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Abstract. Determining the spatial thickness (z) of in situ and reworked fallout pyroclastic deposits plays a
key role in volcanological studies and in shedding light on geomorphological and hydrogeological processes in
peri-volcanic areas. However, this is a challenging line of research because (1) field-based measurements are
expensive and time-consuming, (2) the ash might have been dispersed in the atmosphere by several volcanic
eruptions, and (3) wind characteristics during an eruptive event and soil-forming and/or denudation processes
after ash deposition on the ground surface affect the expected spatial distribution of these deposits. This article
tries to bridge this knowledge gap by applying statistical techniques for making representative spatial thickness
predictions to be used for the analysis of geomorphic processes at the catchment and sub-catchment scales. First,
we compiled a field-based thickness measurement dataset (https://doi.org/10.5281/zenodo.8399487; Matano et
al., 2023) of fallout pyroclastic deposits in the territories of several municipalities in Campania, southern Italy.
Second, 18 predictor variables were derived mainly from digital elevation models and satellite images and were
assigned to each measurement point. Third, the stepwise regression (STPW) model and random forest (RF)
machine learning technique are used for thickness modeling. Fourth, the estimations are compared with those
of three models that already exist in the literature. Finally, the statistical combination of different predictions
is implemented to develop a less biased model for estimating pyroclastic thickness. The results show that the
prediction accuracy of RF (RMSE<82.46 and MAE<48.36) is better than that of existing models in the liter-
ature. Moreover, statistical combination of the predictions obtained from the above-mentioned models through
a least absolute deviation (LAD) combination approach leads to the most representative thickness estimation
(MAE<45.12) in the study area. The maps for the values estimated by RF and LAD (as the best single model
and combination approach, respectively) illustrate that the spatial patterns did not change significantly, but the
estimations by LAD are smaller. This combined approach can help in estimating the thickness of fallout pyro-
clastic deposits in other volcanic regions and in managing geohazards in areas covered with loose pyroclastic
materials.
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1 Introduction

A significant quantity of ash is dispersed in the atmosphere
during an explosive volcanic eruption and is deposited over a
large area of ground surface following wind transportation.
The spatial thickness of the ash layer typically decreases
with distance from the eruptive vent (e.g., see Perrotta and
Scarpati, 2003; Bourne et al., 2010; Lowe, 2011; Brown et
al., 2012; Caron et al., 2012; Costa et al., 2012; Albert et
al., 2019; Eychenne and Engwell, 2023) and noticeably influ-
ences geomorphological and hydrological processes such as
landscape evolution, hillslope hydrology, erosion, and slope
stability because the geotechnical and hydraulic properties of
the unconsolidated ash layer usually differ from the under-
lying bedrock and soil. A deep understanding of the thick-
ness of fallout pyroclastic deposits could, therefore, help
address geohazard management and many related socioe-
conomic concerns. It is challenging to estimate the spatial
thickness of fallout pyroclastic deposits because there might
be more than one eruptive event, the ash dispersal pattern
is influenced by the changes in wind characteristics (e.g., the
speed and direction of the wind) during a single eruption, and
soil-forming and denudation processes continuously influ-
ence the expected spatial thickness due to different slope ex-
posures and geometry. Only costly and time-consuming de-
tailed field-based measurements may allow us to effectively
map the thickness variations of fallout pyroclastic deposits
over a limited area (for examples, see Matano et al., 2016;
Cuomo et al., 2021). The spatial thickness of fallout pyro-
clastic deposits under the influence of hillslope processes, ac-
cordingly, remains a knowledge gap (P. De Vita et al., 2006).

Estimating the residual regolith has been a common prac-
tice (e.g., Saulnier et al., 1997; Saco et al., 2006; Tesfa et
al., 2009; Segoni et al., 2013), and the implemented mod-
els performed better when developed based on independent
variables and when applied to a specific site or in limited
areas (Del Soldato et al., 2018; Matano et al., 2016). Con-
ventional approaches for predicting pyroclastic thickness pri-
marily rely on geological data, but the significant improve-
ments in the availability of remote sensing data, along with
the recent advances in recording the depositional history of
fallout pyroclastic deposits, present a unique opportunity to
enhance prediction accuracy. Moreover, the statistical liter-
ature shows that better results can be achieved by combin-
ing estimations derived from different models, which has not
been adopted for the objectives of this article to date.

This article explores the integration of a wide range of
predictor variables, mainly derived from digital elevation
model (DEM) and satellite multispectral images, with ma-
chine learning techniques (i.e., stepwise regression and ran-
dom forest). These approaches identify the most relevant
variables and capture non-linear relationships between the
predictor variables and pyroclastic thickness values in order
to improve prediction accuracy. Combination schemes were
then applied to the predictions of these methods and to the

ones derived from classical approaches, as slope angle pyro-
clastic thickness (SAPT; P. De Vita et al., 2006), geomor-
phological pyroclastic thickness (GPT; Del Soldato et al.,
2016), and slope exponential pyroclastic thickness (SEPT;
Del Soldato et al., 2018) methods. Finally, the predictions
are validated by field-based measurements of fallout pyro-
clastic deposits to empirically demonstrate that combining
the results of different models provides better thickness pre-
dictions for the fallout pyroclastic deposits.

The different sections of this article are briefly introduced
here to provide better insight into content of this article. Sec-
tion 2 introduces the study area, while Sect. 3 explains the
data collection in the field, along with the methodology for
preparing the predictor variables and for predicting the thick-
ness of fallout pyroclastic deposits. In the next section, a de-
tailed description of the field-based thickness measurement
dataset and of the predictor variables is provided. Section 5
discusses the results and highlights the advantages of using
statistical combination in predicting the thickness of fallout
pyroclastic deposits. The concluding remarks and sugges-
tions for future work are presented in the last section.

2 Study area

The area of interest encompasses Campania and the imme-
diate surroundings in southern Italy (Fig. 1). It is bounded
on the west by the Tyrrhenian Sea and on the east by the
Apennine hilly–mountainous inner land, with an altitude of
up to 2050 m a.s.l. at Mt. Miletto. The area has a Mediter-
ranean climate with hot, dry summers and moderately cool
rainy winters. The mean annual temperature is about 10 °C
in the mountainous areas and roughly 18 °C along the coast.
The mean annual rainfall ranges from 700 mm in the east-
ern part of the region to 1800 mm in the central part of the
Apennine mountains (Ducci and Tranfaglia, 2008).

The geological units of the Apennine mountains are
formed by Triassic to Early Miocene carbonate platform
limestones and pelagic basin calcareous pelitic sequences.
They are strongly deformed, mainly thrusted eastward
(Bonardi et al., 2009; Doglioni, 1991; Patacca et al., 1990)
and uncomformably covered by Middle Miocene to Pliocene
thrust-top basin fillings, formed by siliciclastic sequences
(mostly clay, sandstone, and conglomerate; Di Nocera et al.,
2006).

The Quaternary extension in the hinterland and the ax-
ial sectors of Campania caused several fluvio-lacustrine
intramontane-basin openings (Ferranti and Oldow, 2005;
Amato et al., 2018; Boncio et al., 2022). The NW–SE-
and NE–SW-striking faults delimit the strongly subsiding
coastal basins (e.g., Volturno, Campania, Sarno, and Sele
plains) along the Tyrrhenian belt where the volcanic com-
plexes of Somma–Vesuvius, Phlegrean Fields, Ischia, and
Roccamonfina occur (Fig. 1). The volcanoes are active (ex-
cept for Roccamonfina) and have erupted at least once in the
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Figure 1. Location of the study area in southern Italy.

last 1000 years (Rosi and Sbrana, 1987; Santacroce, 1987).
Diffuse degassing, fumaroles, and hot springs are observed
around and in the submerged sectors of the volcanoes (Rosi
and Sbrana, 1987; Chiodini et al., 2001; de Lorenzo et al.,
2001). The above-mentioned volcanic complexes are briefly
introduced below:

– The Somma–Vesuvius volcanic complex lies over a
large sedimentary plain, prevalently filled by pyroclas-
tic deposits. In this volcanic complex, the older Mt.
Somma stratovolcano was cut by an eccentric polypha-
sic caldera and by the Vesuvius stratocone (Sbrana et
al., 2020). Four main Plinian eruptions (Cioni et al.,
2003; Santacroce et al., 2008; Sulpizio et al., 2010a,
b; Mele et al., 2011; Sevink et al., 2011; Doronzo et
al., 2022) and several interplinian eruptions (Andron-
ico and Cioni, 2002; Cioni et al., 2015; Sulpizio et al.,
2005, 2007; Bertagnini et al., 2006) have been linked to
the volcanic activities of Somma–Vesuvius.

