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Abstract. Plant phenology refers to cyclic plant growth events, and is one of the most important indicators of
climate change. Integration of plant phenology information is crucial for understanding the ecosystem response
to global change and modeling the material and energy balance of terrestrial ecosystems. Utilizing 24 552 in situ
phenological observations of 24 representative woody plant species from the Chinese Phenology Observation
Network (CPON), we have developed maps delineating species phenology (SP) and ground phenology (GP)
of forests over China from 1951 to 2020. These maps offer a detailed spatial resolution of 0.1° and a temporal
resolution of 1 d. Our method involves a model-based approach to upscale in situ phenological observations to SP
maps, followed by the application of weighted average and quantile methods to derive GP maps from the SP data.
The resulting SP maps for the 24 woody plants exhibit a high degree of concordance with in situ observations,
manifesting an average deviation of 6.9 d for spring and 10.8 d for autumn phenological events. Moreover, the
GP maps demonstrate robust alignment with extant land surface phenology (LSP) products sourced from remote
sensing data, particularly within deciduous forests, where the average discrepancy is 8.8 d in spring and 15.1 d
in autumn. This dataset provides an independent and reliable phenology data source for China on a long-time
scale of 70 years, and contributes to more comprehensive research on plant phenology and climate change at
both regional and national scales. The dataset can be accessed at https://doi.org/10.57760/sciencedb.07995 (Zhu
and Dai, 2023).

1 Introduction

Plant phenology, the discipline that examines the timing of
plant life cycle events, is emerging in response to the sea-
sonal changes in climate and environmental conditions (Li-
eth, 1974; Schwartz, 2003). These events are pivotal stages
in a plant’s life, such as budburst, leaf unfolding, flower-
ing, leaf coloring, and defoliation. Recognized as a sensi-
tive biological indicator of climate change (Fu et al., 2015;
Richardson et al., 2013), plant phenology is instrumental in
understanding ecosystem responses to global change (Men-
zel et al., 2020) and is a significant factor in modeling the

exchanges of matter and energy within terrestrial ecosystems
(Keenan et al., 2014). The demand for extensive, long-term,
and reliable plant phenology data is pronounced among re-
searchers for effective biological monitoring and predictive
studies. Although such data are now available from various
sources (Piao et al., 2019; Tang et al., 2016), including in
situ observations (Templ et al., 2018), satellite remote sens-
ing (Bolton et al., 2020; Dixon et al., 2021), and tower-based
digital cameras (Richardson et al., 2018), harmonizing this
information across broad spatial and temporal scales remains
a significant scientific challenge, complicated by inconsis-
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tencies among data sources (Fisher et al., 2006; Park et al.,
2021).

The practice of conducting manual, in situ observations
for species phenology (SP) boasts a rich history extend-
ing over several centuries (Aono and Kazui, 2008), yield-
ing highly accurate data for specific plant species (Polgar
and Primack, 2011). In 1963, the Chinese Academy of Sci-
ences established the Chinese Phenology Observation Net-
work (CPON), which stands as a benchmark for phenologi-
cal data collection through its standardized, nationwide net-
work, engaging numerous professional observers and an ex-
tensive repository of ground-based observations. The CPON
repository, to date, encompasses over 1.2 million records
for over 900 plant species from more than 150 sites across
China (Fig. 1), cementing its dominant status as a data center
for phenological research in China. These phenology records
have contributed to examining the spatiotemporal patterns of
plant phenological shifts (Dai et al., 2014; Ge et al., 2015),
the environmental factors affecting plant phenology (Dai et
al., 2013; Wang et al., 2020), and the development of phenol-
ogy models in China (Tao et al., 2018). However, the spatial
distribution of in situ data is often uneven and limited, par-
ticularly at regional and global scales (Donnelly et al., 2022),
with significant gaps over extended timescales. Advances in
species-level phenology modeling offer a promising avenue
to overcome these spatial and temporal constraints (Fu et
al., 2020; Hufkens et al., 2018). In scenarios lacking direct
phenological observations, such models are invaluable for
generating large-scale predictions, thereby filling the miss-
ing data gaps in both space and time (Cleland et al., 2007;
Wang et al., 2012). This modeling approach has been exem-
plified by the Extended Spring Indices (SI-x) model, which
has produced detailed gridded maps delineating the first leaf
and first bloom events for three woody plants across the con-
tiguous United States with resolutions from 1° to 1 km (Ault
et al., 2015; Izquierdo-Verdiguier et al., 2018). Adopting a
similar strategy, it is feasible to extrapolate the CPON phe-
nology observations across China, facilitating the integration
and scaling up of this rich dataset to serve regional and na-
tional research needs.

In contrast to manual in situ observations, satellite re-
mote sensing facilitates expansive monitoring and mapping
of land surface phenology (LSP) at a landscape scale, yield-
ing more comprehensive phenological data (Studer et al.,
2007). Over the past four decades, remote sensing technolo-
gies have witnessed substantial enhancements, leading to sig-
nificant strides in both spatial and temporal resolution (Misra
et al., 2020; Dronova and Taddeo, 2022). Currently, a variety
of LSP products, based on vegetation indices such as nor-
malized difference vegetation index (NDVI) and enhanced
vegetation index (EVI) from diverse remote sensing sources,
provide LSP data on regional and global scales with resolu-
tions from 10 km down to 30 m (e.g., Li et al., 2019; W. Wu
et al., 2021). The reliability of these LSP datasets is highly
dependent on validation against ground phenology (GP) data

