Articles | Volume 16, issue 9
https://doi.org/10.5194/essd-16-4161-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4161-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A field-based thickness measurement dataset of fallout pyroclastic deposits in the peri-volcanic areas of Campania (Italy): statistical combination of different predictions for spatial estimation of thickness
Pooria Ebrahimi
Institute of Marine Sciences (ISMAR), National Research Council (CNR), Naples, 80133 Italy
Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, Naples, 80126, Italy
Institute of Marine Sciences (ISMAR), National Research Council (CNR), Naples, 80133 Italy
Vincenzo Amato
Department of Biosciences and Territory, University of Molise, Pesche (Isernia), 86090, Italy
Raffaele Mattera
Department of Social and Economic Sciences, Sapienza University of Rome, Rome, 00185, Italy
Germana Scepi
Department of Economics and Statistics, University of Naples Federico II, Naples, 80126, Italy
Related authors
No articles found.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data, 15, 1133–1149, https://doi.org/10.5194/essd-15-1133-2023, https://doi.org/10.5194/essd-15-1133-2023, 2023
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500 000 people are exposed to multi-hazard conditions, including landslides. In the 1828–2017 time span, more than 2000 mass movements affected the volcanic slopes, concentrated mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes also pose a societal risk.
Paolo Boncio, Eugenio Auciello, Vincenzo Amato, Pietro Aucelli, Paola Petrosino, Anna C. Tangari, and Brian R. Jicha
Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, https://doi.org/10.5194/se-13-553-2022, 2022
Short summary
Short summary
We studied the Gioia Sannitica normal fault (GF) within the southern Matese fault system (SMF) in southern Apennines (Italy). It is a fault with a long slip history that has experienced recent reactivation or acceleration. Present activity has resulted in late Quaternary fault scarps and Holocene surface faulting. The maximum slip rate is ~ 0.5 mm/yr. Activation of the 11.5 km GF or the entire 30 km SMF can produce up to M 6.2 or M 6.8 earthquakes, respectively.
Fabio Matano, Mauro Caccavale, Giuseppe Esposito, Alberto Fortelli, Germana Scepi, Maria Spano, and Marco Sacchi
Earth Syst. Sci. Data, 12, 321–344, https://doi.org/10.5194/essd-12-321-2020, https://doi.org/10.5194/essd-12-321-2020, 2020
Short summary
Short summary
Along the coastline of the Phlegraean Fields, Naples, Italy, severe retreat processes affect the tuff coastal cliffs, causing hazardous slope failures. An integrated monitoring system coupled with a weather station has been active since 2014. The measurements allowed us to assess the magnitude and temporal pattern of rock block deformations before failure and their correlation with meteorological parameters. A close correlation between temperature and deformation trends has been recognized.
Related subject area
Domain: ESSD – Land | Subject: Geology and geochemistry
The China Active Faults Database (CAFD) and its web system
A globally distributed dataset of coseismic landslide mapping via multi-source high-resolution remote sensing images
MUDA: dynamic geophysical and geochemical MUltiparametric DAtabase
A regolith lead isoscape of Australia
High-resolution digital outcrop model of the faults, fractures, and stratigraphy of the Agardhfjellet Formation cap rock shales at Konusdalen West, central Spitsbergen
Integration by design: Driving mineral system knowledge using multi modal, collocated, scale-consistent characterization
High-resolution digital elevation models and orthomosaics generated from historical aerial photographs (since the 1960s) of the Bale Mountains in Ethiopia
A global zircon U–Th–Pb geochronological database
Subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy)
The secret life of garnets: a comprehensive, standardized dataset of garnet geochemical analyses integrating localities and petrogenesis
HR-GLDD: a globally distributed dataset using generalized deep learning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery
IESDB – the Iberian Evaporite Structure Database
Spectral Library of European Pegmatites, Pegmatite Minerals and Pegmatite Host-Rocks – the GREENPEG project database
The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy
Digital soil mapping of lithium in Australia
A multi-dimensional dataset of Ordovician to Silurian graptolite specimens for virtual examination, global correlation, and shale gas exploration
A strontium isoscape of northern Australia
Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks
A geodatabase of historical landslide events occurring in the highly urbanized volcanic area of Campi Flegrei, Italy
Pan-Arctic soil element bioavailability estimations
Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
A novel specimen-based mid-Paleozoic dataset of antiarch placoderms (the most basal jawed vertebrates)
A database of radiogenic Sr–Nd isotopes at the “three poles”
MOdern River archivEs of Particulate Organic Carbon: MOREPOC
The Active Faults of Eurasia Database (AFEAD): the ontology and design behind the continental-scale dataset
A strontium isoscape of inland southeastern Australia
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
OCTOPUS database (v.2)
A national landslide inventory for Denmark
Xiyan Wu, Xiwei Xu, Guihua Yu, Junjie Ren, Xiaoping Yang, Guihua Chen, Chong Xu, Keping Du, Xiongnan Huang, Haibo Yang, Kang Li, and Haijian Hao
Earth Syst. Sci. Data, 16, 3391–3417, https://doi.org/10.5194/essd-16-3391-2024, https://doi.org/10.5194/essd-16-3391-2024, 2024
Short summary
Short summary
This study presents a national-scale database (1:4000 000) of active faults in China and its adjacent regions in tandem with an associated web-based query system. This database integrates regional-scale studies and surveys conducted over the past 2 decades (at reference scales from 1:250 000 to 1:50 000). Our system hosts this nation-scale database accessible through a Web Geographic Information System (GIS) application.
Chengyong Fang, Xuanmei Fan, Xin Wang, Lorenzo Nava, Hao Zhong, Xiujun Dong, Jixiao Qi, and Filippo Catani
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-239, https://doi.org/10.5194/essd-2024-239, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In this study, we present the largest publicly available landslide dataset, GDCLD, which includes multi-sensor high-resolution images from various locations around the world. We test GDCLD with seven advanced algorithms and show that it is effective in achieving reliable landslide mapping across different triggers and environments, with great potential in enhancing emergency response and disaster management.
Marco Massa, Andrea Luca Rizzo, Davide Scafidi, Elisa Ferrari, Sara Lovati, Lucia Luzi, and the MUDA working group
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-185, https://doi.org/10.5194/essd-2024-185, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
MUDA (geophysical and geochemical MUltiparametric DAtabase) is a new infrastructure of the National Institute of Geophysics and Volcanology serving geophysical and geochemical multiparametric data. MUDA collects information from different sensors, such as seismometers, accelerometers, hydrogeochemical sensors, meteorological stations and sensors for flux of carbon dioxide and Radon gas with the aim of making correlations between seismic phenomena and variations in environmental parameters.
Candan U. Desem, Patrice de Caritat, Jon Woodhead, Roland Maas, and Graham Carr
Earth Syst. Sci. Data, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, https://doi.org/10.5194/essd-16-1383-2024, 2024
Short summary
Short summary
Lead (Pb) isotopes form a potent tracer in studies of provenance, mineral exploration and environmental remediation. Previously, however, Pb isotope analysis has rarely been deployed at a continental scale. Here we present a new regolith Pb isotope dataset for Australia, which includes 1119 large catchments encompassing 5.6 × 106 km2 or close to ~75 % of the continent. Isoscape maps have been produced for use in diverse fields of study.
