Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-317-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-317-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AI4Boundaries: an open AI-ready dataset to map field boundaries with Sentinel-2 and aerial photography
Raphaël d'Andrimont
CORRESPONDING AUTHOR
European Commission Joint Research Centre (JRC), Ispra, Italy
Martin Claverie
European Commission Joint Research Centre (JRC), Ispra, Italy
Pieter Kempeneers
European Commission Joint Research Centre (JRC), Ispra, Italy
Davide Muraro
European Commission Joint Research Centre (JRC), Ispra, Italy
Momchil Yordanov
European Commission Joint Research Centre (JRC), Ispra, Italy
Devis Peressutti
Sinergise, Ljubljana, Slovenia
Matej Batič
Sinergise, Ljubljana, Slovenia
François Waldner
European Commission Joint Research Centre (JRC), Ispra, Italy
Related authors
Martin Claverie, Ayshah Chan, Linda See, Helena Ramos, Renate Koeble, Momchil Yordanov, Jon Olav Skøien, Ferdinando Urbano, Raphael d'Andrimont, Maja Schneider, Marco Körner, and Marijn Van der Velde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-752, https://doi.org/10.5194/essd-2025-752, 2026
Preprint under review for ESSD
Short summary
Short summary
The Eurocrops v2.0 dataset contains several years of farmer crop declarations from 16 Member States for the Common Agricultural Policy. These data were harmonized with a crop taxonomy and then linked to other classification systems including agricultural statistics and remotely sensed products. This dataset can support researchers and policy makers in tracking changes over time, calculating crop rotations, for national comparisons, for evaluating official statistics and for remote sensing.
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024, https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) Copernicus 2022 is a large and systematic in situ field survey of 137 966 polygons over the European Union in 2022. The data contain 82 land cover classes and 40 land use classes.
Raphaël d'Andrimont, Momchil Yordanov, Laura Martinez-Sanchez, Peter Haub, Oliver Buck, Carsten Haub, Beatrice Eiselt, and Marijn van der Velde
Earth Syst. Sci. Data, 14, 4463–4472, https://doi.org/10.5194/essd-14-4463-2022, https://doi.org/10.5194/essd-14-4463-2022, 2022
Short summary
Short summary
Between 2006 and 2018, 875 661 LUCAS cover (i.e. close-up) photos were taken over a systematic sample of the European Union. This geo-located photo dataset has been curated and is being made available along with the surveyed label data, including land cover and plant species.
Raphaël d'Andrimont, Astrid Verhegghen, Michele Meroni, Guido Lemoine, Peter Strobl, Beatrice Eiselt, Momchil Yordanov, Laura Martinez-Sanchez, and Marijn van der Velde
Earth Syst. Sci. Data, 13, 1119–1133, https://doi.org/10.5194/essd-13-1119-2021, https://doi.org/10.5194/essd-13-1119-2021, 2021
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) is a regular in situ land cover and land use ground survey exercise that extends over the whole of the European Union. A new LUCAS module specifically tailored to Earth observation was introduced in 2018: the LUCAS Copernicus module. This paper summarizes the LUCAS Copernicus survey and provides the unique resulting data: 58 426 polygons with level-3 land cover (66 specific classes including crop type) and land use (38 classes).
Martin Claverie, Ayshah Chan, Linda See, Helena Ramos, Renate Koeble, Momchil Yordanov, Jon Olav Skøien, Ferdinando Urbano, Raphael d'Andrimont, Maja Schneider, Marco Körner, and Marijn Van der Velde
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-752, https://doi.org/10.5194/essd-2025-752, 2026
Preprint under review for ESSD
Short summary
Short summary
The Eurocrops v2.0 dataset contains several years of farmer crop declarations from 16 Member States for the Common Agricultural Policy. These data were harmonized with a crop taxonomy and then linked to other classification systems including agricultural statistics and remotely sensed products. This dataset can support researchers and policy makers in tracking changes over time, calculating crop rotations, for national comparisons, for evaluating official statistics and for remote sensing.
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024, https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) Copernicus 2022 is a large and systematic in situ field survey of 137 966 polygons over the European Union in 2022. The data contain 82 land cover classes and 40 land use classes.
