi.org/10.5194/acp-18-17601-2018, 2018
Short summary
Short summary
We present a new approach to evaluate ERA-Interim reanalysis clouds using satellite observations. A simplified satellite simulator was developed that uses reanalysis fields to emulate clouds as they would have been seen by those satellite sensors which were used to compose Cloud_cci observational cloud datasets. Our study facilitates an adequate evaluation of modelled ERA-Interim clouds using observational datasets, also taking into account systematic uncertainties in the observations.
Rocío Baró, Pedro Jiménez-Guerrero, Martin Stengel, Dominik Brunner, Gabriele Curci, Renate Forkel, Lucy Neal, Laura Palacios-Peña, Nicholas Savage, Martijn Schaap, Paolo Tuccella, Hugo Denier van der Gon, and Stefano Galmarini
Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, https://doi.org/10.5194/acp-18-15183-2018, 2018
Short summary
Short summary
Particles in the atmosphere, such as pollution, desert dust, and volcanic ash, have an impact on meteorology. They interact with incoming radiation resulting in a cooling effect of the atmosphere. Today, the use of meteorology and chemistry models help us to understand these processes, but there are a lot of uncertainties. The goal of this work is to evaluate how these interactions are represented in the models by comparing them to satellite data to see how close they are to reality.
Rita Glowienka-Hense, Andreas Hense, Thomas Spangehl, and Marc Schröder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-141, https://doi.org/10.5194/gmd-2018-141, 2018
Revised manuscript not accepted
Short summary
Short summary
Ensemble forecast verification treats the issues of forecast errors and uncertainty estimated from ensemble spread. We suggest measures based on relative entropy. For continuous variables correlation and the mean ratio of the ensemble spread to climate variance (analysis of variance (anova)) are related to these entropies. For categorical data corresponding scores are deduced that allow the comparison with continuous data.
Nikos Benas, Jan Fokke Meirink, Karl-Göran Karlsson, Martin Stengel, and Piet Stammes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-554, https://doi.org/10.5194/acp-2018-554, 2018
Preprint withdrawn
Short summary
Short summary
In this study we analyse aerosol and cloud changes over South China and investigate their possible interactions. The results show decreasing aerosol loads and increasing liquid clouds. Further analysis of these changes based on various satellite data sets show consistency with the aerosol semi-direct effect, whereby less absorbing aerosols in the cloud layer would lead to an overall decrease in evaporation of cloud droplets, thus increasing cloud amount and cover.
Marc Schröder, Maarit Lockhoff, Frank Fell, John Forsythe, Tim Trent, Ralf Bennartz, Eva Borbas, Michael G. Bosilovich, Elisa Castelli, Hans Hersbach, Misako Kachi, Shinya Kobayashi, E. Robert Kursinski, Diego Loyola, Carl Mears, Rene Preusker, William B. Rossow, and Suranjana Saha
Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, https://doi.org/10.5194/essd-10-1093-2018, 2018
Short summary
Short summary
This publication presents results achieved within the GEWEX Water Vapor Assessment (G-VAP). An overview of available water vapour data records based on satellite observations and reanalysis is given. If a minimum temporal coverage of 10 years is applied, 22 data records remain. These form the G-VAP data archive, which contains total column water vapour, specific humidity profiles and temperature profiles. The G-VAP data archive is designed to ease intercomparison and climate model evaluation.
Oliver Sus, Martin Stengel, Stefan Stapelberg, Gregory McGarragh, Caroline Poulsen, Adam C. Povey, Cornelia Schlundt, Gareth Thomas, Matthew Christensen, Simon Proud, Matthias Jerg, Roy Grainger, and Rainer Hollmann
Atmos. Meas. Tech., 11, 3373–3396, https://doi.org/10.5194/amt-11-3373-2018, https://doi.org/10.5194/amt-11-3373-2018, 2018
Short summary
Short summary
This paper presents a new cloud detection and classification framework, CC4CL. It applies a sophisticated optimal estimation method to derive cloud variables from satellite data of various polar-orbiting platforms and sensors (AVHRR, MODIS, AATSR). CC4CL provides explicit uncertainty quantification and long-term consistency for decadal timeseries at various spatial resolutions. We analysed 5 case studies to show that cloud height estimates are very realistic unless optically thin clouds overlap.
Gregory R. McGarragh, Caroline A. Poulsen, Gareth E. Thomas, Adam C. Povey, Oliver Sus, Stefan Stapelberg, Cornelia Schlundt, Simon Proud, Matthew W. Christensen, Martin Stengel, Rainer Hollmann, and Roy G. Grainger
Atmos. Meas. Tech., 11, 3397–3431, https://doi.org/10.5194/amt-11-3397-2018, https://doi.org/10.5194/amt-11-3397-2018, 2018
Short summary
Short summary
Satellites are vital for measuring cloud properties necessary for climate prediction studies. We present a method to retrieve cloud properties from satellite based radiometric measurements. The methodology employed is known as optimal estimation and belongs in the class of statistical inversion methods based on Bayes' theorem. We show, through theoretical retrieval simulations, that the solution is stable and accurate to within 10–20% depending on cloud thickness.
Michael Keller, Nico Kröner, Oliver Fuhrer, Daniel Lüthi, Juerg Schmidli, Martin Stengel, Reto Stöckli, and Christoph Schär
Atmos. Chem. Phys., 18, 5253–5264, https://doi.org/10.5194/acp-18-5253-2018, https://doi.org/10.5194/acp-18-5253-2018, 2018
Short summary
Short summary
Deep convection is often associated with thunderstorms and heavy rain events. In this study, the sensitivity of Alpine deep convective events to environmental parameters and climate warming is investigated. To this end, simulations are conducted at resolutions of 12 and 2 km. The results show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences are found in terms of the radiative feedbacks.
Lena Kritten, Rene Preusker, Carsten Brockmann, Tonio Fincke, Sampsa Koponen, and Jürgen Fischer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-5, https://doi.org/10.5194/essd-2018-5, 2018
Revised manuscript has not been submitted
Short summary
Short summary
This article provides the description and validation of a database storing simulated spectra of water remote sensing reflectance. This reflectance is e.g. derived from satellite measurements in order to gain information on ocean and inland water constituents. The database can be used as a forward model for the retrieval of water optical properties. It was generated using a radiative transfer model including all important optical processes in atmosphere and ocean.
Julian Liman, Marc Schröder, Karsten Fennig, Axel Andersson, and Rainer Hollmann
Atmos. Meas. Tech., 11, 1793–1815, https://doi.org/10.5194/amt-11-1793-2018, https://doi.org/10.5194/amt-11-1793-2018, 2018
Short summary
Short summary
Latent heat fluxes (LHF) play a major role in the climate system. Over open ocean, they are increasingly observed by satellite instruments. To access their quality, this research focuses on thorough uncertainty analysis of all LHF-related variables of the HOAPS satellite climatology, in parts making use of novel analysis approaches. Results indicate climatological LHF uncertainies up to 50 W m−2, whereby underlying specific humidities tend to be more uncertain than contributing wind speeds.
Steffen Beirle, Johannes Lampel, Yang Wang, Kornelia Mies, Steffen Dörner, Margherita Grossi, Diego Loyola, Angelika Dehn, Anja Danielczok, Marc Schröder, and Thomas Wagner
Earth Syst. Sci. Data, 10, 449–468, https://doi.org/10.5194/essd-10-449-2018, https://doi.org/10.5194/essd-10-449-2018, 2018
Short summary
Short summary
We present time series of the global distribution of water vapor over more than 2 decades based on satellite measurements from different sensors. A particular focus is the consistency amongst the different sensors to avoid jumps from one instrument to another. This is reached by applying robust and simple retrieval settings consistently. The resulting
Climateproduct allows the study of the temporal evolution of water vapor over the last 20 years on a global scale.
