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Abstract. Field boundaries are at the core of many agricultural applications and are a key enabler for the opera-
tional monitoring of agricultural production to support food security. Recent scientific progress in deep learning
methods has highlighted the capacity to extract field boundaries from satellite and aerial images with a clear
improvement from object-based image analysis (e.g. multiresolution segmentation) or conventional filters (e.g.
Sobel filters). However, these methods need labels to be trained on. So far, no standard data set exists to easily
and robustly benchmark models and progress the state of the art. The absence of such benchmark data further
impedes proper comparison against existing methods. Besides, there is no consensus on which evaluation met-
rics should be reported (both at the pixel and field levels). As a result, it is currently impossible to compare
and benchmark new and existing methods. To fill these gaps, we introduce Al4Boundaries, a data set of im-
ages and labels readily usable to train and compare models on field boundary detection. AI4Boundaries includes
two specific data sets: (i) a 10 m Sentinel-2 monthly composites for large-scale analyses in retrospect and (ii) a
1 m orthophoto data set for regional-scale analyses, such as the automatic extraction of Geospatial Aid Appli-
cation (GSAA). All labels have been sourced from GSAA data that have been made openly available (Austria,
Catalonia, France, Luxembourg, the Netherlands, Slovenia, and Sweden) for 2019, representing 14.8 M parcels
covering 376 K km?. Data were selected following a stratified random sampling drawn based on two landscape
fragmentation metrics, the perimeter/area ratio and the area covered by parcels, thus considering the diversity of
the agricultural landscapes. The resulting “Al4Boundaries” dataset consists of 7831 samples of 256 by 256 pixels
for the 10 m Sentinel-2 dataset and of 512 by 512 pixels for the 1 m aerial orthophoto. Both datasets are provided
with the corresponding vector ground-truth parcel delineation (2.5 M parcels covering 47 105km?), and with a
raster version already pre-processed and ready to use. Besides providing this open dataset to foster computer
vision developments of parcel delineation methods, we discuss the perspectives and limitations of the dataset for
various types of applications in the agriculture domain and consider possible further improvements. The data are
available on the JRC Open Data Catalogue: http://data.europa.eu/89h/0e79ce5d-e4c8-4721-8773-59a4acf2c9c9
(European Commission, Joint Research Centre, 2022).
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1 Introduction

Field boundaries are at the core of many agricultural appli-
cations such as mapping crop types and yield estimation.
With the development of digital farming platforms, extract-
ing and updating field boundaries automatically has gained
much traction to facilitate customer onboarding. Different
spatial and temporal data coverage could be needed accord-
ing to the desired application.

There are three broad methods to map field boundaries:
deep learning, object-based image segmentation, and con-
ventional (edge-detection) filters (Waldner and Diakogian-
nis, 2020). Deep learning methods can extract field bound-
aries from satellite/aerial images better than object-based im-
age analysis (e.g. multiresolution segmentation) or conven-
tional filters (Sobel filters) because they can learn to empha-
sise relevant image edges while suppressing others. For in-
stance, Waldner and Diakogiannis (2020) and Waldner et al.
(2021) have shown that convolutional neural networks can
learn complex hierarchical contextual features from the im-
age to accurately detect field boundaries and discard irrel-
evant boundaries, thereby outperforming conventional edge
filters. More recently, a similar approach has been used to un-
lock large-scale crop field delineation in smallholder farming
systems with transfer learning and weak supervision (Wang
et al., 2022). Deep learning methods need labels for training
and evaluation. No benchmark data set exists to easily do so.
The absence of such benchmark data impedes proper com-
parison with existing methods. Besides, there is no consensus
on which evaluation metrics should be reported (both at the
pixel and field levels). As a result, it is currently challenging
to benchmark new and existing methods.

Deep learning parcel delineation based on the land parcel
identification system has been evaluated in several countries
such as France (Aung et al., 2020), Netherlands (Masoud
et al., 2019), and Spain (Garcia-Pedrero et al., 2019). How-
ever, as there is no European harmonised land parcel iden-
tification system, there is no dataset to properly benchmark
methods over a variety of landscapes and latitudes.