– The Phlegrean Fields consist of several volcanoes in
a large caldera west of Naples, characterized by many
eruptions with a large and very large volcanic explo-
sivity index (VEI; Newhall and Self, 1982) (Fig. 2).
Volcanic activity in the Phlegrean Fields began prior
to 80 ka (Pappalardo et al., 1999; Scarpati et al., 2014),
and the caldera collapses occurred during the eruptions
of Campanian Ignimbrite (ca. 39 ka; Deino et al., 2004;
De Vivo et al., 2001), Masseria del Monte Tuff (29 ka;
Albert et al., 2019), and Neapolitan Yellow Tuff (15 ka;

Orsi et al., 1996; Perrotta et al., 2006; Vitale and Isaia,
2014). The post-15 ka activity was well described by
Di Vito et al. (1999), Isaia et al. (2009), and Smith et
al. (2011).

– Ischia Island is the emergent part of a volcanic edifice in
the Gulf of Naples, whose activity started before 150 ka.
The island is composed of volcanic rocks (mostly tra-
chyte and phonolite) formed by effusive and explosive
eruptions, epiclastic deposits, and subordinate terrige-
nous sediments (S. De Vita et al., 2006).

– The Roccamonfina volcanic complex was active be-
tween 550 and 150 ka in the Garigliano River rift valley.
It was affected by an intense Plinian activity revealed
by very large craters. The central caldera is the result
of the eruptive explosions at 353± 5 ka, while the latest
stage of activity featured the edification of the central
shoshonitic domes at 150 ka (Giannetti, 2001; Rouchon
et al., 2008).

The fallout pyroclastic deposits considered in this article are
mainly related to the Somma–Vesuvius and Phlegrean Fields
volcanoes (Fig. 2) because the thickness of the Ischia tephra
is not considerable on the mainland, and the old Roccamon-
fina deposits have mostly eroded outside the volcanic edifice.
Therefore, only the volcanic history of Somma–Vesuvius and
Phlegrean Fields will be further described in this section.

2.1 The volcanic history of the Phlegrean Fields

The most important volcanic activities in the Phlegrean
Fields are the Campanian Ignimbrite (CI: 39 ka; De Vivo et
al., 2001) and the Neapolitan Yellow Tuff eruptions (15 ka;
Orsi et al., 1992, 1996; Wohletz et al., 1995; Deino et al.,
2004). The former is the most powerful volcanic event to
have ever occurred in the Mediterranean area (Barberi et al.,
1978; Fisher et al., 1993; Orsi et al., 1996; Rosi et al., 1988,
1996; Civetta et al., 1997; De Vivo et al., 2001; Cappelletti et
al., 2003; Engwell et al., 2014; Scarpati and Perrotta, 2016;
Smith et al., 2016) and emplaced thick sequences of fall-
out deposits and pyroclastic density currents of mostly tra-
chytic composition (Giaccio et al., 2008; Costa et al., 2022).
The dispersed ash during the first eruptive phase was trans-
ported by wind towards the east (Rosi et al., 1999; Perrotta
and Scarpati, 2003; Scarpati and Perrotta, 2016). The pyro-
clastic density currents were subsequently emplaced over an
area of 7000 km2 and surmounted ridges more than 1000 m
high (Barberi et al., 1978; Fisher et al., 1993). The CI dis-
tal outcrops are mostly represented by a massive, gray ign-
imbrite (Barberi et al., 1978; Fisher et al., 1993; Scarpati et
al., 2014), distributed beyond ∼ 80 km from the vent (Smith
et al., 2016).

The post-15 ka activity of the Phlegrean Fields was con-
centrated in three epochs separated by two quiescent periods
(Fig. 2; Di Vito et al., 1999; Smith et al., 2011; Di Renzo
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Figure 2. Main explosive eruptions of the Somma–Vesuvius and
Phlegrean Fields volcanoes. The major explosive events are in red.
The pedomarker A and the pedomarker B refer to paleosol layers
developed during eruptive quiescence.

et al., 2011, and references therein) and terminated with the
Monte Nuovo eruption in 1538 CE (Guidoboni and Ciuc-
carelli, 2011; Di Vito et al., 2016, and references therein).
The first epoch (15 to ∼ 9.5 ka) was characterized by several
explosive events, of which the Pomici Principali eruption was
the most energetic (Lirer et al., 1987; Di Vito et al., 1999).
This epoch was followed by a quiescent period when a thick
paleosol layer, pedomarker A, was developed. The second
epoch (8.6–8.2 ka; Di Vito et al., 1999) was distinguished by
only a few episodes of low-magnitude eruptions, mainly in
the NE Campanian Plain. After formation of the pedomarker
B in a prolonged volcanic quiescence, the last epoch of in-
tense volcanic activity began between 4.4 and 3.8 ka (Di Vito
et al., 1999). The third epoch was characterized by several
explosive events, of which the Agnano–Monte Spina erup-
tion (4.4 ka; De Vita et al., 1999; Dellino et al., 2021) was
the most powerful. This epoch was followed by a prolon-
gate quiescent period and then the Monte Nuovo eruption
(1538 CE; Di Vito et al., 1987; Piochi et al., 2005). Since
1960, fumarolic and hydrothermal activities with episodes
of bradyseism have mainly occurred in the Phlegrean Fields
(Cannatelli et al., 2020).

2.2 The volcanic history of Somma–Vesuvius

The Somma–Vesuvius volcanic activity is characterized by
four major Plinian eruptions (i.e., Pomici di Base or “Sarno”
at ca. 22 ka, Mercato or “Ottaviano” at ca. 9.0 ka, Avellino
at 3.9 ka, and Pompeii at 79 CE) and several low-intensity
interplinian eruptions (Fig. 2). Pomici di Base (Andronico
et al., 1995; Santacroce et al., 2008) was the oldest caldera-
forming event, which was followed by notably variable inter-
plinian activities, alternating low-magnitude eccentric flank
eruptions, quiescent phases, and subplinian events (such as
the Greenish Pumice eruption at ∼ 19 ka; Santacroce and
Sbrana, 2003; Santacroce et al., 2008). The products of the
Mercato eruption (Rolandi et al., 1993a; Mele et al., 2011)
that occurred about 13,000 years later were separated from
those of the Avellino eruption (Rolandi et al., 1993b; Sulpizio
et al., 2010a, b; Sevink et al., 2011) by a thick paleosol layer
(Di Vito et al., 1999). The low-intensity eruptions of AP1–
AP6 (3.5–2.3 ka; Andronico et al., 2002; Santacroce et al.,
2008; Passariello et al., 1999, 2010; Di Vito et al., 2019)
preceded the eruption of Pompeii, which has been well de-
scribed by many authors (from Sigurdsson et al., 1985, to
Doronzo et al., 2022, and references therein).

The Vesuvius cone was formed by the most recent pe-
riod of volcanic activity, characterized by a complex alter-
nation of periods of activity with various explosive charac-
ters and quiescent phases (Andronico et al., 1995) suddenly
interrupted by the Pollena eruption (472 CE; Rolandi et al.,
2004). A Middle Age period of variable activity was then
started, with alternating lava effusions, moderately explosive
eruptions, and mild periods (Rolandi et al., 1998), before a
subplinian eruption in 1631 CE (Bertagnini et al., 2006). Af-
ter this event, the volcano entered a state of semi-persistent
mild activity, with minor lava effusions and short quiescent
periods. Each period of repose was preceded by relatively
powerful explosive and effusive polyphase eruptions (Arrighi
et al., 2001), like the last two in 1908 and 1944.

3 Materials and methods

The data and methods used in this study are summarized in
Table 2 and Fig. 3 and are further described in this section.