Peter Betlem, Thomas Birchall, Gareth Lord, Simon Oldfield, Lise Nakken, Kei Ogata, and Kim Senger
Earth Syst. Sci. Data, 16, 985–1006, https://doi.org/10.5194/essd-16-985-2024, https://doi.org/10.5194/essd-16-985-2024, 2024
Short summary
Short summary
We present the digitalisation (i.e. textured outcrop and terrain models) of the Agardhfjellet Fm. cliffs exposed in Konusdalen West, Svalbard, which forms the seal of a carbon capture site in Longyearbyen, where several boreholes cover the exposed interval. Outcrop data feature centimetre-scale accuracies and a maximum resolution of 8 mm and have been correlated with the boreholes through structural–stratigraphic annotations that form the basis of various numerical modelling scenarios.
James Austin, Michael Gazley, Renee Birchall, Ben Patterson, Jessica Stromberg, Morgan Willams, Andreas Björk, Monica Le Gras, Tina Shelton, Courteney Dhnaram, Vladimir Lisitsin, Tobias Schlegel, Helen McFarlane, and John Walshe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-464, https://doi.org/10.5194/essd-2023-464, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Cloncurry METAL aims to shift the “Big Data” paradigm in mineral system science by developing a quantitative, fully integrated, multi-modal, scale-consistent methodology for system characterisation. The data comprises collocated petrophysical-mineralogical-geochemical-structural-metasomatic characterisation of 23 deposits from a highly complex mineral system. This approach allows translation of mineral system processes into physics, providing a framework for smarter geophysics-based exploration.
Mohammed Ahmed Muhammed, Binyam Tesfaw Hailu, Georg Miehe, Luise Wraase, Thomas Nauss, and Dirk Zeuss
Earth Syst. Sci. Data, 15, 5535–5552, https://doi.org/10.5194/essd-15-5535-2023, https://doi.org/10.5194/essd-15-5535-2023, 2023
Short summary
Short summary
We processed the only available and oldest historical aerial photographs for the Bale Mountains, Ethiopia. We used structure-from-motion multi-view stereo photogrammetry to generate the first high-resolution DEMs and orthomosaics for 1967 and 1984 at larger spatial extents (5730 km2) and at high spatial resolutions (0.84 m and 0.98 m, respectively). Our datasets will help the scientific community address questions related to the Bale Mountains and afro-alpine ecosystems.
Yujing Wu, Xianjun Fang, and Jianqing Ji
Earth Syst. Sci. Data, 15, 5171–5181, https://doi.org/10.5194/essd-15-5171-2023, https://doi.org/10.5194/essd-15-5171-2023, 2023
Short summary
Short summary
We introduce a zircon U‒Th‒Pb chronological database of the global continental crust. This database provides comprehensive research materials for Earth system science in deep time and space due to its large amount of data (~2 million records), long time span (4.4 billion years), global sampling range, comprehensive zircon samples, and various dating instruments.
Michele Livani, Lorenzo Petracchini, Christoforos Benetatos, Francesco Marzano, Andrea Billi, Eugenio Carminati, Carlo Doglioni, Patrizio Petricca, Roberta Maffucci, Giulia Codegone, Vera Rocca, Francesca Verga, and Ilaria Antoncecchi
Earth Syst. Sci. Data, 15, 4261–4293, https://doi.org/10.5194/essd-15-4261-2023, https://doi.org/10.5194/essd-15-4261-2023, 2023
Short summary
Short summary
This paper presents subsurface geological and geophysical data from the Po Plain and the northern Adriatic Sea (north Italy). We collected and digitized data from 160 deep wells (including geophysical logs), 61 geological cross-sections, and 10 isobath maps. Furthermore, after a data accuracy analysis, we generated a simplified 3D geological model with several gridded surfaces separating units with different lithological properties. All data are available in delimited text files in ASCII format.
Kristen Chiama, Morgan Gabor, Isabella Lupini, Randolph Rutledge, Julia Ann Nord, Shuang Zhang, Asmaa Boujibar, Emma S. Bullock, Michael J. Walter, Kerstin Lehnert, Frank Spear, Shaunna M. Morrison, and Robert M. Hazen
Earth Syst. Sci. Data, 15, 4235–4259, https://doi.org/10.5194/essd-15-4235-2023, https://doi.org/10.5194/essd-15-4235-2023, 2023
Short summary
Short summary
We compiled 95 650 garnet sample analyses from a variety of sources, ranging from large data repositories to peer-reviewed literature. Garnets are commonly used as indicators of geological formation environments and are an ideal subject for the creation of an extensive dataset incorporating composition, localities, formation, age, temperature, pressure, and geochemistry. This dataset is available in the Evolutionary System of Mineralogy Database and paves the way for future geochemical studies.
Sansar Raj Meena, Lorenzo Nava, Kushanav Bhuyan, Silvia Puliero, Lucas Pedrosa Soares, Helen Cristina Dias, Mario Floris, and Filippo Catani
Earth Syst. Sci. Data, 15, 3283–3298, https://doi.org/10.5194/essd-15-3283-2023, https://doi.org/10.5194/essd-15-3283-2023, 2023
Short summary
Short summary
Landslides occur often across the world, with the potential to cause significant damage. Although a substantial amount of research has been conducted on the mapping of landslides using remote-sensing data, gaps and uncertainties remain when developing models to be operational at the global scale. To address this issue, we present the High-Resolution Global landslide Detector Database (HR-GLDD) for landslide mapping with landslide instances from 10 different physiographical regions globally.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Joana Cardoso-Fernandes, Douglas Santos, Cátia Rodrigues de Almeida, Alexandre Lima, Ana C. Teodoro, and GREENPEG project team
Earth Syst. Sci. Data, 15, 3111–3129, https://doi.org/10.5194/essd-15-3111-2023, https://doi.org/10.5194/essd-15-3111-2023, 2023
Short summary
Short summary
GREENPEG aims to develop tools for pegmatite exploration and to enhance European databases, adding new data on pegmatite properties, such as the spectral signature. Samples comprise pegmatites and wall rocks from Austria, Ireland, Norway, Portugal, and Spain. A detailed description of the spectral database is presented as well as reflectance spectra, photographs, and absorption features. Its European scale comprises pegmatites with distinct characteristics, providing a reference for exploration.
Silvia Peruccacci, Stefano Luigi Gariano, Massimo Melillo, Monica Solimano, Fausto Guzzetti, and Maria Teresa Brunetti
Earth Syst. Sci. Data, 15, 2863–2877, https://doi.org/10.5194/essd-15-2863-2023, https://doi.org/10.5194/essd-15-2863-2023, 2023
Short summary
Short summary
ITALICA (ITAlian rainfall-induced LandslIdes CAtalogue) is the largest catalogue of rainfall-induced landslides accurately located in space and time available in Italy. ITALICA currently lists 6312 landslides that occurred between January 1996 and December 2021. The information was collected using strict objective and homogeneous criteria. The high spatial and temporal accuracy makes the catalogue suitable for reliably defining the rainfall conditions capable of triggering future landslides.
Wartini Ng, Budiman Minasny, Alex McBratney, Patrice de Caritat, and John Wilford
Earth Syst. Sci. Data, 15, 2465–2482, https://doi.org/10.5194/essd-15-2465-2023, https://doi.org/10.5194/essd-15-2465-2023, 2023
Short summary
Short summary
With a higher demand for lithium (Li), a better understanding of its concentration and spatial distribution is important to delineate potential anomalous areas. This study uses a framework that combines data from recent geochemical surveys and relevant environmental factors to predict and map Li content across Australia. The map shows high Li concentration around existing mines and other potentially anomalous Li areas. The same mapping principles can potentially be applied to other elements.