The Geospatial Aid Application (GSAA) refers to the an-
nual crop declarations made by European farmers for Com-
mon Agricultural Policy (CAP) area-aid support measures.
The electronic GSAA records include a spatial delineation
of the parcels. A GSAA element is always a polygon of
an agricultural parcel with one crop (or a single crop group
with the same payment eligibility). The GSAA is operated
at the region or country level in the European Union’s (EU)
28 Member States (MS), resulting in about 65 different de-
signs and implementation schemes over the EU. Since these
infrastructures are set up in each region, data are not interop-
erable at the moment, and the legends are not semantically
harmonised. Furthermore, most GSAA data are not publicly
available, although several countries are increasingly open-
ing the data for public use. In this study, seven regions with
publicly available GSAA are selected, representing a con-
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trasting gradient across the European Union (i.e. agricultural
system depends on physical and human geography resulting
in contrasted landscapes). More detailed information about
the GSAA is provided in the Sect. 2.3.

Creating reference Al data sets in remote sensing has
been shown to accelerate method development and to help
push the boundary of the state of the art. For instance,
data sets such as BigEarthNet (Sumbul et al., 2019) and
EuroSAT (Helber et al., 2019) have been used for generic
land cover. For agriculture, most of the previously published
datasets over Europe are focusing on France (BreizhCrop
and PASTIS; RuBwurm et al., 2019; Tarasiou et al., 2021)
or France and Catalonia (Sen4AgriNet; Sykas et al., 2022).
In addition to the fact that no harmonised dataset is currently
available for multiple European countries, no dataset com-
bining remote sensing and very high-resolution aerial im-
agery has yet to be published.

To fill these gaps, we release two Al-ready data sets (pairs
of images and labels) for field boundary detection to facilitate
model development and comparison, as follows:

1. A multi-date dataset based on Sentinel-2 monthly com-
posites for large-scale analyses in retrospect.

2. A single-date dataset based on orthophoto for regional-
scale analyses such as the automation of GSAA.

All labels are sourced from public parcel data (GSAA) that
have been made openly available.

2 Data and study area

2.1 Sampling

The rationale behind this study is to propose ready-to-use
data set of Earth observation data with corresponding par-
cel boundaries. Public parcel data are first obtained over
several countries/regions (i.e. Austria, Catalonia, France,
Luxembourg, Netherlands, Slovenia, and Sweden) for the
year 2019. After drawing a grid of cells of 4 by 4 km in the
ETRS89-extended LAEA Europe projection (EPSG:3035), a
stratified random sampling is drawn based on the following
two variables:

1. the average parcel perimeter/area ratio (PAR) computed
for each cell is then distributed over 5 percentile bins,

2. the coverage percentage of parcels within the cell dis-
tributed in 10 classes.

We designed a random stratified sampling method to extract
the image chips from various landscapes. First, the 4 x 4 km
grid was overlaid over each country/region where parcel data
are available. In each grid cell, the field fraction (in percent)
and the perimeter/area ratio were computed as shown for
France in Fig. 1. These indicators jointly describe the preva-
lence of agriculture (i.e. land proportion covered by agricul-
ture) and the landscape fragmentation (i.e. perimeter area ra-
tio) of each grid cell. Fifty strata were defined by discretising
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Table 1. Distribution of the final stratified sampling for each region.

Country/region ~ Number of sampling units
Austria 2091
Catalonia 652
France 2078
Luxembourg 132
Netherlands 1157
Slovenia 301
Sweden 1420
Total 7831

the field fraction in 10 classes (from 0 % to 100 % by step of
10 %) and the perimeter area ratio in 5 classes defined by its
20th percentile in order to obtain a representative sampling.
The goal was to sample 85000 sampling units representing
an already important dataset to train deep learning models.
To this aim, 170 sampling were selected per stratum (Fig. 2).
In those strata where the number of samples is larger than the
number of available grid cells, the sampling units in excess
were evenly distributed to the other strata. Within each stra-
tum, grid cells were selected so as to maximise the balance
between source regions.

The resulting sampling results in 7831 samples distributed
as described in Table 1 and in Fig. 3.

The samples are mainly distributed from North to South
(Fig. 3).