3.1 Dataset of field-based thickness measurements

A dataset of 6671 field-based thickness measurements
(Matano et al., 2023) has been collected during the field sur-
veys and investigations conducted over the last few decades
for scientific and technical studies in the study area (Fig. 1).
The measurements explain the distance between the topo-
graphic surface and the upper limit of the consolidated base-
ment; we refer to “total” measurement when the instruments
could measure the whole distance and “partial” measurement
when the limitations of the implemented instruments led to
only partial measurements of the distance. Further details
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Figure 3. A flowchart showing how the dataset of field-based thickness measurements (Matano et al., 2023) is used to predict the thickness
of the fallout pyroclastic deposits. GPT: geomorphological pyroclastic thickness, SAPT: slope angle pyroclastic thickness, SEPT: slope ex-
ponential pyroclastic thickness, STPW: stepwise regression, RF: random forest, SA: simple average, MV: minimum variance, OLS: ordinary
least squares, LAD: least absolute deviation.
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about the stratigraphy of the pyroclastic deposits and the pos-
sible presence of non-lithified paleosols are not considered
as they are beyond the scope of this article. The following
methods have been applied for measuring the thickness of
the unconsolidated pyroclastic materials on the bedrock:

– Probing tests (PRBs). An iron rod (1.8 cm in diame-
ter and up to 306 cm in length) was driven into the
ground by hand or by a 0.03 kN hammer to measure the
depth of the underlying consolidated bedrock, indicat-
ing the thickness of the fallout pyroclastic deposits as
well. Each measurement represents the arithmetic mean
of two or three measured values within a circle with a
radius of 1–2 m to minimize the error associated with
the local factors such as the presence of cobbles, boul-
ders, roots, colluvium, and pumice layers.

– Penetration tests. Two types of penetration tests were
implemented in this study. The dynamic cone penetra-
tion tests (DPT–DL030) were performed by driving an
iron rod with a cross-sectional area of 10 cm2 into the
ground by repeatedly raising a 0.3 kN weight for 20 cm
and then dropping it. These tests refer to the in situ con-
tinuous measurement of rock and/or soil resistance to
penetration up to 14 m depth, which could also be an
indirect measure for the thickness of the fallout pyro-
clastic deposits when the probe fails to penetrate. The
data collected by this method are in accordance with the
probing-test results and help interpret the stratigraphy
as well. We also used the results of the standard pene-
tration test (SPT), which is a common in situ dynamic
test for determining the geotechnical properties of sub-
surface soil such as relative density and shear strength
parameters.

– Boreholes (BHs). The borehole stratigraphic data were
used for collecting the thickness of fallout pyroclastic
deposits.

– Hand-dug pits (HDPs). These were usually excavated
manually (mainly at a size of 20× 20× 200 cm) near
penetration test or geophysical survey sites to collect
further information on the stratigraphy of the loose ma-
terials over the bedrock.

– Trenches (TRNs). These were excavated (1 m wide, 3 m
long, and 2–3 m deep) at the base of the slopes or along
the intermediate morphological shelves using mechan-
ical diggers for direct investigation of the pyroclastic-
deposit stratigraphy.

– Seismic surveys (SSs). Up to 10 m depth, the seismic re-
flection data of three bursts (direct, reverse, and interme-
diate) were recorded by 20–24 geophones placed 3–5 m
apart in a straight line on the ground surface. The seis-
mic data revealed the geometry and stratigraphy of the
ash layer, along with the boundary between the consol-
idated bedrock and the overlying loose materials.

– Outcrops (OCPs). The stratigraphy of several outcrops
was analyzed across the study area to measure the thick-
ness of the pyroclastic deposits.

For each method, the measurement error and estimated
interpretation uncertainty (i.e., estimation of the fallout
pyroclastic-deposit thickness) are shown in Table 1. About
1 cm error is expected for direct thickness measurements
conducted with outcrops, hand-dug pits, trenches, and bore-
holes. The error associated with the probing-test results is
around 1 cm as well. The measurement error of the penetra-
tion tests (i.e., dynamic cone penetration test (DPT–DL030)
and standard penetration test) is considered to be 10 cm be-
cause the number of blows was counted following the driving
of the rod into the ground for 10 cm. In seismic surveys, the
error depends on the specific technique and site character-
istics, but a measurement error of 100 cm might be a good
estimation for the whole study area.

The interpretative uncertainty of the measurements is
equal to the measurement error (i.e., 1 cm) for direct thick-
ness measurements, but it increases in probing tests, penetra-
tion tests, and seismic surveys. It is noteworthy that the re-
sults of these tests and/or surveys were calibrated in the field
based on the more precise tests conducted nearby (mostly
at 1–10 m distance). The weighted average of errors and the
uncertainty are under 6 and 19 cm, respectively (Table 1).
Therefore, the bias introduced by measurement errors and
interpretative uncertainties is irrelevant to the objectives of
this article.

To date, partial and total thickness measurements, the
method of investigation, the municipal territory to which the
measurement points belong, and the geographic coordinates
have been recorded for a total of 6671 points (Matano et al.,
2023). The spatial distribution of the measurement points is
shown in Fig. 4. Matano et al. (2016) and Cuomo et al. (2021)
have already used the measurements in the Cervinara and
Nocera Inferiore municipal territories for detailed thickness
mapping with heuristic methods.

3.2 Predictor variables

A list of the potential predictor variables for estimating the
thickness of fallout pyroclastic deposits is provided in Ta-
ble 2. The value for each predictor variable is assigned to the
measurement points based on a set of rasters at 30× 30 m
resolution.

3.2.1 Initial thickness (z0) of fallout pyroclastic deposits

This predictor variable represents the overall thickness of
fallout pyroclastic deposits emplaced by Late Quaternary ex-
plosive eruptions at a given location. In other words, it ex-
plains the thickness value that could be estimated at a loca-
tion if erosional and/or depositional processes do not occur
after the associated eruptive events. In fact, the residual thick-
ness of pyroclastic deposits that can be found at a certain lo-
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Table 1. The expected measurement error and interpretation uncertainty for the methods implemented.

Measurement method Number of Percentage of Measurement Interpretation
measurements measurements error (cm) uncertainty (cm)

Borehole 3 0.04 1 1
Dynamic cone penetration test 292 4.38 10 30
Hand-dug pit 317 4.75 1 1
Outcrop 152 2.28 1 1
Probing test 5373 80.54 1 10
Seismic survey 300 4.50 100 200
Standard penetration test 20 0.30 10 30
Trench 214 3.21 1 1

Total 6671 100
Weighted average of errors 5.9 18.6

cation today is the result of the erosional and depositional
processes that occurred after the eruptive events.

To obtain the initial thickness (z0) of fallout pyroclastic de-
posits, the following approach is used: (1) collect the isopach
maps of the fallout deposits for the main volcanic eruptions
(characterized by a high explosivity index and great eruptive
volume) in Campania from the literature (Tables S1 and S2
in the Supplement); (2) georeference and digitize each map;
(3) apply an interpolation technique (i.e., Topo to Raster in
ArcMap) to add intermediate isopaches in case of a signifi-
cant gap between them; (4) assign the average value of two
isopaches of different thickness to the area between them,
except for the area enclosed by only one isopach; (5) com-
bine all shapefiles into one; (6) compute the z0 value of all
volcanic eruptions for each feature in the shapefile; and (7)
convert the obtained shapefile into a raster with 30× 30 m
resolution and assign the z0 value to each field-based mea-
surement point in the thickness dataset (Sect. 3.1).

The isopach maps of the fallout deposits for the Somma–
Vesuvius and Phlegrean Fields main eruptions are listed in
Tables S1 and S2, respectively. The Ischia tephra was not
considered for z0 calculation because of its insignificant
thickness on the mainland. However, the old Roccamon-
fina tephra (>150 ka) has been almost entirely eroded out-
side the volcanic edifice, and we have considered the asso-
ciated isopach map of pyroclastic deposits only in a semi-
quantitative way based on the results of Rouchon et al. (2008)
and Giannetti (2001).