Martin Stengel, Stefan Stapelberg, Oliver Sus, Cornelia Schlundt, Caroline Poulsen, Gareth Thomas, Matthew Christensen, Cintia Carbajal Henken, Rene Preusker, Jürgen Fischer, Abhay Devasthale, Ulrika Willén, Karl-Göran Karlsson, Gregory R. McGarragh, Simon Proud, Adam C. Povey, Roy G. Grainger, Jan Fokke Meirink, Artem Feofilov, Ralf Bennartz, Jedrzej S. Bojanowski, and Rainer Hollmann
Earth Syst. Sci. Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, https://doi.org/10.5194/essd-9-881-2017, 2017
Short summary
Short summary
We present new cloud property datasets based on measurements from the passive imaging satellite sensors AVHRR, MODIS, ATSR2, AATSR and MERIS. Retrieval systems were developed that include cloud detection and cloud typing followed by optimal estimation retrievals of cloud properties (e.g. cloud-top pressure, effective radius, optical thickness, water path). Special features of all datasets are spectral consistency and rigorous uncertainty propagation from pixel-level data to monthly properties.
Nikos Benas, Stephan Finkensieper, Martin Stengel, Gerd-Jan van Zadelhoff, Timo Hanschmann, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, https://doi.org/10.5194/essd-9-415-2017, 2017
Short summary
Short summary
This study focuses on an evaluation of CLAAS-2 (Cloud property dAtAset using SEVIRI, Edition 2), which was created based on observations from geostationary Meteosat satellites. Using a variety of reference datasets, very good overall agreement is found. This suggests the usefulness of CLAAS-2 in applications ranging from high spatial and temporal resolution cloud process studies to the evaluation of regional climate models.
Sarah Taylor, Philip Stier, Bethan White, Stephan Finkensieper, and Martin Stengel
Atmos. Chem. Phys., 17, 7035–7053, https://doi.org/10.5194/acp-17-7035-2017, https://doi.org/10.5194/acp-17-7035-2017, 2017
Short summary
Short summary
Variability of convective cloud spans a wide range of temporal and spatial scales and is important for global weather and climate. This study uses satellite data from SEVIRI to quantify the diurnal cycle of cloud top temperatures over a large area. Results indicate that in some regions the diurnal cycle apparent in the observations may be significantly impacted by diurnal variability in the accuracy of the retrieval. These results may interest both the observation and modelling communities.
Karl-Göran Karlsson, Kati Anttila, Jörg Trentmann, Martin Stengel, Jan Fokke Meirink, Abhay Devasthale, Timo Hanschmann, Steffen Kothe, Emmihenna Jääskeläinen, Joseph Sedlar, Nikos Benas, Gerd-Jan van Zadelhoff, Cornelia Schlundt, Diana Stein, Stefan Finkensieper, Nina Håkansson, and Rainer Hollmann
Atmos. Chem. Phys., 17, 5809–5828, https://doi.org/10.5194/acp-17-5809-2017, https://doi.org/10.5194/acp-17-5809-2017, 2017
Short summary
Short summary
The paper presents the second version of a global climate data record based on satellite measurements from polar orbiting weather satellites. It describes the global evolution of cloudiness, surface albedo and surface radiation during the time period 1982–2015. The main improvements of algorithms are described together with some validation results. In addition, some early analysis is presented of some particularly interesting climate features (Arctic albedo and cloudiness + global cloudiness).
Ralf Bennartz, Heidrun Höschen, Bruno Picard, Marc Schröder, Martin Stengel, Oliver Sus, Bojan Bojkov, Stefano Casadio, Hannes Diedrich, Salomon Eliasson, Frank Fell, Jürgen Fischer, Rainer Hollmann, Rene Preusker, and Ulrika Willén
Atmos. Meas. Tech., 10, 1387–1402, https://doi.org/10.5194/amt-10-1387-2017, https://doi.org/10.5194/amt-10-1387-2017, 2017
Short summary
Short summary
The microwave radiometers (MWR) on board ERS-1, ERS-2, and Envisat provide a continuous time series of brightness temperature observations between 1991 and 2012. Here we report on a new total column water vapour (TCWV) and wet tropospheric correction (WTC) dataset that builds on this time series. The dataset is publicly available under doi:10.5676/DWD_EMIR/V001.
Hannes Diedrich, Falco Wittchen, René Preusker, and Jürgen Fischer
Atmos. Chem. Phys., 16, 8331–8339, https://doi.org/10.5194/acp-16-8331-2016, https://doi.org/10.5194/acp-16-8331-2016, 2016
Short summary
Short summary
As water vapour is the most important greenhouse gas, the remote sensing of total column water vapour (TCWV) is an important part of climate research. The remote sensing from polar orbiting, sun-synchronous satellites has some limitations. This study investigates the representativeness of observations from space regarding these limitations. The mean daily variability of the diurnal cycle of TCWV was quantified using a water vapour data set from ground-based observations.
Karl Bumke, Gert König-Langlo, Julian Kinzel, and Marc Schröder
Atmos. Meas. Tech., 9, 2409–2423, https://doi.org/10.5194/amt-9-2409-2016, https://doi.org/10.5194/amt-9-2409-2016, 2016
Short summary
Short summary
Satellite-derived HOAPS and ERA-Interim reanalysis data were validated against shipboard precipitation measurements. Results show that HOAPS detects the frequency of precipitation well, while ERA-Interim strongly overestimates it, especially at low latitudes. However, HOAPS underestimates precipitation rates, while ERA-Interim's Atlantic-wide precipitation rate is close to measurements. ERA-Interim strongly overestimates it in the intertropical convergence zone and southern subtropics.
N. Courcoux and M. Schröder
Earth Syst. Sci. Data, 7, 397–414, https://doi.org/10.5194/essd-7-397-2015, https://doi.org/10.5194/essd-7-397-2015, 2015
Short summary
Short summary
Despite its great importance for the climate, the behaviour and content of water vapour in the troposphere is insufficiently known. The ATOVS instruments onboard polar-orbiting satellites allow the retrieval of water vapour at different altitudes and on global scale. Here a consistent reprocessing of water vapour products derived from the ATOVS instrument from 1999 to 2011 is presented and compared to time series derived from other instruments. The data are freely available at www.cmsaf.eu/wui.
C. K. Carbajal Henken, L. Doppler, R. Lindstrot, R. Preusker, and J. Fischer
Atmos. Meas. Tech., 8, 3419–3431, https://doi.org/10.5194/amt-8-3419-2015, https://doi.org/10.5194/amt-8-3419-2015, 2015
Short summary
Short summary
This work presents a study on the sensitivity of two independent satellite cloud height retrievals to cloud vertical distribution. The difference in sensitivity of an oxygen-A absorption band and a thermal infrared based cloud height retrieval, the former being more sensitive to cloud vertical distribution, is exploited by relating the cloud height differences to cloud vertical extent. This could potentially provide additional information on cloud vertical distribution on a global scale.
M. Hummel, C. Hoose, M. Gallagher, D. A. Healy, J. A. Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, and H. Vogel
Atmos. Chem. Phys., 15, 6127–6146, https://doi.org/10.5194/acp-15-6127-2015, https://doi.org/10.5194/acp-15-6127-2015, 2015
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 8, 823–836, https://doi.org/10.5194/amt-8-823-2015, https://doi.org/10.5194/amt-8-823-2015, 2015
J. Slobodda, A. Hünerbein, R. Lindstrot, R. Preusker, K. Ebell, and J. Fischer
Atmos. Meas. Tech., 8, 567–578, https://doi.org/10.5194/amt-8-567-2015, https://doi.org/10.5194/amt-8-567-2015, 2015
Short summary
Short summary
In this paper the representativeness of ground-based cloud observatories and their comparability to satellite data and weather prediction models is examined. It is performed by analysing correlation of time series of SEVIRI pixels. The representativeness strongly depends on the used channels and ranges between 1km and over 20km.
C. K. Carbajal Henken, R. Lindstrot, R. Preusker, and J. Fischer
Atmos. Meas. Tech., 7, 3873–3890, https://doi.org/10.5194/amt-7-3873-2014, https://doi.org/10.5194/amt-7-3873-2014, 2014
Short summary
Short summary
Presented here is the FAME-C (Freie Universität Berlin AATSR and MERIS cloud) algorithm, which uses satellite measurements in the visible, near-infrared and infrared part of the spectrum to retrieve cloud macrophysical properties, such as cloud amount and two independent cloud top heights, and cloud optical and microphysical properties, such as cloud top thermodynamic phase, cloud optical thickness and effective radius, which describes the particle size distribution.