Hong-He Xu, Zhi-Bin Niu, Yan-Sen Chen, Xuan Ma, Xiao-Jing Tong, Yi-Tong Sun, Xiao-Yan Dong, Dan-Ni Fan, Shuang-Shuang Song, Yan-Yan Zhu, Ning Yang, and Qing Xia
Earth Syst. Sci. Data, 15, 2213–2221, https://doi.org/10.5194/essd-15-2213-2023, https://doi.org/10.5194/essd-15-2213-2023, 2023
Short summary
Short summary
A multi-dimensional and integrated dataset of fossil specimens is described. The dataset potentially contributes to a range of scientific activities and provides easy access to and virtual examination of fossil specimens in a convenient and low-cost way. It will greatly benefit paleontology in research, teaching, and science communication.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 15, 1655–1673, https://doi.org/10.5194/essd-15-1655-2023, https://doi.org/10.5194/essd-15-1655-2023, 2023
Short summary
Short summary
This new, extensive (~1.5×106 km2) dataset from northern Australia contributes considerable new information on Australia's strontium (Sr) isotope coverage. The data are discussed in terms of lithology and age of the source areas. This dataset will reduce Northern Hemisphere bias in future global Sr isotope models. Other potential applications of the new data include mineral exploration, hydrology, food tracing, dust provenancing, and examining historic migrations of people and animals.
Samuel W. Scott, Léa Lévy, Cari Covell, Hjalti Franzson, Benoit Gibert, Ágúst Valfells, Juliet Newson, Julia Frolova, Egill Júlíusson, and María Sigríður Guðjónsdóttir
Earth Syst. Sci. Data, 15, 1165–1195, https://doi.org/10.5194/essd-15-1165-2023, https://doi.org/10.5194/essd-15-1165-2023, 2023
Short summary
Short summary
Rock properties such as porosity and permeability play an important role in many geological processes. The Valgarður database is a compilation of petrophysical, geochemical, and mineralogical observations on more than 1000 Icelandic rock samples. In addition to helping constrain numerical models and geophysical inversions, these data can be used to better understand the interrelationship between lithology, hydrothermal alteration, and petrophysical properties.
Giuseppe Esposito and Fabio Matano
Earth Syst. Sci. Data, 15, 1133–1149, https://doi.org/10.5194/essd-15-1133-2023, https://doi.org/10.5194/essd-15-1133-2023, 2023
Short summary
Short summary
In the highly urbanized volcanic area of Campi Flegrei (southern Italy), more than 500 000 people are exposed to multi-hazard conditions, including landslides. In the 1828–2017 time span, more than 2000 mass movements affected the volcanic slopes, concentrated mostly along the coastal sector. Rapid rock failures and flow-like landslides are frequent in the whole area. Besides their relevant role in modeling the landscape of Campi Flegrei, these processes also pose a societal risk.
Peter Stimmler, Mathias Goeckede, Bo Elberling, Susan Natali, Peter Kuhry, Nia Perron, Fabrice Lacroix, Gustaf Hugelius, Oliver Sonnentag, Jens Strauss, Christina Minions, Michael Sommer, and Jörg Schaller
Earth Syst. Sci. Data, 15, 1059–1075, https://doi.org/10.5194/essd-15-1059-2023, https://doi.org/10.5194/essd-15-1059-2023, 2023
Short summary
Short summary
Arctic soils store large amounts of carbon and nutrients. The availability of nutrients, such as silicon, calcium, iron, aluminum, phosphorus, and amorphous silica, is crucial to understand future carbon fluxes in the Arctic. Here, we provide, for the first time, a unique dataset of the availability of the abovementioned nutrients for the different soil layers, including the currently frozen permafrost layer. We relate these data to several geographical and geological parameters.
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023, https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
Short summary
This paper presents a new geomorphological landslide inventory map for the Daunia Apennines, southern Italy. It was produced through the interpretation of two sets of stereoscopic aerial photographs, taken in 1954/55 and 2003, and targeted field checks. The inventory contains 17 437 landslides classified according to relative age, type of movement, and estimated depth. The dataset consists of a digital archive publicly available at https://doi.org/10.1594/PANGAEA.942427.
Zhaohui Pan, Zhibin Niu, Zumin Xian, and Min Zhu
Earth Syst. Sci. Data, 15, 41–51, https://doi.org/10.5194/essd-15-41-2023, https://doi.org/10.5194/essd-15-41-2023, 2023
Short summary
Short summary
Antiarch placoderms, the most basal jawed vertebrates, have the potential to enlighten the origin of the last common ancestor of jawed vertebrates during the Paleozoic. This dataset, which was extracted manually from 142 published papers or books from 1939 to 2021, consists of 60 genera of 6025 specimens from the Ludfordian to the Famennian, covering all antiarch lineages. We transferred the unstructured data from the literature to structured data for further detailed research.
Zhiheng Du, Jiao Yang, Lei Wang, Ninglian Wang, Anders Svensson, Zhen Zhang, Xiangyu Ma, Yaping Liu, Shimeng Wang, Jianzhong Xu, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5349–5365, https://doi.org/10.5194/essd-14-5349-2022, https://doi.org/10.5194/essd-14-5349-2022, 2022
Short summary
Short summary
A dataset of the radiogenic strontium and neodymium isotopic compositions from the three poles (the third pole, the Arctic, and Antarctica) were integrated to obtain new findings. The dataset enables us to map the standardized locations in the three poles, while the use of sorting criteria related to the sample type permits us to trace the dust sources and sinks. The purpose of this dataset is to try to determine the variable transport pathways of dust at three poles.
Yutian Ke, Damien Calmels, Julien Bouchez, and Cécile Quantin
Earth Syst. Sci. Data, 14, 4743–4755, https://doi.org/10.5194/essd-14-4743-2022, https://doi.org/10.5194/essd-14-4743-2022, 2022
Short summary
Short summary
In this paper, we introduce the largest and most comprehensive database for riverine particulate organic carbon carried by suspended particulate matter in Earth's fluvial systems: 3546 data entries for suspended particulate matter with detailed geochemical parameters are included, and special attention goes to the elemental and isotopic carbon compositions to better understand riverine particulate organic carbon and its role in the carbon cycle from regional to global scales.
Egor Zelenin, Dmitry Bachmanov, Sofya Garipova, Vladimir Trifonov, and Andrey Kozhurin
Earth Syst. Sci. Data, 14, 4489–4503, https://doi.org/10.5194/essd-14-4489-2022, https://doi.org/10.5194/essd-14-4489-2022, 2022
Short summary
Short summary
Active faults are faults in the Earth's crust that could experience a possible future slip. A slip at the fault would cause an earthquake; thus, this draws particular attention to active faults in tectonic studies and seismic hazard assessment. We present the Active Faults of Eurasia Database (AFEAD): a high-detail continental-scale geodatabase comprising ~48 000 faults. The location, name, slip characteristics, and a reference to source publications are provided for database entries.
Patrice de Caritat, Anthony Dosseto, and Florian Dux
Earth Syst. Sci. Data, 14, 4271–4286, https://doi.org/10.5194/essd-14-4271-2022, https://doi.org/10.5194/essd-14-4271-2022, 2022
Short summary
Short summary
Strontium isotopes are useful in geological, environmental, archaeological, and forensic research to constrain or identify the source of materials such as minerals, artefacts, or foodstuffs. A new dataset, contributing significant new data and knowledge to Australia’s strontium isotope coverage, is presented from an area of over 500 000 km2 of inland southeastern Australia. Various source areas for the sediments are recognized, and both fluvial and aeolian transport processes identified.