Isopach maps are commonly used in volcanological stud-
ies to estimate the volume of a single eruptive event and to
assess volcanic hazard. They are constructed by interpolat-
ing thickness data points, which are considered to be reliable
as they are directly measured by investigating the stratig-
raphy of volcanic deposits. To the best of our knowledge,
the uncertainty of the published isopach maps for Somma–
Vesuvius and Phlegrean Fields (De Vita et al., 1999; Di Vito
et al., 2008; Cappelletti et al., 2003; Costa et al., 2009; Isaia
et al., 2004; Orsi et al., 2004; Rolandi et al., 1998, 2004,

2008) has not been discussed in the literature. Only Costa et
al. (2012) modeled the Campanian Ignimbrite isopach map
based on 113 measurements and reported that the results are
in agreement with the measured thickness values (relative
mean error=∼ 0.3 log units). The uncertainty has also not
been quantified for the cumulative isopach maps of multi-
ple eruptions generated for studying erosional processes and
landslide susceptibility (P. De Vita et al., 2006; De Vita and
Nappi, 2013; Del Soldato et al., 2016, 2018).

3.2.2 Variables derived from DEM and satellite imagery

The predictor variables derived from DEM or satellite im-
agery (11 and 4 variables, respectively) are listed in Table 2
with a definition, a brief description, and the methodology
used to obtain them. Originally, the DEM had a 10× 10 m
spatial resolution, while the satellite imagery had a 30× 30 m
spatial resolution. Raster resampling is, therefore, imple-
mented after calculating the variables to obtain a resolution
of 30× 30 m.

Other variables such as the distance to the hydrographic
network and the distance to the source (i.e., eruptive vent) are
also considered to be predictor variables in this study. In the
latter, several inferred eruptive vents reported by Di Vito et
al. (2008), along with the Vesuvius crater and Roccamonfina
caldera, were considered to take into account different ash-
producing eruptions and to reduce the associated uncertainty
as far as possible. Further information is provided in Table 2.

3.3 Methods for thickness modeling

3.3.1 Previous studies

To date, four approaches have been proposed for model-
ing the thickness (z) of the fallout pyroclastic deposits. The
slope angle pyroclastic thickness (SAPT) model estimates z
by linking the initial thickness (z0) of fallout pyroclastic de-
posits that have erupted from the volcanos with the slope an-
gle (P. De Vita et al., 2006; De Vita and Nappi, 2013). In
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Figure 4. Spatial distribution of field-based thickness measurement points in each municipality: (a) Villa Santa Lucia, (b) Pozzilli, (c) Gioia
Sannitica, (d) Nocera Inferiore, (e) Bagnoli Irpino, (f) Vitulano, and (g) Cervinara. The measurement points are subdivided into the training
(n= 4294) and test (n= 1843) subsets. Although symbols of different shapes and colors are used for the subsets, the spatially dense mea-
surement points do not allow for the application of a larger symbol size. In the electronic version of this article, please zoom in on the figure
to distinguish between different symbols based on the shape (if required).
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Table 2. The predictor variables for thickness modeling.

Predictor variable Description Input data Methodology Tool

Altitude It shows the elevation above sea
level.

DEM1 N.A.2 N.A.

Aspect It refers to the direction that the
downhill slope faces.

DEM Burrough and McDonell (1998); Ligas
and Banasik (2011); Krakiwsky and
Wells (1971); Lancaster and Salka-
uskas (1986); Hofmann-Wellenhof et
al. (2001)

Aspect in ArcMap

Distance to hydrographic
network

It indicates the distance to the
hydrographic network.

ISPRA
hydrographic
network3

N.A. Euclidean distance in ArcMap

Distance to source It represents the distance to the
eruptive vents.

Di Vito et al. (2008) N.A. Euclidean distance in ArcMap

Flow accumulation Flow accumulation for a cell
refers to the number of cells that
flow to it.

DEM Jenson and Domingue (1988); Tarboton
et al. (1991)

Flow accumulation in ArcMap

Flow direction The flow direction for a cell in-
dicates the direction in which
water will flow out of the cell.

DEM Greenlee (1987); Qin et al. (2007); Tar-
boton et al. (1991)

Flow direction in ArcMap

Initial thickness (z0) of fall-
out pyroclastic deposits

It refers to the thickness of
fallout pyroclastic deposits that
erupted from the volcanos with-
out the influence of denudation
processes.

See Tables S1 and
S2

See Sect. 3.2.1 ArcMap

Curvature It is the second derivative of
the surface, or the slope of the
slope.

DEM Moore et al. (1991); Zevenbergen and
Thorne (1987)

Curvature in ArcMap

Modified secondary soil-
adjusted vegetation index
(MSAVI2)

It indicates healthy green vege-
tation.

Landsat 8 OLI4 Qi et al. (1994) Raster calculator in ArcMap

Normalized clay index
(NCI)

It is indicative of clay or
hydroxyl-bearing minerals.

Landsat 8 OLI Kienast-Brown et al. (2017) Raster calculator in ArcMap

Normalized difference
vegetation index (NDVI)

It shows healthy green vegeta-
tion.

Landsat 8 OLI Jensen (2015) Raster calculator in ArcMap

Plan curvature It is in the direction of the max-
imum slope.

DEM Moore et al. (1991); Zevenbergen and
Thorne (1987)

Curvature in ArcMap

Profile curvature It is perpendicular to the direc-
tion of the maximum slope.

DEM Moore et al. (1991); Zevenbergen and
Thorne (1987)

Curvature in ArcMap

Slope It identifies the steepness of the
ground surface.

DEM Burrough and McDonell (1998);
Ligas and Banasik (2011); Hofmann-
Wellenhof et al. (2001)

Slope in ArcMap

Stream power index (SPI) It characterizes the erosive
power of flowing water.

DEM Moore et al. (1991) Raster calculator in ArcMap

Stream transport index
(STI)

It shows the erosive power of
surface flow.

DEM Moore and Burch (1986) Raster calculator in ArcMap

Topographic wetness index
(TWI)

It is a proxy for soil moisture. DEM Beven and Kirkby (1979); Moore et
al. (1991)

Raster calculator in ArcMap

Topsoil grain size index
(TGSI)

It represents the fine sand con-
tent of the topsoil.

Landsat 8 OLI Xiao et al. (2006) Raster calculator in ArcMap

1 The vertical accuracy of the DEM is evaluated by control points, and the overall root mean square error is <3.5 m (Tarquini et al., 2007). 2 Not applicable.
3 https://geodati.gov.it/resource/id/ispra_rm:01Idro250N_DT (last access: 8 January 2024). 4 Operational Land Imager. Landsat 8 OLI data are calibrated to better than 5 % uncertainty in terms of the
top-of-atmosphere reflectance and have an absolute geodetic accuracy better than 65 m circular error at 90 % confidence (Ihlen, 2019).

this model, some thresholds for slope angle were derived by
field measurements in Mt. Sarno and Mt. Lattari. The geo-
morphologically indexed soil thickness (GIST) model is an
empirical model that combines morphometric, geomorpho-
logical, and geological features (Catani et al., 2010) for es-

timating soil thickness in areas where bedrock weathering
is the main soil-forming process (Mercogliano et al., 2013;
Segoni et al., 2013), but it is applied to the areas covered by
the fallout pyroclastic deposits as well (Rossi et al., 2013).
In this article, the GIST model was not implemented because
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the fallout pyroclastic deposits are of allochthonous origin,
and bedrock lithology does not control their thickness (P. De
Vita et al., 2006; Del Soldato et al., 2018). Del Soldato et
al. (2016) proposed the geomorphological pyroclastic thick-
ness (GPT) model as a combination of the SAPT and GIST
models. Comparing the performances of the GIST, SAPT,
and GPT models indicated that z is mainly controlled by
z0 and slope gradient. Therefore, the slope exponential py-
roclastic thickness (SEPT) model was developed based on
these two parameters (Del Soldato et al., 2018).

3.3.2 Proposed methods: random forest

For spatial modeling, a wide range of machine learning tech-
niques are available, including logistic regression analysis,
random forest (RF), support vector machines, and artificial
neural networks. Among these techniques, RF showed the
best performance for classification and prediction. It is a shal-
low ensemble-learning algorithm that can be tuned with few
parameters (Liu et al., 2023, and references therein). The
principles of decision trees and bagging are implemented for
building random forests. Bagging applies bootstrap sampling
of the training data for building decision trees and aggregates
the predictions across all the trees, which reduces the overall
variance and improves the predictive performance. The RF
uses a random subset of variables at each split while grow-
ing a decision tree during the bagging process to generate a
more diverse set of trees, which helps lessen tree correlation
beyond bagged trees and noticeably increases the predictive
power.