2.2 Earth observation (EO) data

Image chips of a fixed pixel size are required to feed deep
learning models. EO data were extracted for the two specific
datasets, as shown in Fig. 4:

1. Sentinel-2 monthly composites to Au-

gust 2019), 256 by 256 pixels,

(March

2. Orthophoto single-temporal imagery resampled at 1 m
resolution, 512 by 512 pixels.

The difference in pixel extent (256 vs. 512) of the two
datasets is linked to the spatial resolution of Sentinel-2
(10m) and orthophoto (1 m), respectively, corresponding
thus to 2560 m by 2560 m and 512 m by 512 m. The extent
of the orthophoto extracted has to be extended from 256 to
512 to provide sufficient context.

2.2.1 Sentinel-2

This section describes how the monthly cloud-free Sentinel-
2 surface reflectance composites for March to August 2019
(thus 6 months of four bands: R, G, B, NIR) were produced.
Figure 5 provides an example of the dataset.

The Sentinel-2 level-2A surface reflectance (SR) were
derived from the Sentinel-2 level-1C top of atmosphere
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(TOA) reflectance data processed using the Sen2Cor pro-
cessor (Main-Knorn et al., 2017) from the ESA SNAP tool-
box (European Space Agency, 2023). The four spectral bands
that are available at a spatial resolution of 10m were se-
lected (B2, B3, B4, and B8). The Scene Classification Layer
(SCL) obtained from Sen2Cor was added as an extra band.
Sentinel-2 processing was performed on the BDAP (Soille
et al., 2018) using the open-source pyjeo (Kempeneers et al.,
2019) Python package.

Data cubes, consisting of merging all 2019 acquisitions
for all 4 x 4 km? chips, were created. The data cubes were
extended with the acquisitions of the preceding (Decem-
ber 2018) and successive (January 2020) months. The extra
observations served to mitigate the boundary effects at the
beginning and end of the time series while applying tempo-
ral operations. These months were removed after the filter
was applied.

Only pixels identified as dark (SCL=2), vegetated
(SCL =4), not-vegetated (SCL =5), water (SCL =6), and
unclassified (SCL=7) were considered as “clear”. In ad-
dition, outliers were detected using the Hampel identi-
fier (Hampel, 1974), based on the pixel values in the red (B4)
and near-infrared (B8) bands. The SCL was resampled to
10 m based on the nearest neighbour to obtain a regular grid-
ded data cube. The Hampel filter calculates the median and
the standard deviation in a moving window, expressed as the
median absolute deviation (MAD). For the moving window,
a width of 40 d was considered. Pixels below 2 and above 3
standard deviations from the median were identified as out-
liers for the NIR and the red bands, respectively. The respec-
tive values of 2 and 3 standard deviations for the lower and
upper bounds were selected ad hoc based on a visual inspec-
tion of the results. The outliers in the red and NIR band do-
mains were used to identify omitted clouds and omitted cloud
shadows, respectively. The masked pixels from the SCL and
the detected outliers were removed from the time series and
replaced by a linearly interpolated time series using “clear”
observations; in case of outliers near the beginning and end
of the time series, values were extrapolated to the nearest
“clear” observation. The resulting time series’ were then re-
sampled to obtain gap-filled data cubes by taking the mean
of the filtered and interpolated values every 5 d.

Despite the SCL masking and the outlier detection, the re-
sulting time series’ were still noisy. This is due to residual
of atmospheric correction and non-accounted bidirectional
reflectance distribution function (BRDF) effects. A subse-
quent smoothing filter was therefore applied, the recursive
Savitzky—Golay filter (Chen et al., 2004). The original im-
plementation has been developed for Normalised Difference
Vegetation Index (NDVI) time series. It was adapted in this
study to smooth surface reflectance values. A total of 15
observations at 5d temporal resolution were used for the
smoothing window size: 7 leftward (past) and 7 rightward
(future) observations. The order of the smoothing polynomial
was set to 2.
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Figure 1. The stratification of the sampling is done based on perimeter area ratio (a) and proportion of parcels (b) in 4 km x 4 km grid cells.
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Figure 2. Distribution of sampling units among the seven regions.