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022, https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
Short summary
The paper describes a new lithological map of Italy at a scale of 1 : 100 000 obtained from classification of a digital database following compositional and geomechanical criteria. The map represents the national distribution of the lithological classes at high resolution. The outcomes of this study can be relevant for a wide range of applications, including statistical and physically based modelling of slope stability assessment and other geoenvironmental studies.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Alexandru T. Codilean, Henry Munack, Wanchese M. Saktura, Tim J. Cohen, Zenobia Jacobs, Sean Ulm, Paul P. Hesse, Jakob Heyman, Katharina J. Peters, Alan N. Williams, Rosaria B. K. Saktura, Xue Rui, Kai Chishiro-Dennelly, and Adhish Panta
Earth Syst. Sci. Data, 14, 3695–3713, https://doi.org/10.5194/essd-14-3695-2022, https://doi.org/10.5194/essd-14-3695-2022, 2022
Short summary
Short summary
OCTOPUS v.2 is a web-enabled database that allows users to visualise, query, and download cosmogenic radionuclide, luminescence, and radiocarbon ages and denudation rates associated with erosional landscapes, Quaternary depositional landforms, and archaeological records, along with ancillary geospatial data layers. OCTOPUS v.2 hosts five major data collections. Supporting data are comprehensive and include bibliographic, contextual, and sample-preparation- and measurement-related information.
Gregor Luetzenburg, Kristian Svennevig, Anders A. Bjørk, Marie Keiding, and Aart Kroon
Earth Syst. Sci. Data, 14, 3157–3165, https://doi.org/10.5194/essd-14-3157-2022, https://doi.org/10.5194/essd-14-3157-2022, 2022
Short summary
Short summary
We produced the first landslide inventory for Denmark. Over 3200 landslides were mapped using a high-resolution elevation model and orthophotos. We implemented an independent validation into our mapping and found an overall level of completeness of 87 %. The national inventory represents a range of landslide sizes covering all regions that were covered by glacial ice during the last glacial period. This inventory will be used for investigating landslide causes and for natural hazard mitigation.
Cited articles
Albert, P. G., Giaccio, B., Isaia, R., Costa, A., Niespolo, E. M., Nomade, S., Pereira, A., Renne, P. R., Hinchliffe, A., Mark, D. F., Brown, R. J., and Smith, V. C.: Evidence for a large-magnitude eruption from Campi Flegrei caldera (Italy) at 29 ka, Geology, 47, 595–599, https://doi.org/10.1130/G45805.1, 2019.
Amato, V., Aucelli, P. P. C., Cesarano, M., Filocamo, F., Leone, N., Petrosino, P., Rosskopf, C. M., Valente, E., Casciello, E., Giralt, S., and Jicha, B. R.: Geomorphic response to late Quaternary tectonics in the axial portion of the Southern Apennines (Italy): A case study from the Calore River valley, Earth Surf. Proc. Land., 43, 2463–2480, https://doi.org/10.1002/esp.4390, 2018.
Andronico, D., Calderoni, G., Cioni, R., Sbrana, A., Sulpizio, R., and Santacroce, R.: Geological map of Somma-Vesuvius volcano, Period. Mineral., 64, 77–78, 1995.
Andronico, D. and Cioni, R.: Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards, B. Volcanol., 64, 372–391, https://doi.org/10.1007/s00445-002-0215-4, 2002.
Arrighi, S., Principe, C., and Rosi, M.: Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity, B. Volcanol., 63, 126–150, https://doi.org/10.1007/s004450100130, 2001.
Barberi, F., Innocenti, F., Lirer, L., Munno, R., Pescatore, T., and Santacroce, R.: The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy), Bulletin Volcanologique, 41, 10–31, https://doi.org/10.1007/BF02597680, 1978.
Bates, J. M. and Granger, C. W.: The combination of forecasts, J. Oper. Res. Soc., 20, 451–468, 1969.
Bertagnini, A., Cioni, R., Guidoboni, E., Rosi, M., Neri, A., and Boschi, E.: Eruption early warning at Vesuvius: The A.D. 1631 lesson, Geophys. Res. Lett., 33, L18317, https://doi.org/10.1029/2006GL027297, 2006.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrolog. Sci. J., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Bonardi, G., Ciarcia, S., Di Nocera, S., Matano, F., Sgrosso, I., and Torre, M.: Carta delle principali unità cinematiche dell'Appennino meridionale, Nota illustrativa. Boll. Soc. Geol. It., 128, 47–60, 2009.
Boncio, P., Auciello, E., Amato, V., Aucelli, P., Petrosino, P., Tangari, A. C., and Jicha, B. R.: Late Quaternary faulting in the southern Matese (Italy): implications for earthquake potential and slip rate variability in the southern Apennines, Solid Earth, 13, 553–582, https://doi.org/10.5194/se-13-553-2022, 2022.
Bourne, A. J., Lowe, J. J., Trincardi, F., Asioli, A., Blockley, S. P. E., Wulf, S., Matthews, I. P., Piva, A., and Vigliotti, L.: Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea: implications for marine tephrostratigraphy, Quaternary Sci. Rev., 29, 3079–3094, https://doi.org/10.1016/j.quascirev.2010.07.021, 2010.
Brown, R. J., Bonadonna, C., and Durant, A. J.: A review of volcanic ash aggregation, Phys. Chem. Earth Pt. A/B/C, 45, 65–78, https://doi.org/10.1016/j.pce.2011.11.001, 2012.
Burrough, P. A. and McDonell, R. A.: Principles of Geographical Information Systems, Oxford University Press, Oxford, UK, 350 pp., ISBN 0198233663, 1998.
Cannatelli, C., Spera, F. J., Bodnar, R. J., Lima, A., and De Vivo, B.: Ground movement (bradyseism) in the Campi Flegrei volcanic area: a review, in: Vesuvius, Campi Flegrei, and Campanian Volcanism, edited by: De Vivo, B., Belkin, H. E., and Rolandi, G., Elsevier, Amsterdam, the Netherlands, 407–433, https://doi.org/10.1016/B978-0-12-816454-9.00015-8, 2020.
Cappelletti, P., Cerri, G., Colella, A., de'Gennaro, M., Langella, A., Perrotta, A., and Scarpati, C.: Post-eruptive processes in the Campanian Ignimbrite, Miner. Petrol., 79, 79–97, https://doi.org/10.1007/s00710-003-0003-7, 2003.
Caron, B., Siani, G., Sulpizio, R., Zanchetta, G., Paterne, M., Santacroce, R., Tema, E., and Zanella, E.: Late Pleistocene to Holocene tephrostratigraphic record from the northern Ionian Sea, Mar. Geol., 311, 41–51, https://doi.org/10.1016/j.margeo.2012.04.001, 2012.
Catani, F., Segoni, S., and Falorni, G.: An empirical geomorphology‐based approach to the spatial prediction of soil thickness at catchment scale, Water Resour. Res., 46, W05508, https://doi.org/10.1029/2008WR007450, 2010.
Chan, F. and Pauwels, L. L.: Some theoretical results on prediction combinations, International Journal of Predictioning, 34, 64–74, https://doi.org/10.1016/j.ijforecast.2017.08.005, 2018.
Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., and Ventura, G.: CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy, J. Geophys. Res.-Sol. Ea., 106, 16213–16221, https://doi.org/10.1029/2001JB000246, 2001.
Cioni, R., Sulpizio, R., and Garruccio, N.: Variability of the eruption dynamics during a subplinian event: The Greenish Pumice eruption of Somma-Vesuvius (Italy), J. Volcanol. Geoth. Res., 124, 89–114, https://doi.org/10.1016/S0377-0273(03)00070-2, 2003.
Cioni, R., Pistolesi, M., and Rosi, M.: Plinian and Subplinian Eruptions. In: Encyclopedia of Volcanoes, 2nd edn., edited by: Sigurdsson, H., Elsevier Science Publishing, London, UK, https://doi.org/10.1016/B978-0-12-385938-9.00029-8, 2015.