After splitting a given dataset randomly into training and
test subsets (Fig. 4), the RF regression modeling could be ap-
plied as follows: (1) generate an RF model using the training
subset, (2) calculate the variable importance for the estab-
lished model, (3) apply the constructed RF model to the test
subset and evaluate the results, and (4) implement the trained
RF model for making predictions in the unknown locations.

The R packages rsample (Frick et al., 2022) and ranger
(Wright and Ziegler, 2017) are used for data splitting and
modeling, respectively. We considered 70 % of the whole
dataset to be the training subset and considered the rest to
be the test subset in data splitting (Fig. 4). For training a
model, different values are assigned to each hyperparame-
ter, including the number of variables to possibly split at
each node (mtry), the minimal node size at which to split
(min.node.size), the sample with and without replacement
(replace), and the fraction of observations to sample (sam-
ple.fraction). A data frame from all possible combinations
ofmtry, min.node.size, replace, and sample.fraction was then
generated; the RF model was trained for each combina-
tion; and the best one in terms of root mean square er-
ror (RMSE) and mean absolute error (MAE) was selected
(see Sect. 3.3.5 for more information). The optimum num-
ber of trees (num.trees) was finally investigated by running
the RF model for 50 different num.trees values between 0

and 1000. Using the determined hyperparameters, the RF
model is trained for making predictions; the performance of
the model is evaluated; and the importance of the variables is
calculated by (1) the Gini index (Fig. 10b), which indicates
the number of times a variable is responsible for a split and
the impact of that split divided by the number of trees, and
(2) the permutation importance (Fig. 10c), which calculates
the prediction accuracy in the out-of-bag observations and
recomputes the prediction accuracy after eliminating any as-
sociation between the variable of interest and the outcome by
permuting the values of the variable under evaluation. The
difference between the two accuracy values is the permuta-
tion importance for the given variable from a single tree. The
average of the importance values for all the trees in an RF
then gives the RF permutation importance of this variable.

3.3.3 Proposed methods: stepwise regression

Multiple linear regression is used to analyze the relationship
between a single response variable (dependent variable) and
two or more independent variables (predictor variables). As-
suming we store P predictor variables (p = 1, . . .,P ) for N
locations (i = 1, . . .,N ) in a matrix X {xi,p}, we could simply
predict the thickness z {zi} using multiple linear regression:

z= βX+ ε, (1)

with β = [β1, . . .,βP ]
′ being the vector of the regression co-

efficients and ε being a vector of i.i.d. (independent and
identically distributed) error terms. However, not all the P
variables are necessarily relevant for making predictions,
and more accurate predictions may be obtained by a subset
X̃
{
x̃i,p,p = 1, . . ., P̃ ; P̃ < P

}
of predictor variables. Then,

the final model can be written as follows:

z= δX̃+ η, (2)

with δ = [δ1, . . ., δP̃ ]
′ being the vector of the selected best

P̃ < P variables and η being the new vector of error terms.
Different methods such as forward selection, backward

elimination, and stepwise regression (STPW) are used for
this aim. All these methods are based on a series of au-
tomated steps (Taylor and Tibshirani, 2015). A forward-
selection approach initially assumes no predictor variable
and adds the most statistically significant variable, one by
one, until no more variables remain. On the contrary, the
backward-elimination approach initially includes all predic-
tor variables and then eliminates the least statistically signif-
icant variables one by one. However, the STPW method is a
combination of forward selection and backward elimination.
As with forward selection, the procedure starts with no vari-
ables and adds variables using a pre-specified criterion. At
every step, the procedure also considers the statistical conse-
quences of dropping the previously included variables. The
STPW method is applied in this article with the R package
StepReg (Li et al., 2020).
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3.3.4 Proposed methods: combination approaches

The RF, STPW, GPT, SAPT, and SEPT models possess
their own strengths and weaknesses. Previous studies showed
that a combination of the predictions obtained with different
methods allows for more accurate estimations (e.g., in the
case of time series, see Eliott and Timmermann, 2004; Chan
and Pauwels, 2018). Therefore, combination-based predic-
tions are commonly used in many applicative fields (e.g., Cui
et al., 2021; Nti et al., 2020; Wong et al., 2007; Yang, 2018).

One of the most common approaches for combining pre-
dictions is the stacking ensemble (Ganaie et al., 2022). It
trains different models on the same dataset and generates pre-
dictions that become the input of a superior model (known as
a second-level model; see Ribeiro and dos Santos Coelho,
2020). The fundamental concept behind stacking is that the
optimal combination of the predictions of different models
achieves better predictive performance compared to those
obtained with single models.

Let us define, for each ith location, a vector consist-
ing of K (k = 1, . . .,K) alternative predictive models ẑi =
[ẑi,1ẑi,2, . . ., ẑi,k, . . ., ẑi,K ]

′ which can be obtained consider-
ing some inputs as shown in Fig. 4. Then, a final prediction
at the ith location can be defined according to

z̃i = f (ẑi,ω), (3)

with ω = [ω1,ω2, . . .,ωk, . . .,ωK ]
′ being the vector of K

weights associated with the K different competing spatial
predictive models. In other words, the stacking ensemble z̃i
is a function of the K predictions with different base mod-
els for the same location ẑi . In particular, we assume a linear
function:

z̃i = ω
′ẑi =

K∑
k=1

ωk ẑi,k. (4)

In this framework, an important issue is the selection of the
combination weights ω. For this aim, we can use subjective
or objective weighting systems based on either expert eval-
uations or some statistical criteria. In this paper, we com-
pare the performance of four objective weighting systems
and choose the best one.

As the first approach, we consider the simple average (SA)
combination, in which theK competing models are weighted
equally; i.e., ωSA = [

1
K
, . . ., 1

K
]
′. Despite its simplicity, this

approach empirically provides a better performance com-
pared to more sophisticated alternatives (Hsiao and Wan,
2014). Another commonly adopted approach for the optimal
selection of combination weights is based on the variance
minimization criterion (MV; see Bates and Granger, 1969;
Newbold and Granger, 1974). Given a set of K competing
predictive models, the weights are chosen by minimizing the
variance of the prediction errors:

min
ω ω
′6eω, with ι′ω = 1, (5)

with ι= [1,1, . . .,1]′ being a vector of ones and 6e being
the K ×K covariance matrix associated with the prediction
errors of the K competing models. The optimal solution to
this minimization problem is given by

ωMV =
6−1

e ι

ι′6−1
e ι

, (6)

where 6−1
e is the inverse of the covariance matrix, also

known as the precision matrix.
The third approach implemented for choosing combina-

tion weights ω is based on ordinary least squares (OLS) re-
gression (Granger and Ramanathan, 1984), where ω can be
chosen by considering the following linear regression:

zi = ω0+

K∑
k=1

ωk ẑi,k + εi, (7)

with ω0 being the constant term, ωk being the generic kth
weight associated with the kth competing model, and εi be-
ing an i.i.d. error term. According to OLS combination, the
weight vector ω = [ω1, . . .,ωK ]

′ is obtained by solving the
following minimization problem:

min
ω1,...,ωK

N∑
i=1

(
zi −

K∑
k=1

ωk ẑi,k

)2

. (8)

The OLS approach requires computing the weights in a train-
ing subset and using the selected ones in a test subset. It
has the advantage of generating unbiased combined predic-
tions without the need to investigate the bias for the indi-
vidual models. This weighting approach is, however, sensi-
tive to outliers. To address this issue, previous studies pro-
posed the least absolute deviation (LAD) combination ap-
proach based on the minimization of the absolute loss func-
tion (Nowotarski et al., 2014):

min
ω1,...,ωK

N∑
i=1

∣∣∣∣∣zi − K∑
k=1

ωk ẑi,k

∣∣∣∣∣ . (9)

3.3.5 Accuracy evaluation

To evaluate and compare the performance of theK predictive
models and their combinations, the root mean square error
(RMSE) and the mean absolute error (MAE) are computed.
Let us first define the prediction error ei,k of the kth model
(including combinations of the models) for the observed ith
location:

ei,k = zi − ẑi,k. (10)
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The RMSEk and MAEk are defined as follows:

RMSEk =

√√√√ 1
N

N∑
i=1

e2
i,k =

√√√√ 1
N

N∑
i=1

(
zi − ẑi,k

)2
, (11)