Raphaël d'Andrimont, Momchil Yordanov, Laura Martinez-Sanchez, Peter Haub, Oliver Buck, Carsten Haub, Beatrice Eiselt, and Marijn van der Velde
Earth Syst. Sci. Data, 14, 4463–4472, https://doi.org/10.5194/essd-14-4463-2022, https://doi.org/10.5194/essd-14-4463-2022, 2022
Short summary
Short summary
Between 2006 and 2018, 875 661 LUCAS cover (i.e. close-up) photos were taken over a systematic sample of the European Union. This geo-located photo dataset has been curated and is being made available along with the surveyed label data, including land cover and plant species.
N. Addimando, M. Engel, F. Schwarz, and M. Batič
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1301–1308, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1301-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1301-2022, 2022
Raphaël d'Andrimont, Astrid Verhegghen, Michele Meroni, Guido Lemoine, Peter Strobl, Beatrice Eiselt, Momchil Yordanov, Laura Martinez-Sanchez, and Marijn van der Velde
Earth Syst. Sci. Data, 13, 1119–1133, https://doi.org/10.5194/essd-13-1119-2021, https://doi.org/10.5194/essd-13-1119-2021, 2021
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) is a regular in situ land cover and land use ground survey exercise that extends over the whole of the European Union. A new LUCAS module specifically tailored to Earth observation was introduced in 2018: the LUCAS Copernicus module. This paper summarizes the LUCAS Copernicus survey and provides the unique resulting data: 58 426 polygons with level-3 land cover (66 specific classes including crop type) and land use (38 classes).
Cited articles
Alemohammad, H.: Radiant ML Hub [data set],
https://www.radiant.earth/mlhub/ (last access: 11 January 2023), 2019. a
Aung, H. L., Uzkent, B., Burke, M., Lobell, D., and Ermon, S.: Farm parcel
delineation using spatio-temporal convolutional networks, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
76–77, 2020. a
Brems, E., Lissens, G., and Veroustraete, F.: MC-FUME: A new method for
compositing individual reflective channels, IEEE T. Geosci. Remote, 38, 553–569, https://doi.org/10.1109/36.823950, 2000. a
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., and Eklundh, L.: A
simple method for reconstructing a high-quality NDVI time-series data set
based on the Savitzky–Golay filter, Remote Sens. Environ., 91,
332–344, https://doi.org/10.1016/j.rse.2004.03.014, 2004. a
d'Andrimont, R., Claverie, M., Kempeneers, P., Muraro, D., Martinez Sanchez,
L., and Waldner, F.: AI4boundaries, http://data.europa.eu/89h/0e79ce5d-e4c8-4721-8773-59a4acf2c9c9 [data set], 2022. a
European Commission, Joint Research Centre (JRC): AI4boundaries, European Commission, Joint Research Centre (JRC) [data set], http://data.europa.eu/89h/0e79ce5d-e4c8-4721-8773-59a4acf2c9c9, 2022. a
European Space Agency: ESA SNAP, http://step.esa.int, last access: 11 January 2023. a
Flood, N.: Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a
Multi-Dimensional Median), Remote Sens., 5, 6481–6500,
https://doi.org/10.3390/rs5126481, 2013. a
Garcia-Pedrero, A., Lillo-Saavedra, M., Rodriguez-Esparragon, D., and
Gonzalo-Martin, C.: Deep learning for automatic outlining agricultural
parcels: Exploiting the land parcel identification system, IEEE Access, 7,
158223–158236, 2019. a
Hampel, F. R.: The influence curve and its role in robust estimation, J. Am. Stat. A., 69, 383–393, 1974. a
Helber, P., Bischke, B., Dengel, A., and Borth, D.: EuroSAT: A novel dataset
and deep learning benchmark for land use and land cover classification, IEEE
J. Sel. Top. Appl. Earth Obs.,
12, 2217–2226, 2019. a
Kempeneers, P., Pesek, O., De Marchi, D., and Soille, P.: pyjeo: A Python
Package for the Analysis of Geospatial Data, ISPRS International Journal of
Geo-Information, 8, 461, https://doi.org/10.3390/ijgi8100461, 2019. a
Masoud, K. M., Persello, C., and Tolpekin, V. A.: Delineation of agricultural
field boundaries from Sentinel-2 images using a novel super-resolution
contour detector based on fully convolutional networks, Remote Sens., 12,
59, https://doi.org/10.3390/rs12010059, 2019. a
Potapov, P., Turubanova, S., and Hansen, M. C.: Regional-scale boreal forest cover and change mapping using Landsat data composites for
European Russia, Remote Sens. Environ., 115, 548–561, https://doi.org/10.1016/j.rse.2010.10.001, 2011. a
Rußwurm, M., Pelletier, C., Zollner, M., Lefèvre, S., and Körner,
M.: Breizhcrops: A time series dataset for crop type mapping, arXiv preprint,
arXiv:1905.11893, 2019. a
Schneider, M., Broszeit, A., and Körner, M.: Eurocrops: A pan-european
dataset for time series crop type classification, arXiv preprint,
arXiv:2106.08151, 2021. a
Soille, P., Burger, A., De Marchi, D., Kempeneers, P., Rodriguez, D., Syrris,
V., and Vasilev, V.: A versatile data-intensive computing platform for
information retrieval from big geospatial data, Future Gener. Comp.