M. Schröder, R. Roca, L. Picon, A. Kniffka, and H. Brogniez
Atmos. Chem. Phys., 14, 11129–11148, https://doi.org/10.5194/acp-14-11129-2014, https://doi.org/10.5194/acp-14-11129-2014, 2014
M. Stengel, A. Kniffka, J. F. Meirink, M. Lockhoff, J. Tan, and R. Hollmann
Atmos. Chem. Phys., 14, 4297–4311, https://doi.org/10.5194/acp-14-4297-2014, https://doi.org/10.5194/acp-14-4297-2014, 2014
A. Kniffka, M. Stengel, M. Lockhoff, R. Bennartz, and R. Hollmann
Atmos. Meas. Tech., 7, 887–905, https://doi.org/10.5194/amt-7-887-2014, https://doi.org/10.5194/amt-7-887-2014, 2014
K. Schamm, M. Ziese, A. Becker, P. Finger, A. Meyer-Christoffer, U. Schneider, M. Schröder, and P. Stender
Earth Syst. Sci. Data, 6, 49–60, https://doi.org/10.5194/essd-6-49-2014, https://doi.org/10.5194/essd-6-49-2014, 2014
J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg
Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, https://doi.org/10.5194/amt-6-2803-2013, 2013
B. Dürr, M. Schröder, R. Stöckli, and R. Posselt
Atmos. Meas. Tech., 6, 1883–1901, https://doi.org/10.5194/amt-6-1883-2013, https://doi.org/10.5194/amt-6-1883-2013, 2013
K.-G. Karlsson, A. Riihelä, R. Müller, J. F. Meirink, J. Sedlar, M. Stengel, M. Lockhoff, J. Trentmann, F. Kaspar, R. Hollmann, and E. Wolters
Atmos. Chem. Phys., 13, 5351–5367, https://doi.org/10.5194/acp-13-5351-2013, https://doi.org/10.5194/acp-13-5351-2013, 2013
M. Schröder, M. Jonas, R. Lindau, J. Schulz, and K. Fennig
Atmos. Meas. Tech., 6, 765–775, https://doi.org/10.5194/amt-6-765-2013, https://doi.org/10.5194/amt-6-765-2013, 2013
C. A. Randles, S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, E. Highwood, C. Ryder, B. Harris, J. Huttunen, Y. Ma, R. T. Pinker, B. Mayer, D. Neubauer, R. Hitzenberger, L. Oreopoulos, D. Lee, G. Pitari, G. Di Genova, J. Quaas, F. G. Rose, S. Kato, S. T. Rumbold, I. Vardavas, N. Hatzianastassiou, C. Matsoukas, H. Yu, F. Zhang, H. Zhang, and P. Lu
Atmos. Chem. Phys., 13, 2347–2379, https://doi.org/10.5194/acp-13-2347-2013, https://doi.org/10.5194/acp-13-2347-2013, 2013
H. Diedrich, R. Preusker, R. Lindstrot, and J. Fischer
Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013, https://doi.org/10.5194/amt-6-359-2013, 2013
Related subject area
Atmosphere – Meteorology
Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea)
Meteorological observations in tall masts for the mapping of atmospheric flow in Norwegian fjords
Data generated during the 2018 LAPSE-RATE campaign: an introduction and overview
High-resolution global atmospheric moisture connections from evaporation to precipitation
BAYWRF: a high-resolution present-day climatological atmospheric dataset for Bavaria
A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau
Development of the HadISDH.marine humidity climate monitoring dataset
A long-term (2005–2019) eddy covariance data set of CO2 and H2O fluxes from the Tibetan alpine steppe
Tropical cyclones vertical structure from GNSS radio occultation: an archive covering the period 2001–2018
A dataset of microclimate and radiation and energy fluxes from the Lake Taihu eddy flux network
A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003 to 2017
Realtime WRF LES Simulations to Support UAS Flight Planning and Operations During 2018 LAPSE-RATE
A Multi-Scale Daily SPEI Dataset for Drought Monitoring at Observation Stations over the Mainland China from 1961 to 2018
SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018
Atmospheric radiative profiles during EUREC4A
Hydrometeorological Data from a Remotely Operated Multi- Parameter Station network in Central Asia
Observations of the thermodynamic and kinematic state of the atmospheric boundary layer over the San Luis Valley, CO using remotely piloted aircraft systems during the LAPSE-RATE field campaign
Climate benchmarks and input parameters representing locations in 68 countries for a stochastic weather generator, CLIGEN
The fate of land evaporation – a global dataset
Measurements from mobile surface vehicles during LAPSE-RATE
University of Kentucky measurements of wind, temperature, pressure and humidity in support of LAPSE-RATE using multisite fixed-wing and rotorcraft unmanned aerial systems
Ship- and island-based atmospheric soundings from the 2020 EUREC4A field campaign
Radar and ground-level measurements of precipitation collected by EPFL during the ICE-POP 2018 campaign in South-Korea
Rescue and quality control of sub-daily meteorological data collected at Montevergine Observatory (Southern Apennines), 1884–1963
High-resolution (1 km) Polar WRF output for 79° N Glacier and the northeast of Greenland from 2014 to 2018
Early instrumental meteorological observations in Switzerland: 1708–1873
In situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight
Disdrometer measurements under Sense-City rainfall simulator
A 40-year High Arctic climatological dataset of the Polish Polar Station Hornsund (SW Spitsbergen, Svalbard)
A pan-African high-resolution drought index dataset
Meteorological drought lacunarity around the world and its classification
The Tall Tower Dataset: a unique initiative to boost wind energy research
A dataset of tracer concentrations and meteorological observations from the Bolzano Tracer EXperiment (BTEX) to characterize pollutant dispersion processes in an Alpine valley
Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds
Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia
1 km monthly temperature and precipitation dataset for China from 1901 to 2017
The Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD)
WHU-SGCC: a novel approach for blending daily satellite (CHIRP) and precipitation observations over the Jinsha River basin
A new merge of global surface temperature datasets since the start of the 20th century
seNorge_2018, daily precipitation, and temperature datasets over Norway
FROGS: a daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products
A unified data set of airborne cloud remote sensing using the HALO Microwave Package (HAMP)
The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation
Merits of novel high-resolution estimates and existing long-term estimates of humidity and incident radiation in a complex domain
Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive
Atmospheric data set from the Geodetic Observatory Wettzell during the CONT-17 VLBI campaign
SCOPE Climate: a 142-year daily high-resolution ensemble meteorological reconstruction dataset over France
A meteorological and blowing snow data set (2000–2016) from a high-elevation alpine site (Col du Lac Blanc, France, 2720 m a.s.l.)
57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude)
Daily measurements of near-surface humidity from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010
Marta Wenta, David Brus, Konstantinos Doulgeris, Ville Vakkari, and Agnieszka Herman
Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, https://doi.org/10.5194/essd-13-33-2021, 2021
Short summary
Short summary
Representations of the atmospheric boundary layer over sea ice are a challenge for numerical weather prediction models. To increase our understanding of the relevant processes, a field campaign was carried out over the sea ice in the Baltic Sea from 27 February to 2 March 2020. Observations included 27 unmanned aerial vehicle flights, four photogrammetry missions, and shore-based automatic weather station and lidar wind measurements. The dataset obtained is used to validate model results.
Birgitte Rugaard Furevik, Hálfdán Ágústsson, Anette Lauen Borg, Zakari Midjiyawa, Finn Nyhammer, and Magne Gausen
Earth Syst. Sci. Data, 12, 3621–3640, https://doi.org/10.5194/essd-12-3621-2020, https://doi.org/10.5194/essd-12-3621-2020, 2020
Short summary
Short summary
The Norwegian west coast is mountainous with narrow fjords. Local wind conditions at the shoreline of the fjords are often decoupled from the wind on the coast or in the mountains. Wind measurements are generally obtained at lighthouses or airports and thus do not represent the wind in the fjords. This paper describes wind, turbulence and other meteorological measurements from 11 masts in three fjords. The first masts were erected in 2014, and measurements will continue until at least 2024.