derived from in situ SP observations (Tian et al., 2021; Zhang
et al., 2017), necessitating a seamless transition from indi-
vidual (i.e., SP) to landscape (i.e., GP) level. Methods such
as weighted averages and quantiles have proven their effi-
cacy in this aggregation process from individual to commu-
nity or landscape levels (Donnelly et al., 2022; Fitchett et al.,
2015). For instance, the weighted average method has been
validated at the site scale through combined field and remote
sensing studies to aggregate GP data from in situ SP ob-
servations, considering species abundance as weights (Liang
et al., 2011). Recent studies have suggested that quantile
methods (e.g., 30th percentile) hold greater promise than the
commonly used average methods at larger scales, as demon-
strated in Europe and the United States (Ye et al., 2022). Nev-
ertheless, such methods have not yet been applied to aggre-
gate large-scale GP from SP data in China. This gap poten-
tially limits the ground-truthing for LSP products and ham-
pers a comprehensive understanding of the spatial and tem-
poral patterns of phenological shifts over the country.

In this study, we aimed to develop long-term, high-
resolution SP and GP maps of China, spanning the period
1951–2020 with a 0.1° resolution. This effort will produce
spatially continuous, gridded phenology products that are no-
tably missing in the current Chinese context, yet are vital for
diverse scientific and ecological applications. Drawing from
the extensive database of the CPON, we analyzed 24 552
in situ phenology observations of 24 representative woody
plants from 122 sites over six decades. This analysis included
three critical phenophases for each species: the first leaf date
(FLD), first flower date (FFD), and 100 % leaf coloring date
(LCD). In our methodology, we employed five species-level
phenology models with gridded meteorological data to sim-
ulate SP maps. To refine these maps for each plant species,
we applied species distribution maps as spatial filters. We
further synthesized these SP maps into GP maps, utilizing
weighted average and quantile methods that incorporated the
distribution probabilities of the species as weights. The SP
maps underwent a rigorous cross-validation process to en-
sure accuracy, while the reliability of the GP maps was ver-
ified through comparative analysis with existing LSP prod-
ucts. The contribution of this study is the introduction of
a novel grid phenology dataset for China. This dataset en-
hances the spectrum of available phenology data within the
country and serves as an independent source for validating
LSP products. Moreover, it is expected to significantly ad-
vance research on plant phenology and global change by pro-
viding a more detailed portrayal of the spatiotemporal trends
in plant phenology patterns.
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Figure 1. Geographic distribution of CPON sites (n= 122) included in the phenology dataset across China. Sites with fewer than 10 recorded
species are marked with pink asterisks, while sites with more than 10 recorded species are marked with red asterisks. Note that the markings
on the map of several adjacent sites may overlap each other. The background map shows the IGBP land cover type from the MODIS Land
Cover product (Friedl and Sulla-Menashe, 2022).

2 Methods

2.1 Data acquisition and processing

2.1.1 Phenology observations

The in situ phenology observations from 1963 to 2018 were
obtained from the CPON. We selected 24 representative
woody plant species across 17 families (Table 1). These
species are not only prevalent in China’s forest ecosystems
(Fang et al., 2011), but also extensively recorded in the
CPON database. The longitudinal span of these observations
encompasses 55 years across 122 sites, with a total of 24 552
individual records, covering a diverse spectrum of land cover,
ecological, and climatic conditions across China (Fig. 1).
Each species in the study has a substantial representation
in the dataset, with at least 40 years of phenological data
from a minimum of 13 distinct sites. We focused on three
phenophases for each species: spring FLD, spring FFD, and
autumn LCD. To ensure the integrity of the dataset, we ap-
plied three-sigma limits, a statistical filter that retains data
within 3 standard deviations from the species mean pheno-
logical dates (Pukelsheim, 1994). Outliers that fell beyond
these thresholds were excluded, as they constitute less than
1 % of the data points on a standard normal distribution, en-
suring a robust and reliable dataset for analysis.

2.1.2 Climate data

The daily mean temperature (T ) data spanning from 1950 to
2020 were sourced from two distinct repositories. (1) Site-
specific temperature (Site T ) was retrieved from the China
Meteorological Data Service Center (CMDSC, https://data.
cma.cn/, last access: 1 January 2021). This dataset was pri-
marily utilized for parameterizing the phenology models. (2)
Gridded temperature (Grid T ) was derived from the ERA5-
Land climate reanalysis datasets (Muñoz Sabater, 2019),
available through the Copernicus Climate Change Service
(C3S, https://cds.climate.copernicus.eu/, last access: 1 Au-
gust 2022). Grid T was employed for phenology simula-
tion and upscaling processes, with a fine spatial resolution of
0.1°, approximately equating to 10 km. To obtain daily grid
T values, we computed the average from hourly temperature
data recorded at four distinct times of the day (04:00, 10:00,
16:00, 22:00).

The current bioclimatic variables (BIOCLIM+) were ob-
tained from Climatologies at High Resolution for the Earth
Land Surface Areas (CHELSA, https://chelsa-climate.org/,
last access: 9 August 2022) to determine the species distri-
bution (Brun et al., 2022a, b). These variables encapsulate
the average ecological and climatic conditions for the period
1981–2010, boasting a high resolution of 0.0083°. From the
available bioclimatic data, we extracted both the traditional
set of 19 bioclimatic layers (Bio1–Bio19) and an additional
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Table 1. List of 24 species of woody plants from 17 families in China. Number of records represents the total number of three phenophases
(FLD, FFD and LCD) of all sites and all years for each species.