Civetta, L., Orsi, G., Pappalardo, L., Fisher, R. V., Heiken, G., and Ort, M.: Geochemical zoning, mingling, eruptive dynamics and depositional processes – the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J. Volcanol. Geoth. Res., 75, 183–219, https://doi.org/10.1016/S0377-0273(96)00027-3, 1997.
Costa, A., Dell'Erba, F., Di Vito, M. A., Isaia, R., Macedonio, G., Orsi, G., and Pfeiffer, T.: Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy), B. Volcanol., 71, 259–273, https://doi.org/10.1007/s00445-008-0220-3, 2009.
Costa, A., Folch, A., Macedonio, G., Giaccio, B., Isaia, R., and Smith, V. C.: Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption, Geophys. Res. Lett., 39, L10310, https://doi.org/10.1029/2012GL051605, 2012.
Costa, A., Di Vito, M. A., Ricciardi, G. P., Smith, V. C., and Talamo, P.: The long and intertwined record of humans and the Campi Flegrei volcano (Italy), B. Volcanol., 84, 5, https://doi.org/10.1007/s00445-021-01503-x, 2022.
Cui, S., Yin, Y., Wang, D., Li, Z., and Wang, Y.: A stacking-based ensemble learning method for earthquake casualty prediction, Appl. Soft Comput., 101, 107038, https://doi.org/10.1016/j.asoc.2020.107038, 2021.
Cuomo, S., Masi, E. B., Tofani, V., Moscariello, M., Rossi, G., and Matano, F.: Multiseasonal probabilistic slope stability analysis of a large area of unsaturated pyroclastic soils, Landslides, 18, 1259–1274, https://doi.org/10.1007/s10346-020-01561-w, 2021.
de Lorenzo, S., Gasparini, P., Mongelli, F., and Zollo, A.: Thermal state of the Campi Flegrei caldera inferred from seismic attenuation tomography, J. Geodyn., 32, 467–486, https://doi.org/10.1016/S0264-3707(01)00044-8, 2001.
De Vita, P. and Nappi, M.: Regional distribution of ash-fall pyroclastic soils for landslide susceptibility assessment in: Landslide Science and Practice, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer, Berlin, Germany, 103–109, https://doi.org/10.1007/978-3-642-31310-3_15, 2013.
De Vita, P., Agrello, D., and Ambrosino, F.: Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping, J. Appl. Geophys., 59, 126–139, https://doi.org/10.1016/j.jappgeo.2005.09.001, 2006.
De Vita, S., Orsi, G., Civetta, L., Carandente, A., D'Antonio, M., Deino, A., Di Cesare, T., Di Vito, M. A., Fisher, R. V., Isaia, R. Marotta, E., Necco, A., Ort, M., Pappalardo, L., Piochi, M., and Southon, J.: The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy), J. Volcanol. Geoth. Res., 91, 269–301, https://doi.org/10.1016/S0377-0273(99)00039-6, 1999.
De Vita, S., Sansivero, F., Orsi, G., and Marotta, E.: Cyclical slope instability and volcanism related to volcano-tectonism in resurgent calderas: the Ischia island (Italy) case study, Eng. Geol., 86, 148–165, https://doi.org/10.1016/j.enggeo.2006.02.013, 2006.
De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera, F. J., and Belkin, H. E.: New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy), Miner. Petrol., 73, 47–65, https://doi.org/10.1007/s007100170010, 2001.
Deino, A. L., Orsi, G., De Vita, S., and Piochi, M.: The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera–Italy) assessed by dating method. J. Volcanol. Geoth. Res., 133, 157–170, https://doi.org/10.1016/S0377-0273(03)00396-2, 2004.
Del Soldato, M., Segoni, S., De Vita, P., Pazzi, V., Tofani, V., and Moretti, S.: Thickness model of pyroclastic soils along mountain slopes of Campania (southern Italy), in: Landslides and engineered slopes. Experience, theory and practice. Proceedings of the 12th International Symposium on Landslides, Napoli, Italy, 12–19 June, edited by: Aversa, S., Cascini, L., Picarelli, L., and Scavia C., CRC Press, Boca Raton, FL, 797–804, 2016.
Del Soldato, M., Pazzi, V., Segoni, S., De Vita, P., Tofani, V., and Moretti, S.: Spatial modeling of pyroclastic cover deposit thickness (depth to bedrock) in peri-volcanic areas of Campania (southern Italy), Earth Surf. Proc. Land., 43, 1757–1767, https://doi.org/10.1002/esp.4350, 2018.
Dellino, P., Dioguardi, F., Isaia, R., Sulpizio, R., and Mele, D.: The impact of pyroclastic density currents duration on humans: the case of the AD 79 eruption of Vesuvius, Sci. Rep.-UK, 11, 4959, https://doi.org/10.1038/s41598-021-84456-7, 2021.
Diebold, F. X. and Mariano, R. S.: Comparing predictive accuracy, J. Bus. Econ. Stat., 20, 134–144, 2002.
Di Nocera, S., Matano, F., Pescatore, T., Pinto, F., Quarantiello, R., Senatore, M., and Torre, M.: Schema geologico del transetto Monti Picentini orientali–Monti della Daunia meridionali: unità stratigrafiche ed evoluzione tettonica del settore esterno dell'Appennino meridionale. Boll. Soc. Geol. Ital., 125, 39–58, 2006.
Di Renzo, V., Arienzo, I., Civetta, L., D'Antonio, M., Tonarini, S., Di Vito, M. A., and Orsi, G.: The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution, Chem. Geol., 281, 227–241, https://doi.org/10.1016/j.chemgeo.2010.12.010, 2011.
Di Vito, M., Lirer, L., Mastrolorenzo, G., and Rolandi, G.: The 1538 Monte Nuovo eruption (Campi Flegrei, Italy), B. Volcanol., 49, 608–615, https://doi.org/10.1007/BF01079966, 1987.
Di Vito, M. A., Isaia, R., Orsi, G., Southon, J. D., De Vita, S., D'Antonio, M., Pappalardo, L., and Piochi, M.: Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy), J. Volcanol. Geoth. Res., 91, 221–246, https://doi.org/10.1016/S0377-0273(99)00037-2, 1999.
Di Vito, M. A., Sulpizio, R., Zanchetta, G., and D'Orazio, M.: The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes, J. Volcanol. Geoth. Res., 177, 19–48, https://doi.org/10.1016/j.jvolgeores.2007.11.019, 2008.
Di Vito, M. A., Acocella, V., Aiello, G., Barra, D., Battaglia, M., Carandente, A., Del Gaudio, C., De Vita, S., Ricciardi, G. P., Ricco, C. Scandone, R., and Terrasi, F.: Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption, Sci. Rep.-UK, 6, 32245, https://doi.org/10.1038/srep32245, 2016.
Di Vito, M. A., Talamo, P., de Vita, S., Rucco, I., Zanchetta, G., and Cesarano, M.: Dynamics and effects of the Vesuvius Pomici di Avellino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy), Quatern. Int., 499, 231–244, https://doi.org/10.1016/j.quaint.2018.03.021, 2019.
Doglioni, C.: A proposal for the kinematic modelling of W-dipping subductions-possible applications to the Tyrrhenian-Apennines system, Terra Nova, 3, 423–434, https://doi.org/10.1144/SP288.3, 1991.