Gijs de Boer, Adam Houston, Jamey Jacob, Phillip B. Chilson, Suzanne W. Smith, Brian Argrow, Dale Lawrence, Jack Elston, David Brus, Osku Kemppinen, Petra Klein, Julie K. Lundquist, Sean Waugh, Sean C. C. Bailey, Amy Frazier, Michael P. Sama, Christopher Crick, David Schmale III, James Pinto, Elizabeth A. Pillar-Little, Victoria Natalie, and Anders Jensen
Earth Syst. Sci. Data, 12, 3357–3366, https://doi.org/10.5194/essd-12-3357-2020, https://doi.org/10.5194/essd-12-3357-2020, 2020
Short summary
Short summary
This paper provides an overview of the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) field campaign, held from 14 to 20 July 2018. This field campaign spanned a 1-week deployment to Colorado's San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. This overview paper provides insight into the campaign for a special issue focused on the datasets collected during LAPSE-RATE.
Obbe A. Tuinenburg, Jolanda J. E. Theeuwen, and Arie Staal
Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, https://doi.org/10.5194/essd-12-3177-2020, 2020
Short summary
Short summary
We provide a global database of moisture flows through the atmosphere using the most recent ERA5 atmospheric reanalysis. Using this database, it is possible to determine where evaporation will rain out again. However, the reverse is also possible, to determine where precipitation originated from as evaporation. This dataset can be used to determine atmospheric moisture recycling rates and therefore how much water is lost for a catchment through the atmosphere.
Emily Collier and Thomas Mölg
Earth Syst. Sci. Data, 12, 3097–3112, https://doi.org/10.5194/essd-12-3097-2020, https://doi.org/10.5194/essd-12-3097-2020, 2020
Short summary
Short summary
As part of a recent project that aims to investigate the impact of climate change on forest ecosystems in Bavaria, we developed a high-resolution atmospheric dataset, BAYWRF, for this region that covers the period of September 1987 to August 2018. The data reproduce observed variability in recent meteorological conditions well and provide a useful tool for linking large-scale climate change to local impacts on economic, societal, ecological, and agricultural processes.
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, https://doi.org/10.5194/essd-12-2937-2020, 2020
Short summary
Short summary
In comparison with other terrestrial regions of the world, meteorological observations are scarce over the Tibetan Plateau.
This has limited our understanding of the mechanisms underlying complex interactions between the different earth spheres with heterogeneous land surface conditions.
The release of this continuous and long-term dataset with high temporal resolution is expected to facilitate broad multidisciplinary communities in understanding key processes on the
Third Pole of the world.
Kate M. Willett, Robert J. H. Dunn, John J. Kennedy, and David I. Berry
Earth Syst. Sci. Data, 12, 2853–2880, https://doi.org/10.5194/essd-12-2853-2020, https://doi.org/10.5194/essd-12-2853-2020, 2020
Short summary
Short summary
We describe the development and validation of a new near-global gridded marine humidity monitoring product, HadISDH.marine, from air temperature and dew point temperature reported by ships. Erroneous data, biases, and inhomogeneities have been removed where possible through checks for outliers, supersaturated values, repeated values, and adjustments for known biases in non-aspirated instruments and ship heights. We have also estimated uncertainty in the data at the grid box and regional level.
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
Elżbieta Lasota, Andrea K. Steiner, Gottfried Kirchengast, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 2679–2693, https://doi.org/10.5194/essd-12-2679-2020, https://doi.org/10.5194/essd-12-2679-2020, 2020
Short summary
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
Zhen Zhang, Mi Zhang, Chang Cao, Wei Wang, Wei Xiao, Chengyu Xie, Haoran Chu, Jiao Wang, Jiayu Zhao, Lei Jia, Qiang Liu, Wenjing Huang, Wenqing Zhang, Yang Lu, Yanhong Xie, Yi Wang, Yini Pu, Yongbo Hu, Zheng Chen, Zhihao Qin, and Xuhui Lee
Earth Syst. Sci. Data, 12, 2635–2645, https://doi.org/10.5194/essd-12-2635-2020, https://doi.org/10.5194/essd-12-2635-2020, 2020
Short summary
Short summary
Inland lakes play an important role in regulating local climate. In this paper, we describe a dataset on microclimate and eddy covariance variables measured at a network of sites across Lake Taihu. The dataset, which appears to be the first of its kind for lake systems, can be used for validation of lake–air flux parameterizations, investigation of climatic controls on lake evaporation, evaluation of remote-sensing surface data products and global synthesis on lake–air interactions.
Bing Zhao, Kebiao Mao, Yulin Cai, Jiancheng Shi, Zhaoliang Li, Zhihao Qin, Xiangjin Meng, Xinyi Shen, and Zhonghua Guo
Earth Syst. Sci. Data, 12, 2555–2577, https://doi.org/10.5194/essd-12-2555-2020, https://doi.org/10.5194/essd-12-2555-2020, 2020
Short summary
Short summary
Land surface temperature is a key variable for climate and ecological environment research. We reconstructed a land surface temperature dataset (2003–2017) to take advantage of the ground observation site through building a reconstruction model which overcomes the effects of cloud. The reconstructed dataset exhibited significant improvements and can be used for the spatiotemporal evaluation of land surface temperature and for high-temperature and drought-monitoring studies.
James O. Pinto, Anders A. Jensen, Pedro A. Jiménez, Tracy Hertneky, Domingo Muñoz-Esparza, Arnaud Dumont, and Matthias Steiner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-242, https://doi.org/10.5194/essd-2020-242, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
The dataset produced here was generated as part of a realtime demonstration of a new capability to provide weather guidance to support small UAS operations. The nested model configuration enabled resolving turbulent eddies that developed in response to daytime heating and demonstrated the current state-of-the-science in coupling mesoscale forcing with a Large Eddy Simulation (LES) model. Output from these realtime simulations were used for planning IOPs during LAPSE-RATE.
Qianfeng Wang, Jingyu Zeng, Junyu Qi, Xuesong Zhang, Yue Zeng, Wei Shui, Zhanghua Xu, Rongrong Zhang, and Xiaoping Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-172, https://doi.org/10.5194/essd-2020-172, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
(1) The SPEI has been widely used to monitor and assess the drought characteristics.
(2) A multi-scale daily SPEI dataset was developed across mainland China from 1961 to 2018.
(3) The daily SPEI dataset can identify the start and end day of the drought event.
(4) The daily SPEI dataset developed is free, open, and persistent publicly available from this study.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Anna Lea Albright, Benjamin Fildier, Ludovic Touzé-Peiffer, Robert Pincus, Jessica Vial, and Caroline Muller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-269, https://doi.org/10.5194/essd-2020-269, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
A number of climate mysteries are rooted in uncertainties in how clouds respond to their environment in the trades, the belt of easterly winds circling the planet. Differences in radiative heating play a role in the couplings among clouds and their environment. Here we calculate radiative profiles from 2001 dropsondes and radiosondes from the EUREC4A field campaign south and east of Barbados in winter 2020. We describe the method and discuss radiative heating variability on multiple scales.
Cornelia Zech, Tilo Schöne, Julia Illigner, Nico Stolarczuk, Torsten Queißer, Matthias Köppl, Heiko Thoss, Alexander Zubovich, Azamat Sharshebaev, Kakhramon Zakhidov, Khurshid Toshpulatov, Yusufjon Tillayev, Sukhrob Olimov, Zabihullah Paiman, Katy Unger-Shayesteh, Abror Gafurov, and Bolot Moldobekov
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-176, https://doi.org/10.5194/essd-2020-176, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
The Regional Research Network „Water in Central Asia“ (CAWa) funded by the German Federal Foreign Office consists of 18 remotely operated multi-parameter stations (ROMPS) in Central Asia and are operated by German and Central Asian institutes and hydrometeorological services. They primary provide up to 10 years of raw meteorological and hydrological data especially in remote areas with extreme climate conditions in Central Asia for applications in climate and water monitoring.