No. Species Family Life form Number of sites Number of years Number of records

1 Ginkgo biloba Ginkgoaceae Tree 45 49 1110
2 Metasequoia glyptostroboides Cupressaceae Tree 37 47 860
3 Magnolia denudata Magnoliaceae Tree 42 47 980
4 Salix babylonica Salicaceae Tree 65 42 1526
5 Populus× canadensis Salicaceae Tree 43 51 954
6 Robinia pseudoacacia Fabaceae Tree 54 45 1757
7 Albizia julibrissin Fabaceae Tree 36 47 984
8 Cercis chinensis Fabaceae Shrub 52 49 1207
9 Prunus armeniaca Rosaceae Tree 46 45 950
10 Ulmus pumila Ulmaceae Tree 60 44 1428
11 Morus alba Moraceae Tree 50 50 1071
12 Broussonetia papyrifera Moraceae Tree 41 43 1103
13 Quercus acutissima Fagaceae Tree 17 40 292
14 Pterocarya stenoptera Juglandaceae Tree 29 46 936
15 Juglans regia Juglandaceae Tree 50 47 816
16 Betula platyphylla Betulaceae Tree 13 43 369
17 Acer pictum subsp. mono Sapindaceae Tree 18 46 492
18 Ailanthus altissima Simaroubaceae Tree 34 47 873
19 Melia azedarach Meliaceae Tree 61 46 1410
20 Firmiana simplex Malvaceae Tree 57 48 1403
21 Hibiscus syriacus Malvaceae Shrub 58 47 1096
22 Fraxinus chinensis Oleaceae Tree 23 40 505
23 Syringa oblata Oleaceae Shrub 50 51 1163
24 Paulownia fortunei Paulowniaceae Tree 49 48 1267

Total – – 122 55 24 552

set of 50 layers. To mitigate the effects of autocorrelation
among these bioclimatic variables, we computed the correla-
tion coefficient between each pair of layer. Variables exhibit-
ing a correlation coefficient over 0.8 relative to preceding
layers were omitted to prevent redundancy. Consequently, a
subset of 12 bioclimatic layers was selected for inclusion as
the environmental variables within the species distribution
models (detailed in Table S1 in the Supplement). These se-
lected layers were then resampled to a 0.1° resolution to en-
sure consistency with the resolution of the grid T data.

2.1.3 Forest and species distribution data

The forest distribution map of China was sourced from the
dataset of “Annual Dynamics of Global Land Cover and its
Long-term Changes from 1982 to 2015” dataset (Liu et al.,
2020). To discern forested regions, we reclassified the an-
nual land cover (LC) layers into “forest” and “non-forest”
categories. We then determined the duration of forest cover
by summing the annual layers, and pixels representing at
least 1 year of forest cover were identified as forest distribu-
tion areas. For forest type categorization, we employed the
widely recognized International Geosphere-Biosphere Pro-
gram (IGBP) classification system from the MODIS Land
Cover Type (MCD12C1) Version 6.1 data product (Friedl

and Sulla-Menashe, 2022). In our classification scheme, we
combined evergreen needleleaf forest (class 1) and evergreen
broadleaf forest (class 2) to delineate evergreen forest cate-
gory. Similarly, deciduous needleleaf (class 3) and deciduous
broadleaf forest (class 4) were amalgamated into deciduous
forest category. The mixed forest (class 5) category was re-
tained as is. To achieve a consistent spatial resolution across
our datasets, both the forest distribution map and forest type
map were resampled from their original 0.05° resolution to a
0.1° resolution using the majority method, so as to match the
resolution of the grid T data.

The county-level species distribution maps were sourced
from the comprehensive Database of China’s Woody Plants
(Fang et al., 2011). This authoritative database consolidates
distribution data from an exhaustive suite of national, provin-
cial, and regional floristic surveys and inventory reports pub-
lished in China up to 2009 (Cai et al., 2021). Addition-
ally, we obtained 4371 occurrence records for 24 selected
woody plant species from the Global Biodiversity Informa-
tion Facility (GBIF, 2022; https://www.gbif.org/, last access:
7 September 2022), which were subsequently utilized as the
occurrence data inputs for species distribution modeling (de-
tailed in Table S2). To ensure the reliability of our data, we
included only those occurrence records that had location co-
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ordinates with an uncertainty of less than 2000 m. Moreover,
the dataset was meticulously cleansed to eliminate any dupli-
cate records, thereby enhancing the robustness of the species
distribution models employed in our analysis.

2.2 Generating species phenology maps using a
model-based upscaling method

The generation of SP maps involves two major processes: (1)
generating species potential phenology maps, and (2) gen-
erating species distribution maps. The definitive SP maps
emerged from the spatial intersection of these two distinct
map types, effectively overlaying the potential phenology
with the actual distribution to pinpoint precise phenological
patterns. The workflow for the processes is shown in Fig. 2.

2.2.1 Species potential phenology maps

In the first process, we employed a model-based upscaling
method to transform in situ phenology observations into grid-
ded phenology maps. Phenology models were constructed
utilizing the phenophases (i.e., FLD, FFD, LCD) recorded by
the CPON, in conjunction with the site T from the CMDSC
climate observations. For each species under study, we devel-
oped a suite of phenology models for the respective seasonal
phases. Three models were designated for spring phenology:
the UniChill, Unified (Chuine, 2000) and temporal–spatial
coupling (TSC) models (Ge et al., 2014). And two mod-
els were designated for autumn phenology: the multiple re-
gression (MR) (Estrella and Menzel, 2006) and temperature–
photoperiod (TP) models (Delpierre et al., 2009). The details
of the modeling formulae and their respective parameters are
elaborated upon in Sect. S1 in the Supplement. The model-
ing strategy involved a cross-validation approach, where data
from odd years were used for model training, while data from
even years were set aside for model validation purposes. The
estimation of all model parameters was executed via the sim-
ulated annealing algorithm (Chuine et al., 1998), ensuring a
robust optimization process for the phenology models.

