Articles | Volume 16, issue 1
https://doi.org/10.5194/essd-16-277-2024
https://doi.org/10.5194/essd-16-277-2024
Data description paper
 | 
11 Jan 2024
Data description paper |  | 11 Jan 2024

Mapping 24 woody plant species phenology and ground forest phenology over China from 1951 to 2020

Mengyao Zhu, Junhu Dai, Huanjiong Wang, Juha M. Alatalo, Wei Liu, Yulong Hao, and Quansheng Ge

Related authors

Spatial Patterns of Sandy Beaches in China and Risk Analysis of Human Infrastructure Squeeze Based on Multi-Source Data and Ensemble Learning
Jie Meng, Duanyang Xu, Zexing Tao, and Quansheng Ge
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-264,https://doi.org/10.5194/essd-2025-264, 2025
Preprint under review for ESSD
Short summary
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Yang Liu, Jingyun Zheng, Zhixin Hao, and Quansheng Ge
Earth Syst. Sci. Data, 14, 5717–5735, https://doi.org/10.5194/essd-14-5717-2022,https://doi.org/10.5194/essd-14-5717-2022, 2022
Short summary
Could phenological records from Chinese poems of the Tang and Song dynasties (618–1279 CE) be reliable evidence of past climate changes?
Yachen Liu, Xiuqi Fang, Junhu Dai, Huanjiong Wang, and Zexing Tao
Clim. Past, 17, 929–950, https://doi.org/10.5194/cp-17-929-2021,https://doi.org/10.5194/cp-17-929-2021, 2021
Short summary
Divergent climate feedbacks on winter wheat growing and dormancy periods as affected by sowing date in the North China Plain
Fengshan Liu, Ying Chen, Nini Bai, Dengpan Xiao, Huizi Bai, Fulu Tao, and Quansheng Ge
Biogeosciences, 18, 2275–2287, https://doi.org/10.5194/bg-18-2275-2021,https://doi.org/10.5194/bg-18-2275-2021, 2021
Short summary
Evidence for a widespread climatic anomaly at around 7.5–7.0 cal ka BP
Mei Hou, Wenxiang Wu, David J. Cohen, Yang Zhou, Zhaoqi Zeng, Han Huang, Hongbo Zheng, and Quansheng Ge
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-89,https://doi.org/10.5194/cp-2019-89, 2019
Manuscript not accepted for further review
Short summary

Related subject area

Domain: ESSD – Land | Subject: Biogeosciences and biodiversity
The SahulCHAR collection: a palaeofire database for Australia, New Guinea, and New Zealand
Emma Rehn, Haidee Cadd, Scott Mooney, Tim J. Cohen, Henry Munack, Alexandru T. Codilean, Matthew Adeleye, Kristen K. Beck, Mark Constantine IV, Chris Gouramanis, Johanna M. Hanson, Penelope J. Jones, A. Peter Kershaw, Lydia Mackenzie, Maame Maisie, Michela Mariani, Kia Matley, David McWethy, Keely Mills, Patrick Moss, Nicholas R. Patton, Cassandra Rowe, Janelle Stevenson, John Tibby, and Janet Wilmshurst
Earth Syst. Sci. Data, 17, 2681–2692, https://doi.org/10.5194/essd-17-2681-2025,https://doi.org/10.5194/essd-17-2681-2025, 2025
Short summary
ARGO: ARctic greenhouse Gas Observation metadata version 1
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025,https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
WetCH4: a machine-learning-based upscaling of methane fluxes of northern wetlands during 2016–2022
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data, 17, 2507–2534, https://doi.org/10.5194/essd-17-2507-2025,https://doi.org/10.5194/essd-17-2507-2025, 2025
Short summary
The European Forest Disturbance Atlas: a forest disturbance monitoring system using the Landsat archive
Alba Viana-Soto and Cornelius Senf
Earth Syst. Sci. Data, 17, 2373–2404, https://doi.org/10.5194/essd-17-2373-2025,https://doi.org/10.5194/essd-17-2373-2025, 2025
Short summary
An expert survey on chamber measurement techniques and data handling procedures for methane fluxes
Katharina Jentzsch, Lona van Delden, Matthias Fuchs, and Claire C. Treat
Earth Syst. Sci. Data, 17, 2331–2372, https://doi.org/10.5194/essd-17-2331-2025,https://doi.org/10.5194/essd-17-2331-2025, 2025
Short summary

Cited articles

An, S., Chen, X., Zhang, X., Lang, W., Ren, S., and Xu, L.: Precipitation and minimum temperature are primary climatic controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau, Remote Sens., 12, 431, https://doi.org/10.3390/rs12030431, 2020. 
Aono, Y. and Kazui, K.: Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century, Int. J. Climatol., 28, 905–914, https://doi.org/10.1002/joc.1594, 2008. 
Ault, T. R., Schwartz, M. D., Zurita-Milla, R., Weltzin, J. F., and Betancourt, J. L.: Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices, J. Climate, 28, 8363–8378, https://doi.org/10.1175/jcli-d-14-00736.1, 2015. 
Basler, D.: Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe, Agric. For. Meteorol., 217, 10–21, https://doi.org/10.1016/j.agrformet.2015.11.007, 2016. 
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. 
Download
Short summary
This study utilized 24,552 in situ phenology observation records from the Chinese Phenology Observation Network to model and map 24 woody plant species phenology and ground forest phenology over China from 1951 to 2020. These phenology maps are the first gridded, independent and reliable phenology data sources for China, offering a high spatial resolution of 0.1° and an average deviation of about 10 days. It contributes to more comprehensive research on plant phenology and climate change.
Share
Altmetrics
Final-revised paper
Preprint