Elizabeth A. Pillar-Little, Brian R. Greene, Francesca M. Lappin, Tyler M. Bell, Antonio R. Segales, Gustavo Britto Hupsel de Azevedo, William Doyle, Sai Teja Kanneganti, Daniel D. Tripp, and Phillip B. Chilson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-194, https://doi.org/10.5194/essd-2020-194, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
During July 2018, researchers from OU participated in the LAPSE-RATE field campaign in San Luis Valley, Colorado. The OU team completed 180 flights using three RPAS over the course of six days of operation to collect vertical profiles of the thermodynamic and kinematic state of the ABL. This article describes sampling strategies, data collection, platform intercomparibility, data quality, and the dataset’s possible applications to convective initiation, drainage flows, and ABL transitions.
Andrew T. Fullhart, Mark A. Nearing, Gerardo Armendariz, and Mark A. Weltz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-135, https://doi.org/10.5194/essd-2020-135, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
This dataset represents CLIGEN input parameters for locations in 68 countries. CLIGEN is a point-scale stochastic weather generator that produces long-term weather simulations with daily output. The input parameters are essentially monthly climate statistics that also serve as climate benchmarks. CLIGEN has various applications including being used to force soil erosion models. This dataset may reduce the effort needed in preparing climate inputs for such applications.
Andreas Link, Ruud van der Ent, Markus Berger, Stephanie Eisner, and Matthias Finkbeiner
Earth Syst. Sci. Data, 12, 1897–1912, https://doi.org/10.5194/essd-12-1897-2020, https://doi.org/10.5194/essd-12-1897-2020, 2020
Short summary
Short summary
This work provides a global dataset on the fate of land evaporation for a fine-meshed grid of source and receptor cells. The dataset was created through a global run of the numerical moisture-tracking model WAM-2layers. The dataset could be used for investigations into average annual, seasonal, and interannual sink and source regions of atmospheric moisture from land masses for most of the regions in the world and comes with example scripts for the readout and plotting of the data.
Gijs de Boer, Sean Waugh, Alexander Erwin, Steven Borenstein, Cory Dixon, Wafa'a Shanti, Adam Houston, and Brian Argrow
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-173, https://doi.org/10.5194/essd-2020-173, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper provides an overview of measurements collected in south-central Colorado (USA) during the 2018 LAPSE-RATE campaign. The measurements described in this article were collected by mobile surface vehicles, including cars, trucks and vans, and include measurements of thermodynamic quantities (e.g. temperature, humidity, pressure) and winds. These measurements can be used to study the evolution of the atmospheric boundary layer at a high elevation site over a variety of conditions.
Sean C. C. Bailey, Michael P. Sama, Caleb A. Canter, L. Felipe Pampolini, Zachary S. Lippay, Travis J. Schuyler, Jonathan D. Hamilton, Sean B. MacPhee, Isaac S. Rowe, Christopher D. Sanders, Virginia G. Smith, Christina N. Vezzi, Harrison M. Wight, Jesse B. Hoagg, Marcelo I. Guzman, and Suzanne Weaver Smith
Earth Syst. Sci. Data, 12, 1759–1773, https://doi.org/10.5194/essd-12-1759-2020, https://doi.org/10.5194/essd-12-1759-2020, 2020
Short summary
Short summary
This article describes the systems, processes and procedures used by researchers from the University of Kentucky (UK) for the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE) in the San Luis Valley in Colorado, USA. Using unmanned aerial systems (UASs) as the primary data-gathering tool, UK supported multipoint, multisystem measurements of drainage flow, boundary layer transition, convection initiation and aerosol concentration.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-174, https://doi.org/10.5194/essd-2020-174, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 812 radiosondes, launched regularly (usually 4-hourly) from Barbados and four ships, measured wind, temperature and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault–Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-134, https://doi.org/10.5194/essd-2020-134, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
This article describes a dataset of precipitation and cloud measurements collected from November 2017 to March 2018 in Pyeongchang, South-Korea. The dataset includes weather radar data and images of snowflakes. It allows to study the snowfall intensity, the wind conditions, and the shape, size and fall-speed of snowflakes. Classifications of the types of snowflakes show that aggregates of ice crystals were dominant. This dataset represents a unique opportunity to study snowfall in this region.
Vincenzo Capozzi, Yuri Cotroneo, Pasquale Castagno, Carmela De Vivo, and Giorgio Budillon
Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, https://doi.org/10.5194/essd-12-1467-2020, 2020
Short summary
Short summary
This work describes the entire rescue process, from digitization to quality control, of a new historical dataset that includes sub-daily meteorological observations collected in Montevergine (southern Italy) since the late 19th century. These data enhance and supplement sub-daily datasets currently available in Mediterranean regions. Moreover, they offer a unique opportunity to investigate meteorological and climatological features of the mountainous environment prior to the 1950s.
Jenny V. Turton, Thomas Mölg, and Emily Collier
Earth Syst. Sci. Data, 12, 1191–1202, https://doi.org/10.5194/essd-12-1191-2020, https://doi.org/10.5194/essd-12-1191-2020, 2020
Short summary
Short summary
The Northeast Greenland Ice Stream drains approximately 12 % of the entire Greenland ice sheet and could contribute over 1 m of sea level rise if it were to completely disappear. However, this region is a relatively new research area. Here we provide an atmospheric modelling dataset from 2014 to 2018, which includes many meteorological and radiation variables. The model data have been compared to weather stations and show good agreement. This dataset has many future applications.
Yuri Brugnara, Lucas Pfister, Leonie Villiger, Christian Rohr, Francesco Alessandro Isotta, and Stefan Brönnimann
Earth Syst. Sci. Data, 12, 1179–1190, https://doi.org/10.5194/essd-12-1179-2020, https://doi.org/10.5194/essd-12-1179-2020, 2020
Short summary
Short summary
Early instrumental meteorological observations in Switzerland made before 1863, the year a national station network was created, were until recently largely unexplored. After a systematic compilation of the documents available in Swiss archives, we digitised a large part of the data so that they can be used in climate research. In this paper we give an overview of the development of meteorological observations in Switzerland and describe our approach to convert them into modern units.
Astrid Lampert, Konrad Bärfuss, Andreas Platis, Simon Siedersleben, Bughsin Djath, Beatriz Cañadillas, Robert Hunger, Rudolf Hankers, Mark Bitter, Thomas Feuerle, Helmut Schulz, Thomas Rausch, Maik Angermann, Alexander Schwithal, Jens Bange, Johannes Schulz-Stellenfleth, Thomas Neumann, and Stefan Emeis
Earth Syst. Sci. Data, 12, 935–946, https://doi.org/10.5194/essd-12-935-2020, https://doi.org/10.5194/essd-12-935-2020, 2020
Short summary
Short summary
With the research aircraft Do-128 of TU Braunschweig, meteorological measurements were performed in the wakes of offshore wind parks during the project WIPAFF. During stable atmospheric conditions, the areas of reduced wind speed and enhanced turbulence behind wind parks had an extension larger than 45 km downwind. The data set consisting of 41 measurement flights is presented. Parameters include wind vector, temperature, humidity and significant wave height.
Auguste Gires, Philippe Bruley, Anne Ruas, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 835–845, https://doi.org/10.5194/essd-12-835-2020, https://doi.org/10.5194/essd-12-835-2020, 2020
Short summary
Short summary
The Hydrology, Meteorology and Complexity Laboratory of École des Ponts ParisTech (hmco.enpc.fr) and the Sense-City consortium (http://sense-city.ifsttar.fr/) make available a dataset of optical disdrometer measurements stemming from a campaign that took place in September 2017 under the rainfall simulator of the Sense-City climatic chamber, which is located near Paris.
Tomasz Wawrzyniak and Marzena Osuch
Earth Syst. Sci. Data, 12, 805–815, https://doi.org/10.5194/essd-12-805-2020, https://doi.org/10.5194/essd-12-805-2020, 2020
Short summary
Short summary
The article presents a climatological dataset from the Polish Polar Station Hornsund (SW Spitsbergen). With a positive trend of mean annual temperature of +1.14 °C per decade during 1979–2018,
the climate in Hornsund is warming over 6 times more than the global average. Due to a general lack of long-term in situ measurements and observations, the High Arctic remains one of the largest climate-data-deficient
regions on the Earth. Therefore, the described series is of unique value.