For model validation, the root mean square error (RMSE)
and goodness of fit (R2) of the models were calculated be-
tween the model-predicted values and the original observed
values. We conducted an internal validation using the data
from odd years to evaluate the fitting efficacy of the mod-
els. On the other hand, we conducted a cross-validation on
data from even years to evaluate the capability of the mod-
els to simulate and extrapolate phenology data beyond the
sample used for model development. The optimal phenology
model for each species was determined as the one with the
smallest RMSE during the cross-validation process and an
R2 exceeding 0.5 (or 0.3 for LCD) during both validation
processes. Species for which no model met these predefined
criteria were omitted from the subsequent generation of SP
and GP maps.

To simulate SP maps, we input daily grid T data from
ERA5-Land climate reanalysis into the previously deter-
mined optimal phenology models for each species. The sim-
ulation was conducted on a pixel-by-pixel basis, enabling the
interpolation and upscaling of phenology observations from
discrete sites to comprehensive gridded phenology maps
(Chuine et al., 2000). It is important to note, however, that
the availability of grid T data allows for the simulation of
species phenology, even in areas lacking observed species
distribution. Therefore, we refer to the resultant maps as
species potential phenology maps. This distinction empha-
sizes that while the simulated values represent potential phe-
nological events based on climatic variables, they should not
be misconstrued as actual observed values in regions where
the species does not exist.

2.2.2 Species distribution maps

In the second process, species distribution maps were gener-
ated by integrating species distribution models with county-
level species distribution data. For each species, we con-
structed models using the maximum entropy species distri-
bution modeling (Maxent; Phillips et al., 2006) version 3.4.4.
Maxent is a widely utilized tool in species distribution mod-
eling due to its efficacy in estimating the distributional range
of a species by finding the distribution pattern with maximum
entropy (i.e., closest to the uniform). Maxent models the like-
lihood of species presence across geographical grids, assign-
ing a predicted probability of occurrence to each grid cell.
To configure the Maxent model, we utilized occurrence data
from the GBIF database, paired with environmental data in-
puts from the 12 bioclimatic layers provided by BIOCLIM+.
In the model parameter settings, both linear and quadratic
feature types were used to capture the relationship between
species presence and environmental variables. Additionally,
to validate the model and assess its predictive performance,
we employed a 5-fold cross-validation method.

To evaluate the accuracy of the Maxent species distribution
models, we applied receiver operating characteristic (ROC)
curve analysis. The integral of the ROC curve, referred to
as the area under the curve (AUC), serves as a quantitative
measure of the prediction accuracy of the model (Fielding
and Bell, 1997). An AUC value approaching 1.0 is indicative
of a model with high predictive accuracy. In our study, the
Maxent models demonstrated robust predictive power, with
an average test AUC of 0.845 and a standard deviation of
0.043 across the different species (Table S2).

2.3 Generating ground phenology maps using weighted
average and weighted quantile methods

In our study, we aggregated individual-level SP maps into
landscape-level GP maps using four aggregation methods:
(1) weighted average (mean); (2) weighted median (pct50);
(3) weighted 20th percentile (pct20) for spring phenology
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Figure 2. The workflow of generating SP maps using a model-based upscaling method, which involves two major processes: (1) generating
species potential phenology maps, and (2) generating species distribution maps. The words in blue represent the key processes of data
generation. “.tiff” indicates the GeoTIFF format of the grid phenology or distribution maps.

or weighted 80th percentile (pct80) for autumn phenology;
(4) weighted 10th percentile (pct10) for spring phenology or
weighted 90th percentile (pct90) for autumn phenology. Pre-
vious studies typically utilized species abundance as weights
for aggregation at a local scale, but obtaining such data
at the regional scale proves challenging. Therefore, we re-
placed species abundance with species distribution probabil-
ity as aggregation weight for each species. This assumption
stems from the positive correlation between species distri-
bution and abundance (Brown, 1984), indicating that species
tend to exhibit higher abundance in the core of their geo-
graphic range (Sagarin and Gaines, 2002). The aggregation
techniques applied in this study (e.g., pct50, pct20\80 and
pct10\90) are analogous to the methods used for extract-
ing LSP from remote sensing data (e.g., midpoint, dynamic
threshold and maximum curvature). The procedures followed
in the generation of GP maps are illustrated in Fig. 3.

For n species, the phenological data were first arranged
in ascending order. The SP of each species is yi (i =
1, 2, . . ., n), and the distribution probability of each species
is pi (i = 1, 2, . . ., n). Then, the aggregated GP (Ymean and
Ypct (x %)) was calculated according to the following formu-
las:

ωi =
pi∑n
i=1pi

(1)

Wj =

∑j

i=1
ωi,j = 1,2, . . .,n (2)

Ymean =
∑n

i=1
ωi × yi (3)

Ypct =


y1, if W1 > x

(yj − yj−1) × x−Wj−1
ωj

, if Wj > x,Wj−1 < x

yn, if Wn−1 < x,

(4)

where ωi is a weight to each species, Wj is the cumula-
tive weight from the 1st to the j th species, and x % is the
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Figure 3. The workflow of generating GP maps from SP maps, and comparing GP maps with two LSP products. The words in blue represent
the key processes of data generation.

percentile tag which takes values from 10 %, 20 %, 50 %,
80 % and 90 %. These calculations enable the construction
of aggregated GP maps by combining species phenology
maps with species distribution maps and weighting them by
species distribution probability.