Doronzo, D. M., Di Vito, M. A., Arienzo, I., Bini, M., Calusi, B., Cerminara, M., Corradini, S., De Vita, S., Giaccio, B., Gurioli, L., Mannella, G., Ricciardi, G. P., Rucco, I., Sparice, D., Todesco, M., Trasatti, E., and Zanchetta, G.: The 79 CE eruption of Vesuvius: A lesson from the past and the need of a multidisciplinary approach for developments in volcanology, Earth-Sci. Rev., 231, 104072, https://doi.org/10.1016/j.earscirev.2022.104072, 2022.
Ducci, D. and Tranfaglia, G.: Effects of climate change on groundwater resources in Campania (southern Italy), Geol. Soc. Spec. Publ., 288, 25–38, https://doi.org/10.1144/SP288.3, 2008.
Elliott, G. and Timmermann, A.: Optimal forecast combinations under general loss functions and forecast error distributions, J. Econometrics, 122, 47–79, https://doi.org/10.1016/j.jeconom.2003.10.019, 2004.
Engwell, S. L., Sparks, R. S. J., and Carey, S.: Physical characteristics of tephra layers in the deep sea realm: the Campanian Eruption, Geol. Soc. Spec. Publ., 398, 47–64, https://doi.org/10.1144/SP398.7, 2014.
Eychenne, J. and Engwell, S. L.: The grainsize of volcanic fall deposits: Spatial trends and physical controls, Geol. Soc. Am. Bull., 135, 1844–1858, https://doi.org/10.1130/B36275.1, 2023.
Ferranti, L. and Oldow, J. S.: Latest Miocene to Quaternary horizontal and vertical displacement rates during simultaneous contraction and extension in the Southern Apennines orogen, Italy, Terra Nova, 17, 209–214, https://doi.org/10.1111/j.1365-3121.2005.00593.x, 2005.
Fisher, R. V., Orsi, G., Ort, M., and Heiken, G.: Mobility of a large-volume pyroclastic flow – emplacement of the Campanian ignimbrite, Italy, J. Volcanol. Geoth. Res., 56, 205–220, https://doi.org/10.1016/0377-0273(93)90017-L, 1993.
Frick, H., Chow, F., Kuhn, M., Mahoney, M., Silge, J., and Wickham, H.: rsample: General Resampling Infrastructure, R package version 1.1.1, CRAN [code], https://CRAN.R-project.org/package=rsample (last access: 12 September 2023), 2022.
Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., and Suganthan, P. N.: Ensemble deep learning: A review, Eng. Appl. Artif. Intel., 115, 105151, https://doi.org/10.1016/j.engappai.2022.105151, 2022.
Giaccio, B., Isaia, R., Fedele, F. G., Di Canzio, E., Hoffecker, J., Ronchitelli, A., Sinitsyn, A. A., Anikovich, M., Lisitsyn, S. N., and Popov, V. V.: The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and eastern Europe, J. Volcanol. Geoth. Res., 177, 208–226, https://doi.org/10.1016/j.jvolgeores.2007.10.007, 2008.
Giannetti, B.: Origin of the calderas and evolution of Roccamonfina volcano (Roman Region, Italy), J. Volcanol. Geoth. Res., 106, 301–319, https://doi.org/10.1016/S0377-0273(00)00259-6, 2001.
Granger, C. W. and Ramanathan, R.: Improved methods of combining forecasts, J. Forecasting, 3, 197–204, https://doi.org/10.1002/for.3980030207, 1984.
Greenlee, D. D.: Raster and vector processing for scanned linework, Photogramm. Eng. Rem. S., 53, 1383–1387, 1987.
Guidoboni, E. and Ciuccarelli, C.: The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD), B. Volcanol., 73, 655–677, https://doi.org/10.1007/s00445-010-0430-3, 2011.
Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J.: Global positioning system: theory and practice, Springer-Verlag Wien GmbH, Vienna, Austria, https://doi.org/10.1007/978-3-7091-6199-9, 2001.
Hsiao, C. and Wan, S. K.: Is there an optimal forecasting combination? J. Econometrics, 178, 294–309, https://doi.org/10.1016/j.jeconom.2013.11.003, 2014.
Ihlen, V.: Landsat 8 Data Users Handbook, US Geological Survey, Sioux Falls, USA, LSDS-1574, Version 5.0, 2019.
Isaia, R., D'Antonio, M., Dell'Erba, F., Di Vito, M., and Orsi, G.: The Astroni volcano: the only example of closely spaced eruptions in the same vent area during the recent history of the Campi Flegrei caldera (Italy), J. Volcanol. Geoth. Res., 133, 171–192, https://doi.org/10.1016/S0377-0273(03)00397-4, 2004.
Isaia, R., Marianelli, P., and Sbrana, A.: Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka BP: Implications for caldera dynamics and future eruptive scenarios, Geophys. Res. Lett., 36, L21303, https://doi.org/10.1029/2009GL040513, 2009.
Jensen, J. R.: Introductory Digital Image Processing: A Remote Sensing Perspective, Pearson Education, London, UK, 656 pp., ISBN 9780134058160, 2015.
Jenson, S. K. and Domingue, J. O.: Extracting topographic structure from digital elevation data for geographic information system analysis, Photogramm. Eng. Rem. S., 54, 1593–1600, 1988.
Kienast-Brown, S., Libohova, Z., USDA-NRCS, and Boettinger, J.: Digital soil mapping, in: Soil science division staff. Soil survey manual, edited by: Ditzler, C., Scheffe, K., and Monger, H. C., USDA Handbook No. 18, 295–354, 2017.
Krakiwsky, E. J. and Wells, D. E.: Coordinate Systems In Geodesy, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Lecture Notes No. 16, 115 pp., 1971.
Lancaster, P. and Salkauskas, K.: Curve and surface fitting: An introduction, Academic Press, London, ISBN 0124360602, 280 pp., 1986.
Li, J., Lu, X., Cheng, K., Liu, W., and Li, M. J.: StepReg: Stepwise Regression Analysis, R package version 1.4.4, CRAN [code], https://CRAN.R-project.org/package=StepReg (last access: 12 September 2023), 2020.
Ligas, M. and Banasik, P.: Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations, Geodesy and Cartography, 60, 145–159, https://doi.org/10.2478/v10277-012-0013-x, 2011.
Lirer, L., Luongo, G., and Scandone, R.: On the volcanological evolution of Campi Flegrei, Eos T. Am. Geophys. Un., 68, 226–234, https://doi.org/10.1029/EO068i016p00226, 1987.
Liu, H., Harris, J., Sherlock, R., Behnia, P., Grunsky, E., Naghizadeh, M., Rubingh, K., Tuba, G., Roots, E., and Hill, G.: Mineral prospectivity mapping using machine learning techniques for gold exploration in the Larder Lake area, Ontario, Canada, J. Geochem. Explor., 253, 107279, https://doi.org/10.1016/j.gexplo.2023.107279, 2023.
Lowe, D. J.: Tephrochronology and its application: a review, Quat. Geochronol., 6, 107–153, https://doi.org/10.1016/j.quageo.2010.08.003, 2011.
Matano, F., De Chiara, G., Ferlisi, S., and Cascini, L.: Thickness of pyroclastic cover beds: the case study of Mount Albino (Campania region, southern Italy), J. Maps, 12, 79–87, https://doi.org/10.1080/17445647.2016.1158668, 2016.
Matano, F., Ebrahimi, P., Angelino, A., and Grimaldi, G. M.: Database of pyroclastic cover deposit thickness measurements (PT-Cam) in peri-volcanic areas of Campania (Italy) (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.8399487, 2023.
Mele, D., Dellino, P., Sulpizio, R., and Braia, G.: A systematic investigation on the aerodynamics of ash particles, J. Volcanol. Geoth. Res., 203, 1–11, https://doi.org/10.1016/j.jvolgeores.2011.04.004, 2011.