Jian Peng, Simon Dadson, Feyera Hirpa, Ellen Dyer, Thomas Lees, Diego G. Miralles, Sergio M. Vicente-Serrano, and Chris Funk
Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, https://doi.org/10.5194/essd-12-753-2020, 2020
Short summary
Short summary
Africa has been severely influenced by intense drought events, which has led to crop failure, food shortages, famine, epidemics and even mass migration. The current study developed a high spatial resolution drought dataset entirely from satellite-based products. The dataset has been comprehensively inter-compared with other drought indicators and may contribute to an improved characterization of drought risk and vulnerability and minimize drought's impact on water and food security in Africa.
Robert Monjo, Dominic Royé, and Javier Martin-Vide
Earth Syst. Sci. Data, 12, 741–752, https://doi.org/10.5194/essd-12-741-2020, https://doi.org/10.5194/essd-12-741-2020, 2020
Jaume Ramon, Llorenç Lledó, Núria Pérez-Zanón, Albert Soret, and Francisco J. Doblas-Reyes
Earth Syst. Sci. Data, 12, 429–439, https://doi.org/10.5194/essd-12-429-2020, https://doi.org/10.5194/essd-12-429-2020, 2020
Short summary
Short summary
A dataset containing quality-controlled wind observations from 222 tall towers has been created. Wind speed and wind direction records have been collected from existing tall towers in an effort to boost the utilization of these non-standard atmospheric datasets. Observations are compiled in a unique collection with a common format, access, documentation and quality control (QC). For the latter, a total of 18 QC checks have been considered to ensure the high quality of the wind data.
Marco Falocchi, Werner Tirler, Lorenzo Giovannini, Elena Tomasi, Gianluca Antonacci, and Dino Zardi
Earth Syst. Sci. Data, 12, 277–291, https://doi.org/10.5194/essd-12-277-2020, https://doi.org/10.5194/essd-12-277-2020, 2020
Short summary
Short summary
This paper describes a dataset of tracer concentrations and meteorological measurements collected during the Bolzano Tracer EXperiment (BTEX) to evaluate the pollutant dispersion from a waste incinerator close to Bolzano (Italian Alps).
BTEX represents one of the few experiments available in the literature performed over complex mountainous terrain to evaluate dispersion processes by means of controlled tracer releases. This dataset represents a useful benchmark for testing dispersion models.
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020, https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary
Short summary
Observations of relative humidity for ice clouds over the tropical oceans from a passive microwave sounder are downscaled by incorporating the high-resolution variability derived from simultaneous co-located cloud profiles from a lidar. By providing a method to generate pseudo-observations of relative humidity at high spatial resolution, this work will help revisit some of the current key barriers in atmospheric science.
Sixto Herrera, Rita Margarida Cardoso, Pedro Matos Soares, Fátima Espírito-Santo, Pedro Viterbo, and José Manuel Gutiérrez
Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, https://doi.org/10.5194/essd-11-1947-2019, 2019
Short summary
Short summary
A new observational dataset of daily precipitation and temperatures for the Iberian Peninsula and the Balearic Islands has been developed and made publicly available for the community. In this work the capabilities of the new dataset to reproduce the mean and extreme regimes of precipitation and temperature are assessed and compared with the E-OBS dataset (including the ensemble version for observational uncertainty assessment).
Shouzhang Peng, Yongxia Ding, Wenzhao Liu, and Zhi Li
Earth Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019, https://doi.org/10.5194/essd-11-1931-2019, 2019
Short summary
Short summary
This study describes a 1 km monthly minimum, maximum, and mean temperatures and precipitation dataset for the mainland area of China during 1901–2017. It is the first dataset developed with such a high spatiotemporal resolution over such a long time period for China. The dataset is well evaluated by the observations using 496 national weather stations, and the evaluation indicated the dataset is sufficiently reliable for use in investigation of climate change across China.
Grégory Cesana, Anthony D. Del Genio, and Hélène Chepfer
Earth Syst. Sci. Data, 11, 1745–1764, https://doi.org/10.5194/essd-11-1745-2019, https://doi.org/10.5194/essd-11-1745-2019, 2019
Short summary
Short summary
Low clouds (cloud top below 3 km) drive most of the uncertainty in future climate projections. Here we create a new dataset, the Cumulus And Stratocumulus CloudSat-CALIPSO Dataset (CASCCAD), which identifies the different types of low clouds – stratocumulus and cumulus – based on their morphology. CASCCAD provides a basis to evaluate climate models and potentially improve our understanding of the cloud response to climate warming, as well as reduce the uncertainty in future climate projection.
Gaoyun Shen, Nengcheng Chen, Wei Wang, and Zeqiang Chen
Earth Syst. Sci. Data, 11, 1711–1744, https://doi.org/10.5194/essd-11-1711-2019, https://doi.org/10.5194/essd-11-1711-2019, 2019
Short summary
Short summary
The development of effective methods for high-accuracy precipitation estimates over complex terrain and on a daily scale is important for mountainous hydrological applications. This study offers a novel approach called WHU-SGCC by blending rain gauge and satellite data to estimate daily precipitation at 0.05° resolution over the Jinsha River basin, the complicated mountainous terrain with sparse rain gauge data, considering the spatial correlation and historical precipitation characteristics.
Xiang Yun, Boyin Huang, Jiayi Cheng, Wenhui Xu, Shaobo Qiao, and Qingxiang Li
Earth Syst. Sci. Data, 11, 1629–1643, https://doi.org/10.5194/essd-11-1629-2019, https://doi.org/10.5194/essd-11-1629-2019, 2019
Short summary
Short summary
Global ST datasets have been blamed for underestimating the recent warming trend. This study merged ERSSTv5 with our newly developed C-LSAT, producing a global land and marine surface temperature dataset – CMST. Comparing with existing datasets, the statistical significance of the GMST warming trend during the past century remains unchanged, while the recent warming trend since 1998 increases slightly and is statistically significant.
Cristian Lussana, Ole Einar Tveito, Andreas Dobler, and Ketil Tunheim
Earth Syst. Sci. Data, 11, 1531–1551, https://doi.org/10.5194/essd-11-1531-2019, https://doi.org/10.5194/essd-11-1531-2019, 2019
Short summary
Short summary
seNorge_2018 is a collection of observational gridded datasets for daily total precipitation and daily mean, minimum, and maximum temperature for the Norwegian mainland covering the time period from 1957 to the present day. The fields have 1 km of grid spacing. The data are used for applications in climatology, hydrology, and meteorology. seNorge_2018 provides a "gridded truth", especially in data-dense regions. The uncertainty increases with decreasing data density.
Rémy Roca, Lisa V. Alexander, Gerald Potter, Margot Bador, Rômulo Jucá, Steefan Contractor, Michael G. Bosilovich, and Sophie Cloché
Earth Syst. Sci. Data, 11, 1017–1035, https://doi.org/10.5194/essd-11-1017-2019, https://doi.org/10.5194/essd-11-1017-2019, 2019
Short summary
Short summary
This paper presents a database that is a collection of datasets of gridded 1° × 1° daily precipitation estimates from a variety of sources. It includes observations from in situ networks, satellite-based estimations and outputs from atmospheric reanalysis. All the datasets have been formatted in the same way to ease their manipulation. This database aims at facilitating intercomparisons and validation exercises performed by the scientific community.
Heike Konow, Marek Jacob, Felix Ament, Susanne Crewell, Florian Ewald, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Mario Mech, and Bjorn Stevens
Earth Syst. Sci. Data, 11, 921–934, https://doi.org/10.5194/essd-11-921-2019, https://doi.org/10.5194/essd-11-921-2019, 2019
Short summary
Short summary
High-resolution measurements of maritime clouds are relatively scarce. Airborne cloud radar, microwave radiometer and dropsonde observations are used to expand these data. The measurements are unified into one data set to enable easy joint analyses of several or all instruments together to gain insight into cloud properties and atmospheric state. The data set contains measurements from four campaigns between December 2013 and October 2016 over the tropical and midlatitude Atlantic.