To evaluate the data quality and reliability of the aggre-
gated GP maps, we undertook a comparative analysis with
two established LSP products derived from remote sensing
data: (1) the VIPPHEN_NDVI dataset (1981–2014), which
utilized the midpoint method to extract the start of season
(SOS) and the end of season (EOS) from the AVHRR data
(Didan and Barreto, 2016); (2) the VNP22C2 dataset (2013–
2020), which utilized the maximum curvature method to de-
rive SOS and EOS from the MODIS data (Zhang et al.,
2020). To align the spatial resolution of these datasets with
our GP maps, we resampled both LSP products from 5 km to
0.1° using the average method. Subsequently, we conducted
a correlation analysis to assess the consistency between our
GP data and the LSP products, specifically comparing the
FLD with SOS for the spring, and the LCD with EOS for
the autumn. The comparison involved averaging the LSP and
GP maps across two distinct periods: 1981–2014 and 2013–
2020. The statistical measures calculated for this assessment
included the Pearson correlation coefficient (r), RMSE, and
linear regression slope between GP and LSP across different
forest types (Table S3).

3 Results and discussion

The dataset encompasses two distinct types of phenol-
ogy maps over China: (1) annual SP maps for 24 woody
plants species, constructed using the model-based upscaling
method; (2) annual GP maps for forest vegetation, generated
by four aggregation methods, accompanied by quality assur-
ance (QA) maps. These maps detail the phenological events
of FLD, FFD in spring, and LCD in autumn, spanning from
1951 to 2020, with a spatial resolution of 0.1° and a tempo-
ral resolution of 1 d. Each phenology map is stored as a 16 bit
signed integer within GeoTIFF file format, comprising a two-
dimensional raster (641 row× 361 column). The phenology
data are expressed in Julian day of the year (DOY), indicating
the elapsed number of days from 1 January to the occurrence
of phenological event. The dataset valid DOY values range
from 1 to 366, while null values are denoted by −1.

3.1 Simulation and validation of species phenology
maps

The SP maps of FLD (24 species), FFD (19 species), and
LCD (12 species) were generated by applying the optimal
phenology models. Here, we present the results of the SP
maps for four emblematic woody species (Fig. 4), including
ginkgo (Ginkgo biloba), willow (Salix babylonica), elm (Ul-
mus pumila), and lilac (Syringa oblata). These maps have
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been refined using species distribution maps to ensure that
the simulated phenologies were relevant only to areas where
the species are known to exist. The presented maps illustrate
a clear spatial pattern in the timing of phenophases correlated
with latitude. Specifically, the onset of spring event such as
FLD and FFD for these species is markedly delayed with
increasing latitude. Conversely, the autumn LCD occurs ear-
lier as the latitude increases. While these spatial patterns are
consistent across species, there are notable temporal differ-
ences at the same latitudes, For example, at lower latitudes,
the elm exhibits an earlier FFD in spring and a later LCD
in autumn compared to the other species. Phenophases for
some species were not included in the simulation, because of
the suboptimal explanatory power of their phenology mod-
els, e.g., R2<0.5 for spring FFD, and R2<0.3 for autumn
LCD.

The effectiveness of the simulated SP maps was evalu-
ated by cross-validation on the optimal phenology models
(Table 2). The results showed that spring phenology yielded
significantly more accurate simulations than autumn phenol-
ogy (Fig. 5). Quantitatively, the RMSE values for the optimal
model of FLD (6.38 d) and FFD (7.46 d) in spring were sig-
nificantly smaller than that of LCD (10.80 d) in autumn. Cor-
respondingly, the R2 for spring FLD (0.799) and FFD (0.676)
was significantly higher compared to autumn LCD (0.372).
When comparing the simulation effects of FLD and FFD in
spring, no significant difference was observed. Among the
optimal spring phenology models, the FFD simulations de-
rived from the UniChill and TSC models demonstrated sig-
nificantly better performance than those from the Unified
model. Conversely, for autumn phenology, the simulations
effects LCD were comparable between the MR and TP mod-
els.

3.2 Aggregation of ground phenology maps

The results of GP maps generated by four distinct aggre-
gation methods (mean, pct50, pct20\80, pct10\90) exhib-
ited similar spatial patterns (Fig. 6). These maps demonstrate
a consistent pattern of phenological variation in relation to
both latitude and altitude. Specifically, with increasing lati-
tude or altitude, spring GP (FLD and FFD) occurred progres-
sively later, while autumn GP (LCD) occurred earlier. When
comparing the various aggregation methods, the GP maps ag-
gregated by the mean and pct50 methods showed a high de-
gree of consistency, with r being 0.992. By contrast, the GP
maps aggregated by the pct20\80 and pct10\90 methods ex-
hibited slightly more spatial variability and were less corre-
lated with the former methods, with r being 0.968 and 0.949,
respectively. The remarkable consistency between the maps
aggregated through mean and pct50 methods suggests that
both the weighted mean and weighted quantile approaches
are robust and reliable for the aggregation of GP.

We have introduced two types of QA maps to assess the
reliability of the aggregated GP maps (Fig. S1). The first QA

map represents the total distribution probability of all species
considered in the aggregation process, while the second QA
map indicates the total number of species that have a distri-
bution probability exceeding 0.1. In these QA maps, higher
values correlate with a greater total number or higher cumu-
lative probability of species within the aggregation, which
signifies a higher reliability of GP maps for those particular
areas. Notably, the most dependable GP aggregation results
are distributed around the 30° N latitude within China. In this
region, the total number of species contributing to FLD and
FFD is about 15, whereas for LCD, the number is around
6. However, it should be noted that the QA maps also iden-
tify areas where the GP aggregation may be less dependable.
Specifically, in regions where the total number of species is
fewer than 5 or the total probability is below 1, the reliability
of the aggregated GP results may be compromised.