Mercogliano, P., Segoni, S., Rossi, G., Sikorsky, B., Tofani, V., Schiano, P., Catani, F., and Casagli, N.: Brief communication “A prototype forecasting chain for rainfall induced shallow landslides”, Nat. Hazards Earth Syst. Sci., 13, 771–777, https://doi.org/10.5194/nhess-13-771-2013, 2013.
Moore, I. D., and Burch, G. J.: Sediment transport capacity of sheet and rill flow: application of unit stream power theory, Water Resour. Res., 22, 1350–1360, https://doi.org/10.1029/WR022i008p01350, 1986.
Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrol. process., 5, 3–30, https://doi.org/10.1002/hyp.3360050103, 1991.
Newbold, P. and Granger, C. W.: Experience with forecastings univariate time series and the combination of forecasts, J. R. Stat. Soc. Ser. A, 137, 131–146, 1974.
Newhall, C. G. and Self, S.: The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism, J. Geophys. Res.-Oceans, 87, 1231–1238, https://doi.org/10.1029/JC087iC02p01231, 1982.
Nowotarski, J., Raviv, E., Trück, S., and Weron, R.: An empirical comparison of alternative schemes for combining electricity spot price forecasts, Energ. Econ., 46, 395–412, https://doi.org/10.1016/j.eneco.2014.07.014, 2014.
Nti, I. K., Adekoya, A. F., and Weyori, B. A.: A comprehensive evaluation of ensemble learning for stock-market prediction, Journal of Big Data, 7, 20, https://doi.org/10.1186/s40537-020-00299-5, 2020.
Orsi, G., D'Antonio, M., de Vita, S., and Gallo, G.: The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse, J. Volcanol. Geoth. Res., 53, 275–287, https://doi.org/10.1016/0377-0273(92)90086-S, 1992.
Orsi, G., De Vita, S., and Di Vito, M.: The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration, J. Volcanol. Geoth. Res., 74, 179–214, https://doi.org/10.1016/S0377-0273(96)00063-7, 1996.
Orsi, G., Di Vito, M. A., and Isaia, R.: Volcanic hazard assessment at the restless Campi Flegrei caldera, B. Volcanol., 66, 514–530, https://doi.org/10.1007/s00445-003-0336-4, 2004.
Pappalardo, L., Civetta, L., D'Antonio, M., Deino, A., Di Vito, M., Orsi, G., Carandente, A., de Vita, S., Isaia, R., and Piochi, M.: Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions, J. Volcanol. Geoth. Res., 91, 141–166, https://doi.org/10.1016/S0377-0273(99)00033-5, 1999.
Passariello, I., Lubritto, C., D'Onofrio, A., Guan, Y., and Terrasi, F.: The Somma–Vesuvius complex and the Phlaegrean Fields caldera: new chronological data of several eruptions of the Copper–Middle Bronze Age period, Nucl. Instrum. Meth. B, 268, 1008–1012, https://doi.org/10.1016/j.nimb.2009.10.085, 1999.
Passariello, I., Talamo, P., D'Onofrio, A., Barta, P., Lubritto, C., and Terrasi, F.: Contribution of Radiocarbon Dating to the Chronology of Eneolithic in Campania (Italy), Geochronometria, 35, 25–33, https://doi.org/10.2478/v10003-010-0008-2, 2010.
Patacca, E., Sartori, R., and Scandone, P.: Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times, Memorie della Società Geologica Italiana, 45, 425–451, 1990.
Perrotta, A. and Scarpati, C.: Volume partition between the plinian and co-ignimbrite air fall deposits of the Campanian Ignimbrite eruption, Miner. Petrol., 79, 67–78, https://doi.org/10.1007/s00710-003-0002-8, 2003.
Perrotta, A., Scarpati, C., Luongo, G., and Morra, V.: The Campi Flegrei caldera boundary in the city of Naples, in: Developments in Volcanology, edited by: De Vivo, B., Elsevier, Volume 9, 85–96, https://doi.org/10.1016/S1871-644X(06)80019-7, 2006.
Piochi, M., Mastrolorenzo, G., and Pappalardo, L.: Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy, B. Volcanol., 67, 663–678, https://doi.org/10.1007/s00445-005-0410-1, 2005.
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S.: A modified soil adjusted vegetation index, Remote Sens. Environ., 48, 119–126, https://doi.org/10.1016/0034-4257(94)90134-1, 1994.
Qin, C., Zhu, A. X., Pei, T., Li, B., Zhou, C., and Yang, L.: An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm, Int. J. Geogr. Inf. Sci., 21, 443–458, https://doi.org/10.1080/13658810601073240, 2007.
Ribeiro, M. H. D. M. and dos Santos Coelho, L.: Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series, Appl. Soft Comput., 86, 105837, https://doi.org/10.1016/j.asoc.2019.105837, 2020.
Rolandi, G., Maraffi, S., Petrosino, P., and Lirer, L.: The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption, J. Volcanol. Geoth. Res., 58, 43–65, https://doi.org/10.1016/0377-0273(93)90101-V, 1993a.
Rolandi, G., Mastrolorenzo, G., Barrella, A. M., and Borrelli, A.: The Avellino plinian eruption of Somma-Vesuvius (3760 y.B.P.): the progressive evolution from magmatic to hydromagmatic style, J. Volcanol. Geoth. Res., 58, 67–88, https://doi.org/10.1016/0377-0273(93)90102-W, 1993b.
Rolandi, G., Petrosino, P., and Mc Geehin, J.: The interplinian activity at Somma–Vesuvius in the last 3500 years, J. Volcanol. Geoth. Res., 82, 19–52, https://doi.org/10.1016/S0377-0273(97)00056-5, 1998.
Rolandi, G., Munno, R., and Postiglione, I.: The AD 472 eruption of the Somma volcano, J. Volcanol. Geoth. Res., 129, 291–319, https://doi.org/10.1016/S0377-0273(03)00279-8, 2004.
Rolandi, G., Paone, A., Di Lascio, M., and Stefani, G.: The 79 AD eruption of Somma: The relationship between the date of the eruption and the southeast tephra dispersion, J. Volcanol. Geoth. Res., 169, 87–98, https://doi.org/10.1016/j.jvolgeores.2007.08.020, 2008.
Rosi, M. and Sbrana, A.: Phlegrean fields, Quaderni de La Ricerca Scientifica, 114, Consiglio Nazionale delle Ricerche, Roma, Italia, 1987.
Rosi, M., Sbrana, A., and Vezzoli, L.: Correlazioni tefrostratigraphiche di alcuni livelli di Ischia, Procida e Campi Flegrei, Memorie della Societa Geologica Italiana, 41, 1015–1027, 1988.
Rosi, M., Vezzoli, L., Aleotti, P., and De Censi, M.: Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy, B. Volcanol., 57, 541–554, https://doi.org/10.1007/BF00304438, 1996.
Rosi, M., Vezzoli, L., Castelmenzano, A., and Grieco, G.: Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy), J. Volcanol. Geoth. Res., 91, 179–198, https://doi.org/10.1016/S0377-0273(99)00035-9, 1999.
Rossi, G., Catani, F., Leoni, L., Segoni, S., and Tofani, V.: HIRESSS: a physically based slope stability simulator for HPC applications, Nat. Hazards Earth Syst. Sci., 13, 151–166, https://doi.org/10.5194/nhess-13-151-2013, 2013.
Rouchon, V., Gillot, P. Y., Quidelleur, X., Chiesa, S., and Floris, B.: Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy, J. Volcanol. Geoth. Res., 177, 500–514, https://doi.org/10.1016/j.jvolgeores.2008.07.016, 2008.