José Dias Neto, Stefan Kneifel, Davide Ori, Silke Trömel, Jan Handwerker, Birger Bohn, Normen Hermes, Kai Mühlbauer, Martin Lenefer, and Clemens Simmer
Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, https://doi.org/10.5194/essd-11-845-2019, 2019
Short summary
Short summary
This study describes a 2-month dataset of ground-based, vertically pointing triple-frequency cloud radar observations recorded during the winter season 2015/2016 in Jülich, Germany. Intensive quality control has been applied to the unique long-term dataset, which allows the multifrequency signatures of ice and snow particles to be statistically analyzed for the first time. The analysis includes, for example, aggregation and its dependence on cloud temperature, riming, and onset of melting.
Helene Birkelund Erlandsen, Lena Merete Tallaksen, and Jørn Kristiansen
Earth Syst. Sci. Data, 11, 797–821, https://doi.org/10.5194/essd-11-797-2019, https://doi.org/10.5194/essd-11-797-2019, 2019
Short summary
Short summary
Robust estimates of runoff, snow, and evaporation rely on high-quality estimates of incoming solar and thermal radiation at the surface and near surface humidity. Taking advantage of the physical soundness of a numerical weather reanalysis and the preciseness and spatial resolution of a national gridded temperature data set, new estimates of these variables are presented for Norway. Further, existing data sets and observations are compared, emphasizing daily correlation, trends, and gradients.
António P. Ferreira, Raquel Nieto, and Luis Gimeno
Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, https://doi.org/10.5194/essd-11-603-2019, 2019
Short summary
Short summary
The completeness of global radiosonde humidity observations taken over time is studied based on IGRA data. The study illustrates how the number of long-term time series depends on the required frequency, continuity, and vertical sampling of data, in addition to record length. Furthermore, a dataset with metadata related to IGRA is described. It is hoped that such metadata will help climate and environmental scientists to find the most complete in situ observations meeting their research needs.
Thomas Klügel, Armin Böer, Torben Schüler, and Walter Schwarz
Earth Syst. Sci. Data, 11, 341–353, https://doi.org/10.5194/essd-11-341-2019, https://doi.org/10.5194/essd-11-341-2019, 2019
Short summary
Short summary
Radiointerferometry on very long baselines (VLBI) is an important technique for detailed studies of Earth rotation variations. However, radio waves undergo significant delay in the atmosphere. In order to provide an optimal database for the analysis of the last continuous VLBI campaign between 28 Nov. and 12 Dec. 2017, all available meteorological observations and model data were compiled, forming an outstanding data set of the atmospheric conditions around the Geodetic Observatory Wettzell.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, Benjamin Graff, and Jean-Michel Soubeyroux
Earth Syst. Sci. Data, 11, 241–260, https://doi.org/10.5194/essd-11-241-2019, https://doi.org/10.5194/essd-11-241-2019, 2019
Short summary
Short summary
SCOPE Climate is a 25-member ensemble of 142-year daily high-resolution reconstructions of precipitation, temperature, and Penman–Monteith reference evapotranspiration over France. It is the first century-long gridded high-resolution homogeneous dataset available over France. It thus paves the way for studying local historical meteorological events and for assessing the local climate variability from the end of the 19th century.
Gilbert Guyomarc'h, Hervé Bellot, Vincent Vionnet, Florence Naaim-Bouvet, Yannick Déliot, Firmin Fontaine, Philippe Puglièse, Kouichi Nishimura, Yves Durand, and Mohamed Naaim
Earth Syst. Sci. Data, 11, 57–69, https://doi.org/10.5194/essd-11-57-2019, https://doi.org/10.5194/essd-11-57-2019, 2019
Short summary
Short summary
The paper introduces a meteorological and blowing snow data set from Col du Lac Blanc (2720 m a.s.l., French Alps) allowing physical parameterizations and numerical models of blowing snow to be developed and evaluated. In situ winter season data consist of wind, snow depth, air temperature measurements and a database of blowing snow occurrence (2000–2016) complemented by measurements of blowing snow fluxes (2010–2016). Atmospheric data from a meteorological reanalysis and a DEM are also provided.
Yves Lejeune, Marie Dumont, Jean-Michel Panel, Matthieu Lafaysse, Philippe Lapalus, Erwan Le Gac, Bernard Lesaffre, and Samuel Morin
Earth Syst. Sci. Data, 11, 71–88, https://doi.org/10.5194/essd-11-71-2019, https://doi.org/10.5194/essd-11-71-2019, 2019
Short summary
Short summary
This paper introduces and provides access to a daily (1960–2017) and an hourly (1993–2017) dataset of snow and meteorological data measured at the Col de Porte site, 1325 m a.s.l, Charteuse, France. The daily dataset can be used to quantify the effect of climate change at this site, with a reduction of the mean snow depth of 39 cm from 1960–1990 to 1990–2017. The daily and hourly datasets are useful and appropriate for driving and evaluating a snowpack model over such a long period.
Wendy H. Wood, Shawn J. Marshall, and Shannon E. Fargey
Earth Syst. Sci. Data, 11, 23–34, https://doi.org/10.5194/essd-11-23-2019, https://doi.org/10.5194/essd-11-23-2019, 2019
Short summary
Short summary
We recorded hourly temperature and relative humidity in a dense meteorological network in the foothills of the Canadian Rocky Mountains over the period 2005–2010. The observations reveal spatial patterns of specific and relative humidity, their relation with the terrain, seasonal cycles in the humidity patterns, and humidity characteristics of different weather systems. The results provide guidance to ecological and hydrological models that require downscaled weather data in mountain terrain.
Cited articles
Albert, P., Bennartz, R., Preusker, R., Leinweber, R., and Fischer, J.: Remote Sensing of Atmospheric Water Vapor Using the Moderate Resolution Imaging Spectroradiometer (MODIS), J. Atmos. Ocean. Tech., 22, 309–314, 2005.
Alishouse, J. C., Snyder, S. A., Jennifer, V., and Ferraro, R. R.: Determination of oceanic total precipitable water from the SSM/I, IEEE T. Geosci. Remote, 28, 811–816, 1990.
Allan, R. P., Ringer, M. A., and Slingo, A.: Evaluation of moisture in the Hadley Centre climate model using simulations of HIRS water-vapour channel radiances, Q. J. Roy. Meteor. Soc., 129, 3371–3389, https://doi.org/10.1256/qj.02.217, 2003.
Allan, R. P., Liu, C., Zahn, M., Lavers, D., Koukouvagias, E., and Bodas-Salcedo, A.: Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations, Surv. Geophys., 35, 533–552, https://doi.org/10.1007/s10712-012-9213-z, 2014.
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010.
Bennartz, R. and Fischer, J.: A modified k-distribution approach applied to narrow band water vapour and oxygen absorption estimates in the near infrared, J. Quant. Spectrosc. Ra., 66, 539–553, 2000.
Bennartz, R. and Fischer, J.: Retrieval of columnar water vapour over land from back-scattered solar radiation using the Medium Resolution Imaging Spectrometer (MERIS), Remote Sens. Environ., 78, 271–280, 2001.
Berg, W. K., Sapiano, M. R. P., Horsman, J., and Kummerow, C. D.: Improved Geolocation and Earth Incidence Angle Information for a Fundamental Climate Data Record of the SSM/I Sensors., IEEE T. Geosci. Remote, 51, 1504–1513, 2013.
Cess, R. D. and Potter, G. L.: Exploratory studies of cloud radiative forcing with a general circulation model, Tellus A, 39, 460–473, https://doi.org/10.1111/j.1600-0870.1987.tb00321.x, 1987.
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from Photographs of the Sun`s Glitter, J. Opt. Soc. Am., 44, 838–850, 1954.
Deblonde, G.: NWP SAF User`s Guide: Standalone 1D-var scheme for the SSM/I, SSMIS and AMSU, NWPSAF-MO-UD-001 Version 1.0, 2001.
Delwart, S., Preusker, R., Bourg, L., Santer, R., Ramon, D., and Fischer, J.: MERIS inflight spectral calibration, Int. J. Remote. Sens., 28, 479–496, 2007.