3.3 Data quality and usability

Our comparative analysis between GP and LSP focused on
the FLD and SOS in spring, as well as the LCD and EOS in
autumn across two periods (1981–2014 and 2013–2020). The
results revealed that GP and two LSP products exhibited con-
gruent spatial patterns in central and northern China, while
discrepancies were more pronounced in southern China
(Fig. 7), particularly regarding LCD and EOS in autumn
(Fig. 7e–h). This is likely due to the prevalence of decidu-
ous forests in central and northern China (Fig. 1). By con-
trast, southern China is characterized by a higher presence
of evergreen and mixed forests. The GP maps in this study
were derived from the phenological data of 24 deciduous
woody plants species, which are well-represented in decid-
uous forests but less so in evergreen or mixed forests. More-
over, LSP metrics obtained from remote sensing data are gen-
erally more error-prone in evergreen and mixed forests due to
the lack of obvious seasonal change and frequent cloud cover
in these regions (Y. Liu et al., 2016). Consequently, the corre-
lation between GP and LSP in evergreen or mixed forests was
found to be relatively weak (Fig. S2), with the highest r be-
ing 0.44 in spring and 0.54 in autumn. and the lowest RMSE
being 28.5 d in spring and 38.5 d in autumn (Table S2). In
deciduous forests, however, the alignment between GP and
LSP was substantially stronger, with the highest r being 0.95
in spring and 0.88 in autumn, and the lowest RMSE being
8.8 d in spring and 15.1 d in autumn, respectively.

To further assess the data quality, we scrutinized the con-
gruence between GP and LSP specifically within deciduous
forests. The analysis indicated that GP and LSP exhibit a ro-
bust consistency for both VIPPHEN and VNP22C2 products,
characterized by strong correlations, minor differences, and
solid linear relationships (Fig. 8). The LSP derived from the
VIPPHEN product demonstrated superior consistency with
our study’s GP compared to the VNP22C2 product’s LSP.
Furthermore, for both LSP products, the consistency between
GP and LSP was significantly better in spring (Fig. 8e, g)
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Figure 4. Species phenology (SP) maps of four typical woody species averaged from 1951 to 2020. Columns 1–2 ((a–h)) show the spring
phenophases (FLD and FFD), and column 3 ((i–l))shows the autumn phenophase (LCD). Each row represents a species from ginkgo (Ginkgo
biloba), willow (Salix babylonica), elm (Ulmus pumila), and lilac (Syringa oblata). The unit of phenology data is the Julian day of year
(DOY) from 1 January.

than in autumn (Fig. 8f, h). When evaluating the influence
of different aggregation methods on the GP and LSP cor-
relation, no significant difference was observed in r among
the methods (Fig. 8a, b). The consistency, as measured by
r , was comparable across all methods, with values ranging
from 0.76 to 0.78 in spring and from 0.49 to 0.53 in au-
tumn for the VIPPHEN product. For the VNP22C2 product,
r values ranged from 0.90 to 0.91 in spring and from 0.79 to
0.84 in autumn. Contrastingly, the RMSE between GP and
LSP varied notably across the different methods (Fig. 8c, d),
which is largely attributable to the disparities in the average
GP values generated by each method. The most effective ag-
gregation methods, which yielded the smallest RMSE, were
pct10 (20.8 d) in spring and pct90 (32.9 d) in autumn for the
VIPPHEN product. For the VNP22C2 product, pct20 (8.8 d)
in spring and pct90 (15.1 d) in autumn were identified as the
best methods.

The findings of this study highlight that the most accurate
reflection of GP in comparison with LSP from remote sens-
ing data occurs with the use of the 10th or 20th percentile for

spring phenology and the 90th percentile for autumn phe-
nology. This suggests that the onset of spring as detected
by remote sensing aligns more closely with the FLD of the
earliest emerging plant species (the first 10 %–20 %) on the
ground. Conversely, the signal of vegetative dormancy in au-
tumn from remote sensing is in greater concordance with the
LCD of the last senescent plant species (the last 10 %). These
insights are significant because they reveal a discernible link
between GP and LSP, despite inherent differences in how
these two types of phenology are measured. The consistency
between early spring and late autumn events in GP and LSP
underscores the potential for integrating these two phenolog-
ical data sources to enhance our understanding of ecosystem
dynamics and the effects of climate change on vegetative cy-
cles.

The dataset represents a robust compilation of species
and ground phenology simulations for forests of China over
the past 70 years, distinguishing itself as an independent
phenological data source derived from ground observations
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Table 2. The optimal phenology models and cross-validation results of 24 species. RMSE represents the root mean square error between the
model simulated values and original values. R2 represents goodness of fit of the optimal phenology model.