MAEk =

√√√√ 1
N

N∑
i=1

∣∣ei,k∣∣=
√√√√ 1
N

N∑
i=1

∣∣zi − ẑi,k∣∣. (12)

Notice that the MAE loss is less affected by outliers than
RMSE, and we prefer the models with lower MAE in case
of ambiguity. The difference in the accuracy of the two com-
peting models might also be due to randomness, especially
for small differences. Therefore, several equal predictive ac-
curacy (EPA) tests (Diebold and Mariano, 2002) were used
in this article for comparing the K competing models and
their combinations and for highlighting the statistically sig-
nificant improvements in accuracy. Specifically, given two
competing models k and k′, we define a generic loss func-
tion g (·) of the prediction errors g

(
ei,k
)

and g
(
ei,k′

)
. In our

case, we consider squared and absolute losses (RMSE and
MAE, respectively). Let us define the loss differential vector
d = [d1,d2, . . ., dN ]

′, where, for each generic ith location,

di = g
(
ei,k
)
− g

(
ei,k′

)
. (13)

Under the null hypothesis, the vector d has zero mean, and
the two competing models k and k′ have the same predictive
accuracy. Under the alternative hypothesis, the two models
are statistically different, and the best model is the one as-
sociated with the lowest statistical loss. In practice, the EPA
test can be simply applied by regressing the loss differential
vector d with a constant vector ι of ones and by conducting
inference with robust standard errors to account for possible
heteroskedasticity.

4 Description of the field-based thickness dataset
and related predictor variables

We first explain the process of creating a subset from the
dataset of Matano et al. (2023) (n= 6671) to achieve our
research objectives. Briefly, 41 measurements belonging to
the Forio and Procida municipalities are excluded because
they are not located on the mainland. The subset is popu-
lated with 18 predictor variables and is visualized in Figs. 5–
8 to give an idea of the available data for detailed elabora-
tion. It is noteworthy that the partial thickness measurements
(n= 493) are then culled, and the remaining 6137 points
(Fig. 2) are considered for thickness modeling in the follow-
ing section. The field-based thickness measurements range
between 0 and 1450 cm. Most of the measurements refer to
total thickness, representing the thickness of fallout pyro-
clastic deposits from the ground surface to the underlying
bedrock (Fig. 5). The median of partial thickness values is 3
times greater than that of total thickness (approximately 200

and 60 cm, respectively). This is mainly due to the applica-
tion of the probing tests and the hand-dug pits in the areas
with thick fallout pyroclastic deposits, where the thickness
is greater than the maximum survey depth reached by these
two measurement methods: 300 and 200 cm respectively. The
average and the range of thickness values mainly show the
limitations of the measurement methods. The probing test
is the leading methodology implemented in field surveys,
and the measured values usually range from 10 to 300 cm.
The recorded values are often <10 cm in outcrops and 200–
800 cm in the measurements conducted with SPT and bore-
holes. The greatest thickness in the dataset is determined by
seismic surveys (Fig. 5d).

The surveys were mainly conducted in the Cervinara,
Nocera Inferiore, and Vitulano territories (43 %, 24 %, and
24 %, respectively; Fig. 5c). The median thickness values are
above 60 cm in Nocera Inferiore and Cervinara, while they
fluctuate around 35 cm in the other municipalities (Fig. 5d).
The values of predictor variables assigned to the total and
partial measurement points are almost similar, but the mi-
nor differences have some interesting interpretations (Fig. 6).
Compared to the stations for total measurements, the median
values in Fig. 6 show that thickness is partially recorded in
the measurement points with lower altitudes, distances to the
source, and slope degrees but higher distances to the hydro-
graphic network (Fig. 6a, d, e, and m). In addition, the dis-
tance of these stations to the hydrographic network is greater
than that of the total thickness measurement points (Fig. 6d).
This last aspect confirms that the bedrock is usually not
reached by investigation and that the thickness is therefore
greater as one moves away from the hydrographic network,
with the torrential erosive intensity being lower. The similar-
ity between Fig. 5d (i.e., the three boxplots on the left) and
Fig. 6r probably reveals that z0 is a good indicator of z.

The measurement points are also categorized in terms of
the measurement methods (Fig. 7) to underline the category-
based variation of the predictor variables. The insignificant
variation of the variables for the stations investigated using
borehole stratigraphic data explains the few field-based ob-
servations under this category. Standard penetration tests and
seismic surveys are the preferred methods in the low-altitude
locations far from the hydrographic network and near the
source (Fig. 7a, d, and e). On the contrary, the thickness of the
fallout pyroclastic deposits is investigated via trenches and
outcrops at the measurement points farthest from the source
(Fig. 7e). The lowest computed z0 values are related to these
stations as well (Fig. 7r). Curvature, plan curvature, profile
curvature, and topographic wetness index (TWI) show very
similar distributions regardless of the methodology (Fig. 7c,
k, l, and q). The ranges of the predictor values are compared
for different municipalities (Fig. 8) to provide some spatial
information on the variables. For instance, Bagnoli Irpino
and Villa Santa Lucia occur at the highest and lowest alti-
tudes, respectively (Fig. 8a). The latter has the lowest dis-
tance to the hydrographic network, along with the minimum
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Figure 5. An overview of the field-based thickness measurements of the fallout pyroclastic deposit in study area: (a) proportion of total
and partial measurements; (b) proportion of the measurements regarding the methodology; (c) proportion of the measurements in each
municipality; and (d) variation of thickness considering the whole dataset, total and partial measurements, measurement methods, and
municipalities. DS: the dataset, OCP: the outcrop, PRB: the probing test, TRN: the trench, HDP: the hand-dug pit, DPT: the dynamic cone
penetration tests, BH: the borehole, SS: the seismic survey, SPT: the standard penetration test, NI: Nocera Inferiore, BI: Bagnoli Irpino, CER:
Cervinara, VIT: Vitulano, GS: Gioia Sannitica, POZ: Pozzilli, and VSL: Villa Santa Lucia. It is noteworthy that the partial measurements are
excluded before modeling thickness in this study.

calculated z0 and measured z values (Figs. 8d, r, and 5d, re-
spectively). Cervinara and Nocera Inferiore are the closest
municipalities to the source (Fig. 8e), where the greatest z0
values are calculated (Fig. 8r), above 65 % of the measure-
ments are performed (Fig. 5c), and the highest z values are
recorded (the right panel of Fig. 5d). Taking into account
Figs. 1 and 8r, significantly higher fallout pyroclastic de-
posits were emplaced by volcanic activities in the eastern
sector of the study area. The discussion in this section indi-
cates a relatively high level of heterogeneity in the variables.
The presence of many data outliers can also be visually ver-
ified in Figs. 5–8. These characteristics of the data suggest a

complex relationship between the predictor variables and the
thickness of fallout pyroclastic deposits, which can be bet-
ter modeled by means of machine learning techniques rather
than by the standard models employed in the literature.

5 The estimated thickness of fallout pyroclastic
deposits: results

In this article, we proposed applying RF and STPW ap-
proaches that train a model on the training subset and make
predictions on the test subset. The dataset of 6137 measure-
ment points was, therefore, randomly divided into training
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Figure 6. Range of the values for predictor variables referred to in the whole dataset (DS) and in the total and partial measurements.
DistHydroNet: the distance to hydrographic network, DistSource: the distance to the source, FlowAccum: the flow accumulation, FlowDirect:
the flow direction, PlanCur: the plan curvature, and ProfileCur: the profile curvature. It is noteworthy that the partial measurements are
excluded before thickness modeling in this study.
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Figure 7. Range of values for the predictor variables referred to in the whole dataset (DS) and in the different measurement methods (from
PRB to BH). See caption of Fig. 5 for the abbreviations. It is noteworthy that the partial measurements (n= 493) are excluded before
thickness modeling in this study.
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Figure 8. Range of values for the predictor variables referred to in the whole dataset (DS) and in the municipalities (from CER to POZ). See
caption of Fig. 5 for the abbreviations. It is noteworthy that the partial measurements (n= 493) are excluded before thickness modeling in
this study.
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(n= 4294) and test (n= 1843) subsets (Fig. 4), and the same
subsets were used in all predictive models to evaluate the per-
formance of the competing models. For the training data, the
thickness is estimated by GPT, SAPT, SEPT, STPW, and RF
models. The predictions for different models are then com-
bined and the associated errors are investigated. Finally, the
prediction errors are computed for both the training and test
subsets, and the predictive accuracy tests are implemented
for evaluating differences in estimations. This section ex-
plains the results in detail.