Diedrich, H., Preusker, R., Lindstrot, R., and Fischer, J.: Quantification of uncertainties of water vapour column retrievals using future instruments, Atmos. Meas. Tech., 6, 359–370, https://doi.org/10.5194/amt-6-359-2013, 2013.
Doppler, L., Preusker, R., Bennartz, R., and Fischer, J.: k-bin and k-IR: k-distribution methods without correlation approximation for non-fixed instrument response function and extension to the thermal infrared–Applications to satellite remote sensing, J. Quant. Spectrosc. Ra., 133, 382–395, https://doi.org/10.1016/j.jqsrt.2013.09.001, 2014.
Elsaesser, G. S. and Kummerow, C. D.: Toward a Fully Parametric Retrieval of the Nonraining Parameters over the Global Oceans, J. Applied Meteorol. Clim., 47, 1599, https://doi.org/10.1175/2007JAMC1712.1, 2008.
Fell, F. and Fischer, J.: Numerical simulation of the light field in the atmosphere-ocean system using the matrix-operator method, J. Quant. Spectrosc. Ra., 3, 351–388, 2001.
Forster, P. D. F. and Collins, M.: Quantifying the water vapour feedback associated with post-Pinatubo cooling, Clim. Dynam., 23, 207–214, 2004.
Gao, B.-C. and Kaufman, Y. J.: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels, J. Geophys. Res., 108, 4389, https://doi.org/10.1029/2002JD003023, 2003.
Hollinger, J. P.: DMSP Special Sensor Microwave Imager Calibration/Validation, NRL Final Rep., Vol. I, Tech. rep., Nav. Res. Lab., Washington, DC, 1991.
Hollstein, A. and Fischer, J.: Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique, J. Quant. Spectrosc. Ra., 113, 536–548, https://doi.org/10.1016/j.jqsrt.2012.01.010, 2012.
Kiehl, J. and Trenberth, K. E.: Earth's Annual Global Mean Energy Budget, B. Am. Meteorol. Soc., 78, 197–208, 1997.
Koepke, P.: Effective reflectance of oceanic whitecaps, Appl. Optics, 23, 1816–1824, 1984.
Lindstrot, R., Preusker, R., and Fischer, J.: The empirical correction of stray light in the MERIS oxygen A band channel, J. Atmos. Ocean. Tech., 27, 1185–1194, 2010.
Lindstrot, R., Preusker, R., Diedrich, H., Doppler, L., Bennartz, R., and Fischer, J.: 1D-Var retrieval of daytime total columnar water vapour from MERIS measurements, Atmos. Meas. Tech., 5, 631–646, https://doi.org/10.5194/amt-5-631-2012, 2012.
MERIS Quality Working Group: MERIS 3rd data reprocessing, Software and ADF updates, Tech. Rep. A879.NT.008.ACRI-ST, ACRI, 2011.
Mieruch, S., Schröder, M., Noël, S., and Schulz, J.: Comparison of monthly means of global total column water vapor retrieved from independent satellite observations, J. Geophys. Res.-Atmos., 115, D23310, https://doi.org/10.1029/2010JD013946, 2010.
O'Gorman, P. A. and Muller, C. J.: How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations?, Environ. Res. Lett., 5, 025207, https://doi.org/10.1088/1748-9326/5/2/025207, 2010.
Phalippou, L.: Variational retrieval of humidity profile, wind speed and cloud liquid-water path with the SSM/I: Potential for numerical weather prediction, Q. J. Ror. Meteor. Soc., 122, 327–355, 1996.
Pougatchev, N., August, T., Calbet, X., Hultberg, T., Oduleye, O., Schlüssel, P., Stiller, B., Germain, K. St., and Bingham, G.: IASI temperature and water vapor retrievals – error assessment and validation, Atmos. Chem. Phys., 9, 6453–6458, https://doi.org/10.5194/acp-9-6453-2009, 2009.
Preusker, R. and Lindstrot, R.: Remote sensing of cloud-top pressure using moderately resolved measurements within the oxygen A band – a sensitivity study, J. Appl. Meteorol. Clim., 48, 1562–1574, 2009.
Preusker, R., Hünerbein, A., Fischer, J., Brockmann, C., and Krämer, U.: MERIS GLOBAL LAND SURFACE ALBEDO MAPS – ATBD CLOUD DETECTION, Algorithm theoretical basis document, Freie Universität Berlin, 2008.
Randel, D. L., Vonder Haar, T. H., Ringerud, M. A., Stephens, G. L., Greenwald, T. J., and Combs, C. L.: A new global water vapor dataset, B. Am. Meteorol. Soc., 77, 1233–1246, 1996.
Rast, M., Bezy, J. L., and Bruzzi, S.: The ESA Medium Resolution Imaging Spectrometer MERIS - A review of the instrument and its mission, Int. J. Remote Sens., 20, 1681–1702, 1999.
Rodgers, C.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, London, 2000.
Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.-P., Chance, K., Coudert, L., Dana, V., Devi, V., Fally, S., Flaud, J.-M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.-Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger, M., Simeckova, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A., and Auwera, J. V.: The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Ra., 110, 533–572, https://doi.org/10.1016/j.jqsrt.2009.02.013, 2009.
Sapiano, M. R. P., Berg, W. K., McKague, D. S., and Kummerow, C. D.: Toward an Intercalibrated Fundamental Climate Data Record of the SSM/I Sensors, IEEE T. Geosci. Remote, 51, 1492–1503, https://doi.org/10.1109/TGRS.2012.2206601, 2013.
Schlüssel, P. and Emery, W. J.: Atmospheric water vapour over oceans from SSM/I measurements, Int. J. Remote Sens., 11, 753–766, https://doi.org/10.1080/01431169008955055, 1990.
Schröder, M., Jonas, M., Lindau, R., Schulz, J., and Fennig, K.: The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite, Atmos. Meas. Tech., 6, 765–775, https://doi.org/10.5194/amt-6-765-2013, 2013.
Schulz, J., Schluessel, P., and Grassl, H.: Water vapour in the atmospheric boundary layer over oceans from SSM/I measurements, Int. J. Remote Sens., 14, 2773–2789, https://doi.org/10.1080/01431169308904308, 1993.
Semunegus, H.: Remote Sensing Systems Version-6 Special Sensor Microwave/Imager Fundamental Climate Data Record, Climate Algorithm Theoretical Basis Document CDRP-ATBD-0100, Climate Data Record (CDR) Program, 2011.
Soden, B. J., Wetherald, R. T., Stenchikov, G. L., and Robock, A.: Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor, Science, 296, 727–730, https://doi.org/10.1126/science.296.5568.727, 2002.
Sohn, B.-J. and Bennartz, R.: Contribution of water vapor to observational estimates of longwave cloud radiative forcing, J. Geophys. Res.-Atmos., 113, D20107, https://doi.org/10.1029/2008JD010053, 2008.
Susskind, J., Barnet, C. D., and Blaisdell, J. M.: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds, IEEE T. Geosci. Remote, 41, 390–409, 2003.
Trenberth, K. E. and Stepaniak, D. P.: Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales, J. Climate, 16, 3691–3705, 2003a.
Trenberth, K. E. and Stepaniak, D. P.: Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation, J. Climate, 16, 3706–3722, 2003b.
Trenberth, K. E., Fasullo, J. T., and Smith, L.: Trends and variability in column-integrated atmospheric water vapor, Clim. Dynam., 24, 741–758, https://doi.org/10.1007/s00382-005-0017-4, 2005.
Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., Parker, D., Rahimzadeh, F., Renwick, J. A., Rusticucci, M., Soden, B., and Zhai, P.: Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's global energy budget, B. Am. Meteorol. Soc., 90, 311–323, https://doi.org/10.1175/2008BAMS2634.1, 2008.
Vonder Haar, T. H., Bytheway, J. L., and Forsythe, J. M.: Weather and climate analyses using improved global water vapor observations, Geophys. Res. Lett., 39, L15802, https://doi.org/10.1029/2012GL052094, 2012.
Wentz, F.: A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res., 102, 8703–8718, 1997.