No. Species FLD FFD LCD

Optimal model RMSE R2 Optimal model RMSE R2 Optimal model RMSE R2

1 Ginkgo biloba TSC 7.30 0.669 TSC 7.53 0.553 DM 12.54 0.401
2 Metasequoia glyptostroboides TSC 6.10 0.687 Unified 9.59 0.126 DM 9.99 0.295
3 Magnolia denudata UniChill 6.47 0.781 TSC 7.33 0.576 DM 9.31 0.284
4 Salix babylonica TSC 8.97 0.854 TSC 9.40 0.787 MR 18.23 0.380
5 Populus× canadensis UniChill 5.94 0.808 UniChill 6.14 0.728 MR 9.45 0.139
6 Robinia pseudoacacia TSC 5.47 0.863 TSC 6.18 0.785 DM 11.74 0.297
7 Albizia julibrissin UniChill 7.48 0.500 Unified 8.23 0.376 MR 9.18 0.567
8 Cercis chinensis TSC 7.90 0.723 UniChill 7.39 0.751 DM 9.09 0.175
9 Prunus armeniaca TSC 6.05 0.865 UniChill 4.78 0.929 MR 14.52 0.191
10 Ulmus pumila UniChill 5.09 0.901 UniChill 8.38 0.862 DM 11.16 0.654
11 Morus alba TSC 6.70 0.905 UniChill 7.99 0.860 DM 9.04 0.175
12 Broussonetia papyrifera UniChill 7.60 0.804 TSC 6.18 0.821 DM 9.97 0.615
13 Quercus acutissima UniChill 6.73 0.931 UniChill 5.12 0.950 MR 14.35 0.765
14 Pterocarya stenoptera UniChill 7.52 0.804 UniChill 7.89 0.710 MR 11.57 0.415
15 Juglans regia TSC 6.04 0.739 UniChill 8.54 0.595 DM 8.41 0.141
16 Betula platyphylla UniChill 3.80 0.915 UniChill 3.70 0.906 DM 8.27 0.655
17 Acer pictum subsp. mono TSC 2.29 0.894 TSC 3.78 0.814 DM 4.71 0.670
18 Ailanthus altissima UniChill 5.22 0.867 UniChill 8.34 0.664 DM 10.39 0.066
19 Melia azedarach TSC 6.81 0.828 TSC 6.70 0.851 MR 10.19 0.135
20 Firmiana simplex UniChill 6.02 0.694 Unified 8.10 0.314 DM 12.30 0.190
21 Hibiscus syriacus TSC 9.66 0.666 Unified 13.38 0.331 DM 12.76 0.464
22 Fraxinus chinensis TSC 6.25 0.852 Unified 12.35 0.319 MR 9.76 0.533
23 Syringa oblata UniChill 7.01 0.864 UniChill 5.11 0.920 MR 12.36 0.475
24 Paulownia fortunei UniChill 4.63 0.762 UniChill 7.02 0.693 MR 10.01 0.250

Figure 5. The RMSE (a) and R2 (b) of cross-validation on the optimal phenology models for 24 woody species. Each model is represented
by a different color, with warm colors for three spring phenology models (Unified, UniChill, TSC), and cool colors for two autumn phenology
models (MR, TP). The model with the smallest RMSE was selected as the optimal model for each species. The horizontal line represents the
median value, the diamond represents the mean value, and the dot represents the outlier in the boxplot.

Earth Syst. Sci. Data, 16, 277–293, 2024 https://doi.org/10.5194/essd-16-277-2024



M. Zhu et al.: Mapping species and ground phenology of China 287

Figure 6. Ground phenology (GP) maps of four aggregation methods averaged from 1951 to 2020. Columns 1–2 ((a–h)) show the spring
phenophases (FLD and FFD), and column 3 ((i–l))shows the autumn phenophase (LCD). Each row represents an aggregation method from
weighted average (mean), weighted median (pct50), weighted 20 % or 80 % percentile (pct20\80), and weighted 10 % or 90 % percentile
(pct10\90). The unit of GP is the Julian day of year (DOY) from 1 January.

through modeling and aggregation. When applying these
data, several factors must be considered:

1. For SP maps, the accuracy is contingent upon the RMSE
and R2 resulting from cross-validation against the opti-
mal phenology model for each species (Table 2). Ad-
ditionally, the spatial reliability of phenology data is in-
fluenced by the density of observational sites per species
(Table 1). For instance, while the FLD of Betula platy-
phylla exhibits high overall accuracy (RMSE= 3.80
and R2

= 0.915), the accuracy may be compromised
locally in areas with fewer observation sites (n= 13).
Across the 24 species studied, SP maps consistently
aligned with the in situ observations, with an average er-
ror of 6.4 d for FLD, 7.5 d for FFD, and 10.8 d for LCD.
These errors are comparable to or lower than those re-
ported in phenological studies from other regions. For
example, simulation error of spring FLD and FFD was

7–9 d in central Europe (Basler, 2016) and 12.3–12.7 d
in the United States (Izquierdo-Verdiguier et al., 2018),
while the simulation error of autumn LCD was 10.3–
13.0 d in France (Delpierre et al., 2009) and 5.9–22.8 d
in the United States (Jeong and Medvigy, 2014). Con-
sequently, compared with other studies on the regional
scale, the SP maps of China in this study were found to
have relatively high accuracy.