A monthly composite image was then calculated, result-
ing in 12 observations for the year 2019 for each spectral
band (B2, B3, B4, and BS8). The composite was calculated as
the median value of the smoothed values within each month.
The median composite further reduced the remaining noise
in the time series by aggregating the observations and reduc-
ing the temporal dimension. The median composite was cho-
sen for its robust statistics to outlying observations result-
ing from atmospheric contamination or phenological varia-
tion (Flood, 2013; Brems et al., 2000). In a study on forested
areas (Potapov et al., 2011), the median value composites
produced the least noisy outputs. More specific on crop clas-
sification, the median composite has been successfully ap-
plied to Sentinel-1/2 time series in Northern Mongolia (Tu-
vdendorj et al., 2022).

2.2.2 Aerial orthophoto imagery

Orthophoto extraction was done using public Web Map Tile
Service (WMTS) and Web Map Service (WMS) services for
the seven regions (see details in Table Al). The orthophotos
have a 1 m resolution and an extent of 512 by 512 pixels cen-
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tred on the centroid of the sampled cells. After downloading
a larger extent in the geographic reference system provided
by the service, the samples are reprojected to EPSG 3035,
cropped to the exact extent, and standardised on 3 RGB by
removing the NIR band when available to have a consistent
dataset. Finally, the histogram extraction of each sample has
been used to filter out 233 of the 7831 samples (correspond-
ing to 232 in Sweden and 1 in France), for which no data are
available. Figure 7, along with the vector label data, shows
random examples for each country.

The EU context in which aerial photography is collected
is specific and has high requirements in terms of spatial ac-
curacy. Indeed, in the EU, the aerial photography campaigns
are driven by the need of administration to control the farm-
ers’ declarations’ validity for aid application.The minimum
accuracy requirement is defined in Article 70 of Regulation
(EU) 1306/2013 as at least equivalent to that of cartogra-
phy at a scale of 1:10000 and, as from 2016, at a scale
of 1:5000. This translates into (1) a horizontal absolute
positional accuracy expressed as RMSE of 1.25m (5000 x
0.25 mm = 1.25 m) (2) or the equivalent CE9S5 value, display

https://doi.org/10.5194/essd-15-317-2023
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Figure 3. Spatial distribution of sampling units among the seven
regions.

range, and feature type content compatible with a map with a
scale 1 : 5000 (i.e. topographic maps rather than urban survey
maps), (3) using orthoimagery <0.5m GSD (see more de-
tails in https://marswiki.jrc.ec.europa.eu/wikicap/index.php/
Positional_Accuracy, last access: 11 January 2023).

2.3 Label data

The labels are obtained from vector parcels of the GSAA for
each specific region. The GSAA refers to the annual crop
declarations made by EU farmers for CAP area-aid support
measures. The electronic GSAA records include a spatial de-
lineation of the parcels. A GSAA element is always a poly-
gon of an agricultural parcel with one crop (or a single crop
group with the same payment eligibility). The GSAA is op-
erated at the region or country level in the EU-28, resulting in
about 65 different designs and implementation schemes over
the EU. Since these infrastructures are set up in each region,
at the moment, data are not interoperable, nor are legends
semantically harmonised. Furthermore, most GSAA data are
not publicly available, although several countries are increas-
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ingly opening the data for public use. In this study, seven re-
gions with publicly available GSAA are selected, represent-
ing a contrasting gradient across the EU. The Agri-food Data
Portal from the Directorate General for Agriculture and Ru-
ral Development references Member State Geoportals, pro-
viding links where the data could be downloaded (https:
/lagridata.ec.europa.eu/extensions/iacs/iacs.html, last access:
11 January 2023). After downloading the dataset, a reprojec-
tion to EPSG 3035 was done. From the original set of 14.8 M
parcels covering 376 K km? (Table 2), the 7831 of 4 km sam-
ples that contain 2.5 M parcels covering 47 105 km? were se-
lected. Finally, for both Sentinel-2 and orthophoto datasets,
vector data were rasterised. The label is composed of four
bands (example in Fig. 6b—e): vector label, boundary mask,
distance mask, and field enumeration. See Fig. A3 for de-
tailed overview of the label along with a Sentinel-2 RGB
composite.

2.4 Train, validation, and test

We provide the orthophotos Zip archive with their respective
masks to be used as a benchmark dataset (see Data availabil-
ity section to access the data). The split between the samples
respects a typical distribution, such as training of 70 %, val-
idation of 15 %, and test of 15 %. The selection of the sam-
pling is random. This information is stored in the column
“split” of the CSV tables with the URLSs of the files. As de-
scribed previously, 233 samples, almost exclusively in Swe-
den, have no orthophotos available; thus, the split was done
on 7598 files (7831 minus 233). The resulting random di-
vision provides 5319 files for training, 1140 for validation,
1139 for testing, and 233 as NA.