5.1 Training stepwise regression and random forest

The STPW model is used for selecting the best subset of vari-
ables in terms of explicative power for the pyroclastic thick-
ness deposit. Given an initial set of 18 independent variables,
only 8 relevant ones are chosen by the STPW model for
making predictions (Table 3): distance to the hydrographic
network, distance to the source, altitude, z0, aspect, plan
curvature, modified secondary soil-adjusted vegetation index
(MSAVI2), and normalized clay index (NCI) (for a detailed
description of the variables, see Table 2). All these variables
are very relevant in determining the thickness of fallout py-
roclastic deposits as they control the erosion–deposition pro-
cesses. The estimated parameters shown in Table 3 are then
used for predicting the thickness values in the test subset.

In order to train random forest model representatively,
different values are assigned to mtry, min.node.size, re-
place, and sample.fraction, and a list of all possible com-
binations of the hyperparameters (882 in our case) is gen-
erated. The random forest is then trained for all com-
binations, and the optimum value for each hyperparame-
ter (mtry = 5, min.node.size= 17, replace=True, and sam-
ple.fraction= 0.632) is determined based on the model with
the least error. The out-of-bag error is then investigated for
different number of trees, and num.trees= 530 is determined
for training a model with the least error (Fig. S1a). Fig-
ure S1b and c show that altitude, z0, normalized difference
vegetation index (NDVI), distance to the hydrographic net-
work, NCI, and topsoil grain size index (TGSI) account for
the most important variables in training the model based on
both variable importance metrics (i.e., impurity and permuta-
tion). Compared to the STPW model, distance to the source
is the only variable excluded before RF modeling to avoid
unrealistic estimations.

5.2 Predicted thickness values

Table 4 shows the RMSE and MAE for all models applied to
both the training and test subsets. The relevant differences
in prediction accuracy are evident (e.g., RMSE= 184.52
and MAE= 157.10 for SAPT vs. RMSE= 79.11 and
MAE= 46.44 for RF). Considering the single models ap-
plied to the training subset, both the STPW and RF mod-
els improve the predictive accuracy measures compared with

GPT, SAPT, and SEPT. It is worth mentioning that the
RF model (RMSE= 79.11 and MAE= 46.44) outperforms
other approaches (RMSE>89 and MAE>55) for the train-
ing dataset. This suggests that the predictor variables dis-
cussed in Sect. 5.1 play a crucial role in estimating the thick-
ness of fallout pyroclastic deposits.

In the next step, the thickness predictions for the training
subset (obtained from the single models) underwent a com-
bination approach using the weighting schemes in Table 5.
Except for the SA method that assigns equal weights to the
models, all the weighting schemes assign the largest weight
to RF, which is the most accurate one among the single mod-
els. The accuracy measures for the combination models are
shown in the lower part of Table 4. According to the results
for the training subset (Table 4), the RMSE shows that the
predictions of the SA approach are the worst, while the MV
approach provides better accuracy than the RF model. The
MAE function indicates that the LAD method improves the
accuracy by about 5 % compared to the RF model.

Then both single models and the alternative combina-
tion approaches for the test subset are compared in terms
of RMSE and MAE (see the last two columns of Table 4).
Among the single models, RF provides the most accurate
results (RMSE= 82.46 and MAE= 55.20), but the combi-
nation of the RF predictions with those of the other models
enhances the accuracy. In particular, the OLS approach re-
duces the RMSE to 82.42, and the LAD method lowers the
MAE to 45.12. Regarding the lower sensitivity of the MAE
to data outliers, the LAD combination could be considered
to be the most representative model. The LAD combination
improved the accuracy by 7.2 % compared to the RF model.
The improvement is above 26 % respect to the GPT model,
the best single model proposed in the previous studies.

Finally, pairwise EPA tests are applied to account for the
uncertainty in the results and to investigate whether the dif-
ferences in predictive performance are statistically signifi-
cant in the test subset (Table 6).

The upper part of Table 6 compares RF as the best sin-
gle model with the other single models and reveals that the
differences are statistically significant. In other words, the
observed differences in the predictive performance of the
models are not explained by the randomness of the data,
and the RF model provides the most accurate thickness es-
timation. The negative RMSE and MAE values indicate that
the RF model has a lower average prediction error than the
other single models. On the other hand, the lower part of Ta-
ble 6 shows the pairwise comparison of the RF model with
all the combination approaches. A positive RMSE or MAE
value suggests that the predictions of the combination ap-
proach are more accurate. In terms of squared error loss, the
OLS combination approach provides the most accurate pre-
dictions compared to the RF model, but it is noteworthy that
the RMSE and OLS are both sensitive to data outliers, as ex-
plained in Sect. 3.3. Regarding the MAE, statistically signifi-
cant improvement is observed when combination approaches
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Table 3. List of the variables selected by STPW model for making predictions in the training subset. The estimated parameters, standard
errors, and p values are also reported.

Estimated parameter Standard error p value

Intercept 2.02E+ 08 2.16E+ 07 1.02E− 14
DistSource 9.25E+ 00 3.45E+ 02 9.79E− 05
Altitude −8.28E+ 04 7.66E+ 03 6.53E− 21
DistHydNet 2.19E+ 04 2.79E+ 03 5.63E− 09
z0 2.87E+ 05 3.43E+ 04 7.81E− 11
MSAVI2 −1.02E+ 06 3.06E+ 07 9.73E− 05
PlanCur 2.65E+ 06 2.55E+ 06 2.97E− 05
Aspect 1.63E+ 04 1.25E+ 04 1.90E− 05
NCI −2.51E+ 08 8.09E+ 07 1.92E− 03

Table 4. Prediction accuracy results. Best model in bold. GPT refers to geomorphological pyroclastic thickness, SAPT: slope angle pyroclas-
tic thickness, SEPT: slope exponential pyroclastic thickness, STPW: stepwise regression, RF: random forest, SA: the simple average, MV:
the minimum variance, OLS: ordinary least squares, and LAD: least absolute deviation.

Category Model Train Test

RMSE MAE RMSE MAE

Single model GPT 95.36 56.91 94.21 56.93
SAPT 184.52 157.10 107.45 58.05
SEPT 107.20 59.75 187.95 160.31
STPW 89.60 55.25 92.35 55.20
RF 79.11 46.44 82.46 48.36

Combination approach SA 91.64 60.82 94.22 61.86
MV 79.05 46.05 82.51 47.97
OLS 79.11 46.38 82.42 48.27
LAD 80.83 44.03 83.22 45.12

are applied (except for the SA method; p<0.01). The great-
est statistically significant constant value of the LAD method
demonstrates that this combination technique is suitable for
predicting the thickness of fallout pyroclastic deposits in un-
measured locations. The results are in accordance with those
in Table 4.

6 Discussion

In this section, the cumulative probabilities of the estimated
thickness (for both the training and test subsets) obtained by
various methods are compared in Fig. 9a and b. Regarding
the single models (Fig. 9a), significant underestimation of
the SEPT model and noticeable overestimation of the SAPT
model are evident. These models have the highest RMSE and
MAE values among the single models (Table 4). The distri-
butions of the values obtained by the GPT, RF, and STPW
models share more similarity with those of field-based mea-
surements. Although the STPW model performs better than
RF in predicting the smaller values, the RF model outper-
forms the single models, which agrees with Table 4. Tak-
ing Fig. 9b into account, all combination techniques work
more effectively than the LAD approach in the upper 25 %

of thickness values. The overall estimations of the LAD ap-
proach are, however, more consistent with the field-based
measurements, being confirmed by the accuracy measures in
Table 4.

The results of the RF model and the LAD approach are
also visualized in Fig. 9c for the sake of comparison, repre-
senting that the values estimated by the former are greater
than those of the latter. The LAD approach outperforms the
RF model in a wide range of the field-based thickness values,
and it is, therefore, the best model for predicting the thickness
of fallout pyroclastic deposits in the study area. Figure 9d
demonstrates that the LAD estimations are less biased.