2. For GP maps, data reliability can be assessed using QA
maps, which reflect the total number or probability of
species. Additionally, reliability can be evaluated by
comparing GP maps with other LSP products, with a
high degree of consistency indicating strong reliability.
However, it is crucial to note that GP data primarily rep-
resent phenological estimates for deciduous forest com-
ponents, resulting in higher reliability within deciduous
forests and lower within evergreen or mixed forests. In
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Figure 7. Comparison of GP maps in this study and two LSP products (VIPPHEN and VNP22C2) extracted from remote sensing in previous
studies, which was made between FLD and SOS in spring and LCD and EOS in autumn. Row 1 shows the comparison between VIPPHEN
product and GP map averaged for 1981–2014, and row 2 shows the comparison between VNP22C2 product and GP map averaged for 2013–
2020. (a–b) SOS from two LSP products; (c–d) FLD aggregated by mean method; (e–f) EOS from two LSP products; (g–h) LCD aggregated
by mean method. The unit of GP or LSP is the Julian day of year (DOY) from 1 January.

this study, GP maps for forests in China demonstrated
strong consistency with existing LSP products, espe-
cially within deciduous forests. The correlation coef-
ficients of FLD and LCD were 0.91 and 0.84, respec-
tively. Furthermore, the discrepancies between GP and
LSP for FLD and LCD were relatively minor in decid-
uous forests, at 8.8 and 15.1 d, respectively. Previous
studies have reported lower consistency between LSP
and single species phenology, with correlations ranging
from 0.50 to 0.51 in the United States (Peng et al., 2017)
and Germany (Kowalski et al., 2020), and discrepan-
cies spanning 12–14.5 d in the United States (Peng et
al., 2017) and Canada (Delbart et al., 2015). On the
other hand, research comparing GP aggregates (average
or quantile values) of multiple species has yielded bet-
ter correlation coefficients, ranging from 0.61 to 0.71
in Europe (Rodriguez-Galiano et al., 2015; Tian et al.,
2021), and 0.54 to 0.57 for the 30th percentile GP in
China (Wu et al., 2016). These studies reported discrep-
ancies between GP and LSP of 10.3–12.4 d in China
(Wu et al., 2016), 13.9 d in Europe, and around 12.3 d
in the United States (Ye et al., 2022), which are greater
than the FLD discrepancies but less than those for LCD
found in our study. While the aggregated GP data de-
rived from species-level phenology data in this study are
generally reliable, it is important to recognize that lim-
itations still exist in the available species-specific data,

particularly when applied to evergreen or mixed forest
regions.

3. For phenology maps in different seasons, the phenology
data exhibit significantly higher reliability for spring
events compared to those in autumn. The underlying
reason is that the biological processes underlying au-
tumn phenology are more complex than those of spring
(Menzel, 2002). Moreover, the mechanistic drivers of
autumn phenology are intricate, which poses an addi-
tional challenge (Gill et al., 2015; Wu et al., 2018).
For example, temperature has large effects on the au-
tumn phenology than on the spring phenology (Fu et
al., 2018). In addition to temperature, other environ-
mental factors such as precipitation (An et al., 2020),
photoperiod (Lang et al., 2019), solar radiation (Z. Wu
et al., 2021), spring phenology (Q. Liu et al., 2016),
and growing-season productivity (Zani et al., 2020) also
play significant roles in shaping autumn phenology.
Given the multiplicity and complexity of these driving
mechanisms, modeling autumn phenology becomes a
more daunting task (Melaas et al., 2016). As a result,
SP and GP maps for autumn manifest lower model per-
formance and data quality relative to their spring coun-
terparts.
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Figure 8. Comparison results of GP maps and two LSP products (VIPPHEN and VNP22C2) in deciduous forests, which was made between
FLD and SOS in spring and LCD and EOS in autumn within the time range 1981–2014 and 2013–2020. (a–b) r between LSP and GP
under four aggregating methods; (c–d) RMSE between LSP and GP under four aggregating methods; (e–h) linear relationship between LSP
and GP under the best aggregating method. Each aggregating method is represented by a different color. The best aggregating method was
determined by minimizing the RMSE between GP and LSP. The error bar in the bar plot represents the multi-year standard deviation. The
red line in the scatter plot represents the linear regression line between GP and LSP, and all regression results were extremely significant
(p<0.001).

4 Data availability

The annual SP and GP maps over China can be ac-
cessed at https://doi.org/10.57760/sciencedb.07995 (Zhu and
Dai, 2023). This dataset is licensed under a CC-BY 4.0
license. The spatial reference system of the dataset is
EPSG:4326(WGS84).

5 Conclusions

Leveraging historical observations from the CPON, this
study introduces a novel, long-term gridded phenology
dataset that includes SP maps for 24 woody plants species
and GP maps of forests over China, covering the period from
1951 to 2020. The dataset features a spatial resolution of 0.1°
and a temporal resolution of 1 d. The SP maps were produced
using a model-based upscaling method to extend the phenol-
ogy data from in situ observations to a regional scale across

China. The GP maps were generated by employing weighted
average and quantile methods to aggregate phenology data
from the species to community and landscape levels. Quality
assessments of the dataset indicate an average error for SP
maps of 6.9 d in spring and 10.8 d in autumn. The smallest
discrepancies between the GP maps and existing LSP prod-
ucts are 8.8 d for spring and 15.1 d for autumn. Compared
to the previous studies (Basler, 2016; Delpierre et al., 2009;
Izquierdo-Verdiguier et al., 2018; Jeong and Medvigy, 2014;
Tian et al., 2021; Wu et al., 2016; Ye et al., 2022), the SP
maps from this research exhibit comparable or smaller sim-
ulation errors, and the GP maps show strong concordance
with other LSP products, underscoring the high accuracy
and reliability of the dataset. As the inaugural phenologi-
cal map set for China, this dataset provides an invaluable
tool for discerning the spatial patterns of plant phenology
along the geographic gradient (e.g., longitude, latitude, and
altitude). It also enables the examination of temporal trends
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(e.g., interannual, decadal, and secular) in plant phenology
throughout China. Moreover, the dataset offers critical sup-
port for research on the impacts of global change, aids in
terrestrial ecosystem modeling, and contributes to natural re-
source management strategies.

Supplement. The supplement related to this article is available
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