3 Limitations and perspectives

In this section, we point out some limitations and potential
improvements of the approach and the proposed dataset.

The atmospheric corrections and cloud screening remain
a challenge for Sentinel-2. We implemented a pragmatic ap-
proach to improve the bottom-of-atmosphere reflectance ob-
tained from sen2cor (Main-Knorn et al., 2017). The Ham-
pel outlier detection approach followed by a Savitsky—Golay
smoothing allows to produce a 5d interpolated smoothed
data. However, residual cloud, cloud shadow, or haze thus
jeopardise the development of applications (see Fig. A2
where undetected clouds result in artefacts on the time
series). From the interpolated data, we obtain a median
monthly composite to reduce the data size. This approach
also has limitations and we could question the usefulness of
interpolating the data if the ultimate goal is to produce a me-
dian monthly composite, as it could represent an extra com-
puting burden with a limited added value.

In the regions covered by the dataset, the average size of
the parcel is 25.33 ha, ranging from 5.71 ha in Slovenia to
29.13 ha in France. Sentinel-2 has also inherent limitations

Earth Syst. Sci. Data, 15, 317-329, 2023
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Figure 4. Earth observation generation overview. Sentinel-2 time series’ are interpolated and smoothed to generate 10 m monthly composites
cropped on 256 by 256 pixels. Aerial orthophotos are resampled at 1 m and cropped on 512 by 512 pixels in the center of the 4 km sampled
cell. The Sentinel-2 time series cropped to the orthophoto extent is shown in detail in Fig. A2.

for small parcels monitoring as it was already highlighted
(Vajsova et al., 2020). They show that about 10 % out of
867 fields less than 0.5 ha in size were not monitorable with
Sentinel-2. Of course, parcel delineation is not the same, but
it gives an idea on the limitations inherent to Sentinel-2 reso-
lution. A good illustration to see the difference of the resolu-
tion between the Sentinel-2 and orthophoto data set is to look
at the orthophoto on Fig. 6a and the same location cropped
to the same extent on the Sentinel-2 in the Fig. A2.

The access to the orthophoto services was done either
via WMTS or via WMS. A specific server access has to
be used for each country with different projections (most in
EPSG:3857, but some in local projections as shown in Ta-
ble Al). While for most of the country, a specific capability
layer allows to select the specific year of the service, the spe-
cific date of acquisition is most of the time unavailable. Ad-
ditionally, the data quality is heterogeneous and depends on
the specific acquisition.

The labels are obtained from GSAA containing inherent
caveats. First of all, the geometry accuracy is referred to as
1/5000, i.e. better than 1 m. Sometimes, parcels do not cor-
respond to the agricultural field. Limitations of the labelled

Earth Syst. Sci. Data, 15, 317-329, 2023

dataset could be the geometries, the timeliness, and also the
semantics. As agricultural fields might be missing (e.g. due
to not being present in original GSAA data), the data sets are
really only suitable for the masked approach in training — the
models trained on Al4Boundaries should only learn about
the borders, extent, and distance of the included fields.

Several potential improvements have to be considered in
the future.

First, in addition to the field boundaries, the crop type
could be added to enable semantic segmentation similarly
to Sykas et al. (2022). To do it properly over a large scale
would require harmonising the legend of the GSAA from the
different countries. A recent work (Schneider et al., 2021)
has proposed a semantic harmonisation framework for this
type of data and could thus serve as a basis.

Second, so far the Al4Boundaries data set covers only data
sets from EU countries. To support the development of ro-
bust algorithm, the data set should be completed with a par-
cel from other geographical context. This is crucial to have
validated and generalisable methods.

https://doi.org/10.5194/essd-15-317-2023
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Figure 5. Examples of the Sentinel-2 10 m dataset consisting of an extent of 256 pixels of 10 m (thus 2560 m by 2560 m). The samples
are located in the South of France (sample ID 41781 with the extent coordinates 3827536, 2449682 to 3833405, 2453882 in EPSG 3035)
. (a) NDVI monthly composite, (b) RGB monthly composites, and (¢) NIR false colour monthly composites. The vector layer of the label
is shown in (d). The label at the same resolution and extent consists of four layers: (e) an extent mask, (f) a boundary mask, (g) a distance
mask, and (h) a field enumeration. See Fig. A3 for more detailed overview.