Sy., 81, 30–40, 2018. a
Sumbul, G., Charfuelan, M., Demir, B., and Markl, V.: Bigearthnet: A
large-scale benchmark archive for remote sensing image understanding, in:
IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE,
5901–5904, 2019. a
Sykas, D., Sdraka, M., Zografakis, D., and Papoutsis, I.: A Sentinel-2
multi-year, multi-country benchmark dataset for crop classification and
segmentation with deep learning, arXiv, https://doi.org/10.48550/ARXIV.2204.00951, 2022.
a, b
Tarasiou, M., Güler, R. A., and Zafeiriou, S.: Context-self contrastive pretraining for crop type semantic segmentation, IEEE T. Geosci. Remote, 60, 1–7, 2021. a
Tseng, G., Zvonkov, I., Nakalembe, C. L., and Kerner, H.: CropHarvest: A global
dataset for crop-type classification, in: Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), https://github.com/nasaharvest/cropharvest (last access: 12 January 2023), 2021. a
Tuvdendorj, B., Zeng, H., Wu, B., Elnashar, A., Zhang, M., Tian, F., Nabil, M.,
Nanzad, L., Bulkhbai, A., and Natsagdorj, N.: Performance and the Optimal
Integration of Sentinel-1/2 Time-Series Features for Crop Classification in
Northern Mongolia, Remote Sens., 14, 1830, https://doi.org/10.3390/rs14081830, 2022. a
Vajsová, B., Fasbender, D., Wirnhardt, C., Lemajic, S., and Devos, W.:
Assessing spatial limits of Sentinel-2 data on arable crops in the context of
checks by monitoring, Remote Sens., 12, 2195, https://doi.org/10.3390/rs12142195, 2020. a
Waldner, F. and Diakogiannis, F. I.: Deep learning on edge: Extracting field
boundaries from satellite images with a convolutional neural network, Remote Sens. Environ., 245, 111741, https://doi.org/10.1016/j.rse.2020.111741, 2020. a, b, c
Waldner, F., Diakogiannis, F. I., Batchelor, K., Ciccotosto-Camp, M.,
Cooper-Williams, E., Herrmann, C., Mata, G., and Toovey, A.: Detect,
consolidate, delineate: Scalable mapping of field boundaries using satellite
images, Remote Sens., 13, 2197, https://doi.org/10.3390/rs13112197, 2021. a
Wang, S., Waldner, F., and Lobell, D. B.: Unlocking Large-Scale Crop Field
Delineation in Smallholder Farming Systems with Transfer Learning and Weak
Supervision, Remote Sens., 14, 5738, https://doi.org/10.3390/rs14225738, 2022. a
Short summary
AI4boundaries is an open AI-ready data set to map field boundaries with Sentinel-2 and aerial photography provided with harmonised labels covering seven countries and 2.5 M parcels in Europe.
AI4boundaries is an open AI-ready data set to map field boundaries with Sentinel-2 and aerial...
Altmetrics
Final-revised paper
Preprint