Saco, P. M., Willgoose, G. R., and Hancock, G. R.: Spatial organization of soil depths using a landform evolution model, J. Geophys. Res.-Earth, 111, F02016, https://doi.org/10.1029/2005JF000351, 2006.
Santacroce, R.: Somma-Vesuvius, Quaderni de La Ricerca Scientifica, 114, Consiglio Nazionale delle Ricerche, Roma, Italia, 251 pp., 1987.
Santacroce, R. and Sbrana, A.: Carta geologica del Vesuvio. Scala , Progetto CARG. Sevizio Geologico Nazionale – Consiglio Nazionale delle Ricerche, S.E.L.C.A, Firenze, 2003.
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D. J., and Joron, J. L.: Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy, J. Volcanol. Geoth. Res., 177, 1–18, https://doi.org/10.1016/j.jvolgeores.2008.06.009, 2008.
Saulnier, G. M., Beven, K., and Obled, C.: Including spatially variable effective soil depths in TOPMODEL, J. Hydrol., 202, 158–172, https://doi.org/10.1016/S0022-1694(97)00059-0, 1997.
Sbrana, A., Cioni, R., Marianelli, P., Sulpizio, R., Andronico, D., and Pasquini, G.: Volcanic evolution of the Somma-Vesuvius complex (Italy), J. Maps, 16, 137–147, https://doi.org/10.1080/17445647.2019.1706653, 2020.
Scarpati, C. and Perrotta, A.: Stratigraphy and physical parameters of the Plinian phase of the Campanian Ignimbrite eruption, Geol. Soc. Am. Bull., 128, 1147–1159, https://doi.org/10.1130/B31331.1, 2016.
Scarpati, C., Sparice, D., and Perrotta, A.: A crystal concentration method for calculating ignimbrite volume from distal ash-fall deposits and a reappraisal of the magnitude of the Campanian Ignimbrite, J. Volcanol. Geoth. Res., 280, 67–75, https://doi.org/10.1016/j.jvolgeores.2014.05.009, 2014.
Segoni, S., Martelloni, G., and Catani, F.: Different methods to produce distributed soil thickness maps and their impact on the reliability of shallow landslide modeling at catchment scale, in: Landslide Science and Practice, edited by: Margottini, C., Canuti, P., and Sassa, K., Springer, Berlin, 127–133, https://doi.org/10.1007/978-3-642-31310-3_18, 2013.
Sevink, J., van Bergen, M. J., van der Plicht, J., Feiken, H., Anastasia, C., and Huizinga, A.: Robust date for the Bronze age Avellino eruption (Somma-Vesuvius): 3945 ± 10 calBP (1995 ± 10 calBC). Quaternary Sci. Rev., 30, 1035–1046, https://doi.org/10.1016/j.quascirev.2011.02.001, 2011.
Sigurdsson, H., Carey, S., Cornell, W., and Pescatore, T.: The eruption of Vesuvius in A.D. 79, Natl. Geogr. Res., 1, 332–387, 1985.
Smith, V. C., Isaia, R., and Pearce, N. J. G.: Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers, Quaternary Sci. Rev., 30, 3638–3660, https://doi.org/10.1016/j.quascirev.2011.07.012, 2011.
Smith, V. C., Isaia, R., Engwell, S. L., and Albert, P. G.: Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption, B. Volcanol., 78, 45, https://doi.org/10.1007/s00445-016-1037-0, 2016.
Sulpizio, R., Mele, D., Dellino, P., and La Volpe, L.: A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy, B. Volcanol., 67, 743–767, https://doi.org/10.1007/s00445-005-0414-x, 2005.
Sulpizio, R., Mele, D., Dellino, P., and La Volpe, L.: Deposits and physical properties of pyroclastic density currents during complex Subplinian eruptions: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy, Sedimentology, 54, 607–635, https://doi.org/10.1111/j.1365-3091.2006.00852.x, 2007.
Sulpizio, R., Bonasia, R., Dellino, P., Mele, D., Di Vito, M. A., and La Volpe, L.: The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP). Part II: sedimentology and physical volcanology of pyroclastic density current deposits, B. Volcanol., 72, 559–577, https://doi.org/10.1007/s00445-009-0340-4, 2010a.
Sulpizio, R., Cioni, R., Di Vito, M. A., Mele, D., Bonasia, R., and Dellino, P.: The Pomici di Avellino eruption of Somma-Vesuvius (3.9 ka BP). Part I: stratigraphy, compositional variability and eruptive dynamics, B. Volcanol., 72, 539–558, https://doi.org/10.1007/s00445-009-0339-x, 2010b.
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I.: On the extraction of channel networks from digital elevation data, Hydrol. Process., 5, 81–100, https://doi.org/10.1002/hyp.3360050107, 1991.
Tarquini, S., Isola, I., Favalli, M., and Battistini, A.: TINITALY, a digital elevation model of Italy with a 10 m-cell size (Version 1.0), Istituto Nazionale di Geofisica e Vulcanologia (INGV) [data set], https://doi.org/10.13127/TINITALY/1.0, 2007.
Taylor, J. and Tibshirani, R. J.: Statistical learning and selective inference, P. Natl. Acad. Sci. USA, 112, 7629–7634, https://doi.org/10.1073/pnas.1507583112, 2015.
Tesfa, T. K., Tarboton, D. G., Chandler, D. G., and McNamara, J. P.: Modeling soil depth from topographic and land cover attributes, Water Resour. Res., 45, W10438, https://doi.org/10.1029/2008WR007474, 2009.
Vitale, S. and Isaia, R.: Fractures and faults in volcanic rocks (Campi Flegrei, Southern Italy): Insights into volcano tectonic processes, Int. J. Earth Sci., 103, 801–819, https://doi.org/10.1007/s00531-013-0979-0, 2014.
Wohletz, K., Orsi, G., and De Vita, S.: Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical, and granulometric data, J. Volcanol. Geoth. Res., 67, 263–290, https://doi.org/10.1016/0377-0273(95)00002-C, 1995.
Wong, K. K., Song, H., Witt, S. F., and Wu, D. C.: Tourism predictioning: to combine or not to combine?, Tourism Manage., 28, 1068–1078, https://doi.org/10.1016/j.tourman.2006.08.003, 2007.
Wright, M. N. and Ziegler, A.: ranger: A fast implementation of random forests for high dimensional data in C and R, J. Stat. Softw., 77, 1–17, https://doi.org/10.18637/jss.v077.i01, 2017.
Xiao, J., Shen, Y., Tateishi, R., and Bayaer, W.: Development of topsoil grain size index for monitoring desertification in arid land using remote sensing, Int. J. Remote Sens., 27, 2411–2422, https://doi.org/10.1080/01431160600554363, 2006.
Yang, D.: Spatial prediction using kriging ensemble, Sol. Energy, 171, 977–982, https://doi.org/10.1016/j.solener.2018.06.105, 2018.
Zevenbergen, L. W. and Thorne, C. R.: Quantitative analysis of land surface topography, Earth Surf. Proc. Land., 12, 47–56, https://doi.org/10.1002/esp.3290120107, 1987.
Short summary
Fallout pyroclastic deposits cover hillslopes after explosive volcanic eruptions and strongly influence landscape evolution, hydrology, erosion, and slope stability processes. Accurate mapping of the spatial-thickness variations of these fallout pyroclastic deposits over large hillslope areas remains a knowledge gap. We attempt to bridge this gap by applying statistical techniques to a field-based thickness measurement dataset of fallout pyroclastic deposits.
Fallout pyroclastic deposits cover hillslopes after explosive volcanic eruptions and strongly...
Altmetrics
Final-revised paper
Preprint