Another potential improvement would be to add other data
sources such as radar data (e.g. Sentinel-1 coherence) or
high-resolution satellite time series such as Planet data.

It is also very important to align such a type of data set
with new emerging standards such as the one proposed by
Radiant Earth ML HUB (https://mlhub.earth/, last access:
11 January 2023; Alemohammad, 2019). Their Spatio Tem-

https://doi.org/10.5194/essd-15-317-2023

poral Asset Catalog (STAC) helps to make geospatial assets
openly searchable and indexable.

A limitation of the proposed Al4Boundaries is its avail-
ability on an FTP server only, not directly callable as python
packaged dataset. Having the data set accessible similarly
to the Crop Harvest (Tseng et al., 2021) or Calisto (https:
//github.com/Agri-Hub/Callisto-Dataset-Collection, last ac-
cess: 11 January 2023) would be more user-friendly.

Earth Syst. Sci. Data, 15, 317-329, 2023
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Figure 6. Examples of the aerial orthophotos 1 m dataset consisting of an extent of 512 pixels of 1 m (thus 512m by 512m). (a) Aerial
orthophoto RGB. The vector label (b) and the raster label at the same 1 m resolution and extent consist of four layers: (c) an extent mask,
(d) a boundary mask, (e) a distance mask, and (f) a field enumeration.

Table 2. The original dataset contains 14.8 M parcels covering 376 K km?. The stratified sampling resulting in 7831 of 4 km samples contains
2.5 M parcels covering 47 105 km?. The mean area refers to parcel area in hectares, while the total mean area is here in the table the average

area for the seven regions.

Region Full set Sampling
Count Area  Mean area Count Area  Mean area
(km?) (ha) (km?) (ha)
Austria 1631360 31920.77 19.57 609849 12138.88 199
Catalonia 644376 7267.31 11.28 351403 4589.57 13.06
France 9604463 279750.40 29.13 562568 12613.27 22.42
Luxembourg 92397 1280.16 13.85 76 657 1044.46 13.63
Netherlands 772565 18 686.18 24.19 399 849 8277.49 20.7
Slovenia 820151 4684.92 5.71 249271 1522.60 6.11
Sweden 1282363 32492.69 25.34 222513 6919.22 31.1
Total 14847675 376082.50 25.33 \ 2472110 47105.48 19.05
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Figure 7. Two random aerial orthophotos of (a) examples for each country along with the corresponding parcel vector labels (b). File ID

including NUTSO (e.g. AT_5895) is above each example.

Finally, the Al4Boundaries Sentinel-2 dataset has been
used to train a model (based on the work of Waldner and Di-
akogiannis, 2020) that is available on Euro Data Cube (EDC)
as an algorithm for on-demand automatic delineation of
agricultural field boundaries over user-defined area of inter-
est (AOI). The algorithm (https://collections.eurodatacube.
com/field-delineation/, last access: 11 January 2023) uses
Sentinel-Hub services for accessing Sentinel-2 data, and can
be employed to produce baseline results for benchmarking
purposes. In future work, the Al4Boundaries could be made

https://doi.org/10.5194/essd-15-317-2023

available directly on EDC along with a tutorial on how to
use it to increase the outreach to the community of potential
users.

4 Data availability

This section describes each data set provided along with
this document and are downloadable at http://data.europa.eu/
89h/0e79ce5d-e4c8-4721-8773-59adacf2c9c9 (last access:
11 January 2023) (d’ Andrimont et al., 2022):
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— ./sampling.
ai4boundaries_sampling.gpkg. A geopackage vector

file containing the 7831 4-by-4 km polygons of the sam-
pling along with the stratification values as attributes.

ai4boundaries_ftp_urls_all.csv. A table that contains
the path on the JRC FTP server of each Sentinel 2 tiles,
orthophotos, and the respective labels of each. This also
contains the split (i.e. train, test, val).

ai4boundaries_parcels_vector.gpkg. A vector file
(geopackage) with the original parcel boundaries on the
4 km grid cell of the sampling.