The estimated thickness values of fallout pyroclastic de-
posits obtained by the RF model and the LAD combination
approach in Vitulano, Cervinara, and Nocera Inferiore are
visualized in Figs. 10–12 to investigate the differences be-
tween the spatial patterns. Although the spatial distribution
remained generally unchanged, the legends of the maps re-
veal that the estimated thickness values obtained by the LAD
combination approach decreased, as shown before (Fig. 9c).
For instance, in Vitulano (Fig. 10), the estimations range
from 10 to 196 cm in the RF model, which is reduced to 1–
177 cm in the LAD combination approach. This is also ev-
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Figure 9. Cumulative probability of the field-based thickness measurements (z) against the estimations by single models and combination
approaches (a and b, respectively). In panel (c), only z, the estimations by the best single model, and the estimations by the best combination
approach are visualized. However, panel (d) represents the difference between z and the thickness estimated by the best single model and
the thickness estimated by the best combination technique. In this figure, z represents thickness, but the subscript refers to the method of
estimation. The estimations (n= 6137) for both the training and test subsets are visualized. GPT: geomorphological pyroclastic thickness,
SAPT: slope angle pyroclastic thickness, SEPT: slope exponential pyroclastic thickness, STPW: stepwise regression, RF: random forest, SA:
simple average, MV: the minimum variance, OLS: ordinary least squares, and LAD: least absolute deviation.

Table 5. The weights for making predictions in the training subset with combination approaches. The abbreviations are as defined in Fig. 3.

Weighting scheme GPT model SAPT model SEPT model STPW model RF model

SA 0.20 0.20 0.20 0.20 0.20
MV 0.04 −0.03 −0.07 0.07 0.99
OLS 0.00 0.00 0.01 0.00 0.99
LAD −0.10 0.03 −0.08 −0.09 0.96

ident in most estimations of the bottom-right box, in which
the values are reduced from 66–94 cm to about 32–66 cm, or
in the top-left corner of the map: A (47–196 cm) > C (32–
66 cm)> B (32–47 cm) in the RF model vs. A (47–94 cm)>
C (32–47 cm) > B (1–32 cm) in the LAD combination ap-
proach. The same decline could be observed in Cervinara
and Nocera Inferiore as well. To facilitate a quick compar-
ison, two boxes are drawn in Figs. 11 and 12 that highlight

the sectors with a clear change. A few estimations exceed
113 cm in the lower panel of Fig. 11, which is contrary to the
upper panel generated by the RF model in Cervinara.
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Figure 10. Spatial visualization of the predicted thickness of fallout pyroclastic deposits by the random forest as the best single model (a)
and by LAD as the best combination approach (b) for the Vitulano municipality. It is worth mentioning that the random forest predictions
are classified by the Jenks Natural Breaks algorithm, and the thresholds are implemented for generating the map of LAD predictions. Please
see the text for more information about A, B, and C labels, together with the black box. Although symbols of different shapes and colors are
used for the classes, the spatially dense measurement points do not allow an application of a larger symbol size. In the electronic version of
this article, please zoom in on the figure to distinguish between different symbols based on the shape (if required).

7 Data availability

The field-based thickness measurements of fallout pyroclas-
tic deposits are accessible on Zenodo (Matano et al., 2023;
https://doi.org/10.5281/zenodo.8399487).

8 Conclusion and future research direction

A given volcano might have several eruptive events. In an ex-
plosive volcanic eruption, the height of the ash plume and the

wind characteristics mainly determine the ash dispersal pat-
tern. However, the expected spatial thickness may be contin-
uously altered by the soil-forming and denudation processes.
It is, therefore, a daunting task to estimate thickness of fallout
pyroclastic deposits that we observe today. The GPT, SAPT,
and SEPT models were proposed in previous studies to ad-
dress this issue, but this article tries to apply other models for
the first time to estimate thickness more accurately around
the Somma–Vesuvius, Phlegrean Fields, and Roccamonfina
volcanoes in Campania, southern Italy.
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Figure 11. Spatial visualization of the predicted thickness of fallout pyroclastic deposits by the random forest as the best single model (a)
and by LAD as the best combination approach (b) for the Cervinara municipality. It is worth mentioning that the random forest predictions
are classified by the Jenks Natural Breaks algorithm, and the thresholds are implemented for generating the map of LAD predictions. Please
see the text for more information about the black boxes. Although symbols of different shapes and colors are used for the classes, the spatially
dense measurement points do not allow an application of a larger symbol size. In the electronic version of this article, please zoom in on the
figure to distinguish between different symbols based on the shape (if required).

Table 6. Equal predictive accuracy tests, applied to the test subset (n= 1843), for comparing the best single model (RF) with the other ones.
Under the null hypothesis, the two models provide equal predictive accuracy. SE refers to the heteroskedasticity robust standard error. The
abbreviations are as defined in Fig. 3. ∗∗∗ indicates p value<0.01.

Best single model Other models RMSE SE MAE SE

RF vs.

GPT −2650.0∗∗∗ 705.2 −8.564 ∗ ∗∗ 1.113
SAPT −4745.0∗∗∗ 821.5 −9.689∗∗∗ 1.4320
SEPT −28523.4∗∗∗ 753.6 −111.94∗∗∗ 2.2730
STPW −1729.0∗∗∗ 533.6 −6.8339∗∗∗ 0.9109
SA −2076.229∗∗∗ 432.758 −13.493∗∗∗ 0.953
MV −7.006 10.328 0.390∗∗∗ 0.066
OLS 5.971 6.188 0.091∗∗∗ 0.013
LAD −125.269 126.711 3.245∗∗∗ 0.397
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Figure 12. Spatial visualization of the predicted thickness of fallout pyroclastic deposits by the random forest as the best single model (a)
and by the LAD as the best combination approach (b) for the Nocera Inferiore municipality. It is worth mentioning that the RF predictions are
classified by the Jenks Natural Breaks algorithm, and the thresholds are implemented for generating the map of LAD predictions. Please see
the text for more information about the black boxes. Although symbols of different shapes and colors are used for the classes, the spatially
dense measurement points do not allow the application of a larger symbol size. In the electronic version of this article, please zoom in on the
figure to distinguish between different symbols based on the shape (if required).

First, we prepared a database of 6137 field-based thick-
ness measurements with 18 predictor variables. Second, the
STPW model and the RF machine learning technique were
implemented for thickness modeling, and the results were
compared with those of the GPT, SAPT, and SEPT mod-
els. The RF estimations (RMSE= 79.11 and MAE= 46.44
for the training subset and RMSE= 82.46 and MAE= 48.36
for the test subset) evidently outperformed the other models
(RMSE>89.60 and MAE>55.25 for the training subset and
RMSE= 92.35 and MAE>55.20 for the test subset). Third,
the SA, LAD, MV, and OLS approaches were considered to
combine the predictions of the five above-mentioned single
models and to obtain more accurate thickness estimations. It
was indicated that the LAD approach returns the best results
in terms of MAE. Thus, the estimations with the RF and LAD

methods (as a single model and a combination approach, re-
spectively) were less biased in Campania. The thickness val-
ues obtained from the RF and LAD in Vitulano, Cervinara,
and Nocera Inferiore were applied for spatial analysis, and it
was demonstrated that the estimated values of the LAD ap-
proach are smaller than those of RF, but the spatial patterns
do not change significantly. The results showed that follow-
ing the methodology in this article and generating a map us-
ing the estimations of the LAD combination approach pro-
vides the most representative estimations in the study area.

In the future, we will consider a set of more representa-
tive predictor variables (if any) and collect a larger field-
based thickness measurement dataset for estimating thick-
ness in the unmeasured locations (i.e., out-of-sample predic-
tions from a statistical point of view) more accurately. This

Earth Syst. Sci. Data, 16, 4161–4188, 2024 https://doi.org/10.5194/essd-16-4161-2024



P. Ebrahimi et al.: A field-based thickness measurement dataset 4183

would help in generating a regional map of the thickness
of fallout pyroclastic deposits in Campania, which plays a
key role in hydrogeological and volcanological studies and in
managing geohazards in the areas covered with loose pyro-
clastic materials. Furthermore, we will aim to define the best
statistical combinations at local levels by means of cluster-
wise techniques.
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