— ./sentinel2.

J/images. The folder contains seven folders — one for
each NUTSO region, amounting to a total of 7831 files
named NUTSO_sampleID_S2_10m_256.nc. The files
are NetCDF of Sentinel 2 tiles at 10 m ground resolu-
tion of 256 by 256 pixels and containing five bands (R,
G, B, NIR, and NDVI) from March to August 2019.

./masks. The folder contains seven folders — one for each
NUTSO region, amounting to a total of 7831 files named
NUTSO_samplelD_S2label_10m_256.tif. The files are
Geotiff at 10 m ground resolution of 256 by 256 pixels
and contain four bands.

ai4boundaries_ftp_urls_sentinel2_split.csv. This con-
tains the URLs of the Sentinel-2 image and correspond-
ing mask files along with the split (i.e. train, test, val).

— .Jorthophoto.

/images. The folder contains seven folders - one for
each NUTSO region, amounting to a total of 7598 files
named NUTSO_samplelD_ortho_Im_512.tif. The files
are Geotiff at 1 m ground resolution of 512 by 512 pix-
els and contain three bands (R, G, B) acquired in 2019.

./masks. The folder contains seven folders — one for each
NUTSO region, amounting to a total of 7598 files named
NUTSO_samplelD_ortholabel_Im_512.tif. The files are
Geotiff at 1 m ground resolution of 512 by 512 pixels
and contain four bands.

ai4boundaries_ftp_urls_orthophoto_split.csv. This
contains the URLSs of the orthophoto image and corre-
sponding mask files along with the split (i.e. train, test,
val).

A python-based library is also available to facilitate down-
load: https://github.com/waldnerf/ai4boundaries (last access:
2 January 2023).

5 Conclusions

The Al4Boundaries data set provides a statistical sampling
of agricultural parcel boundaries over key regions of Europe
along with 10 m Sentinel-2 satellite time series and 1 m aerial

Earth Syst. Sci. Data, 15, 317-329, 2023
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orthophoto imagery. This unique data set allows to bench-
mark and compare parcel delineation methodologies in a
transparent and reproducible way.

Appendix A
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Figure A1. Distribution of sampling units among the seven regions
with the two variables used for the stratification.
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Figure A2. Examples of the Sentinel-2 10 m cropped to an extent of the orthophoto data (thus 512 m by 512 m) for ease of comparison.

Table A1. Aerial orthophoto WMTS and WMS services and projections.

country epsg  capability layer type

Netherlands 28992  https://service.pdok.nl/hwh/luchtfotorgb/wmts/vl_0?REQUEST=GetCapabilities,layer=2019_ortho25 (last access: wmts
11 January 2023)

Luxembourg 3857  http://wmts].geoportail. lu/opendata/wmts/1.0.0/WMTSCapabilities.xml (last access: 11 January 2023) wmts

Austria 3857  https://maps.wien.gv.at/basemap/1.0.0/WMTSCapabilities.xml (last access: 11 January 2023) wmts

Catalonia 3857  https://geoserveis.icge.cat/icc_mapesmultibase/noutm/wmts/topo/1.0.0/WMTSCapabilities.xml (last access: 11 Jan- wmts
uary 2023)

Slovenia 3794  https://prostor4.gov.si/ows2-gwc-pub/service/wmts ?request=GetCapabilities (last access: 11 January 2023) wmts

France* 3857  https://wxs.ign.fr/8ir1y6tOlrcpvtp6up6ve3h7/geoportail/wmts?SERVICE=WMTS &REQUEST=GetCapabilities, wmts
layer=ORTHOIMAGERY.ORTHOPHOTOS (last access: 11 January 2023)

Sweden* 3857  https://minkarta.]lantmateriet.se/map/ortofoto/ (last access: 11 January 2023) wms

* Layers for France and Sweden require a password to download, which is available upon registration in the respective country’s platform.
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May2019

Figure A3. Examples of the Sentinel-2 10m data set consisting
of an extent of 256 pixels of 10 m (thus, 2560 m by 2560 m). The
samples are located in the South of France (sample ID 41781 with
the extent coordinates 3827536, 2449682 to 3833405, 2453882 in
EPSG 3035). (a) RGB May composites and (b) vector layer of the
label.
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