Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1151-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1151-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global database on holdover time of lightning-ignited wildfires
Department of Agricultural, Forest and Food Sciences (DISAFA),
University of Turin, Grugliasco, Italy
Pedro Álvarez-Álvarez
Department of Organisms and Systems Biology, University of Oviedo,
Mieres, Spain
Marco Conedera
Insubric Ecosystems Research Group, Swiss Federal Institute for Forest,
Snow and Landscape Research (WSL), Cadenazzo, Switzerland
Annalie Dorph
FLARE Wildfire Research, University of Melbourne, Creswick, Australia
Thomas D. Hessilt
Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the
Netherlands
Hugh G. P. Hunt
Johannesburg Lightning Research Laboratory, University of the
Witwatersrand, Johannesburg, South Africa
Renata Libonati
Department of Meteorology, Federal University of Rio de Janeiro, Rio
de Janeiro, Brazil
Lucas S. Menezes
Department of Meteorology, Federal University of Rio de Janeiro, Rio
de Janeiro, Brazil
Mortimer M. Müller
Institute of Silviculture, University of Natural Resources and Life
Sciences (BOKU), Vienna, Austria
Francisco J. Pérez-Invernón
Institute of Astrophysics of Andalusia (IAA-CSIC), Granada, Spain
Gianni B. Pezzatti
Insubric Ecosystems Research Group, Swiss Federal Institute for Forest,
Snow and Landscape Research (WSL), Cadenazzo, Switzerland
Nicolau Pineda
Meteorological Service of Catalonia, Barcelona, Spain
Rebecca C. Scholten
Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the
Netherlands
Sander Veraverbeke
Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the
Netherlands
B. Mike Wotton
Canadian Forest Service, Sault Ste. Marie, Canada
Davide Ascoli
Department of Agricultural, Forest and Food Sciences (DISAFA),
University of Turin, Grugliasco, Italy
Related authors
No articles found.
Douglas I. Kelley, Chantelle Burton, Francesca Di Giuseppe, Matthew W. Jones, Maria L. F. Barbosa, Esther Brambleby, Joe R. McNorton, Zhongwei Liu, Anna S. I. Bradley, Katie Blackford, Eleanor Burke, Andrew Ciavarella, Enza Di Tomaso, Jonathan Eden, Igor José M. Ferreira, Lukas Fiedler, Andrew J. Hartley, Theodore R. Keeping, Seppe Lampe, Anna Lombardi, Guilherme Mataveli, Yuquan Qu, Patrícia S. Silva, Fiona R. Spuler, Carmen B. Steinmann, Miguel Ángel Torres-Vázquez, Renata Veiga, Dave van Wees, Jakob B. Wessel, Emily Wright, Bibiana Bilbao, Mathieu Bourbonnais, Gao Cong, Carlos M. Di Bella, Kebonye Dintwe, Victoria M. Donovan, Sarah Harris, Elena A. Kukavskaya, Brigitte N’Dri, Cristina Santín, Galia Selaya, Johan Sjöström, John Abatzoglou, Niels Andela, Rachel Carmenta, Emilio Chuvieco, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Meier, Mark Parrington, Mojtaba Sadegh, Jesus San-Miguel-Ayanz, Fernando Sedano, Marco Turco, Guido R. van der Werf, Sander Veraverbeke, Liana O. Anderson, Hamish Clarke, Paulo M. Fernandes, and Crystal A. Kolden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-483, https://doi.org/10.5194/essd-2025-483, 2025
Preprint under review for ESSD
Short summary
Short summary
The second State of Wildfires report examines extreme wildfire events from 2024 to early 2025. It analyses key regional events in Southern California, Northeast Amazonia, Pantanal-Chiquitano, and the Congo Basin, assessing their drivers, predictability, and attributing them to climate change and land use. Seasonal outlooks and decadal projections are provided. Climate change greatly increased the likelihood of these fires, and without strong mitigation, such events will become more frequent.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Heidi Huntrieser, Patrick Jöckel, and Eric J. Bucsela
Atmos. Chem. Phys., 25, 5557–5575, https://doi.org/10.5194/acp-25-5557-2025, https://doi.org/10.5194/acp-25-5557-2025, 2025
Short summary
Short summary
Lightning plays a significant role in tropospheric chemistry by producing substantial amounts of nitrogen oxides. According to recent estimates, thunderstorms that produce a higher lightning frequency rate also produce less nitrogen oxide per flash. We implemented the dependency of nitrogen oxide production per flash on lightning flash frequency in a chemical atmospheric model.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Sergio Soler, Francisco J. Gordillo-Vázquez, Francisco J. Pérez-Invernón, Patrick Jöckel, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard
Atmos. Chem. Phys., 24, 10225–10243, https://doi.org/10.5194/acp-24-10225-2024, https://doi.org/10.5194/acp-24-10225-2024, 2024
Short summary
Short summary
Sudden local ozone (O3) enhancements have been reported in different regions of the world since the 1970s. While the hot channel of lightning strokes directly produce significant amounts of nitrogen oxide, no direct emission of O3 is expected. Corona discharges in convective active regions could explain local O3 increases, which remains unexplained. We present the first mathematical functions that relate the global annual frequency of in-cloud coronas with four sets of meteorological variables.
Matthew W. Jones, Douglas I. Kelley, Chantelle A. Burton, Francesca Di Giuseppe, Maria Lucia F. Barbosa, Esther Brambleby, Andrew J. Hartley, Anna Lombardi, Guilherme Mataveli, Joe R. McNorton, Fiona R. Spuler, Jakob B. Wessel, John T. Abatzoglou, Liana O. Anderson, Niels Andela, Sally Archibald, Dolors Armenteras, Eleanor Burke, Rachel Carmenta, Emilio Chuvieco, Hamish Clarke, Stefan H. Doerr, Paulo M. Fernandes, Louis Giglio, Douglas S. Hamilton, Stijn Hantson, Sarah Harris, Piyush Jain, Crystal A. Kolden, Tiina Kurvits, Seppe Lampe, Sarah Meier, Stacey New, Mark Parrington, Morgane M. G. Perron, Yuquan Qu, Natasha S. Ribeiro, Bambang H. Saharjo, Jesus San-Miguel-Ayanz, Jacquelyn K. Shuman, Veerachai Tanpipat, Guido R. van der Werf, Sander Veraverbeke, and Gavriil Xanthopoulos
Earth Syst. Sci. Data, 16, 3601–3685, https://doi.org/10.5194/essd-16-3601-2024, https://doi.org/10.5194/essd-16-3601-2024, 2024
Short summary
Short summary
This inaugural State of Wildfires report catalogues extreme fires of the 2023–2024 fire season. For key events, we analyse their predictability and drivers and attribute them to climate change and land use. We provide a seasonal outlook and decadal projections. Key anomalies occurred in Canada, Greece, and western Amazonia, with other high-impact events catalogued worldwide. Climate change significantly increased the likelihood of extreme fires, and mitigation is required to lessen future risk.
Francisco J. Pérez-Invernón, Francisco J. Gordillo-Vázquez, Alejandro Malagón-Romero, and Patrick Jöckel
Atmos. Chem. Phys., 24, 3577–3592, https://doi.org/10.5194/acp-24-3577-2024, https://doi.org/10.5194/acp-24-3577-2024, 2024
Short summary
Short summary
Sprites are electrical discharges that occur in the upper atmosphere. Recent modelling and observational data suggest that they may have a measurable impact on atmospheric chemistry. We incorporate both the occurrence rate of sprites and their production of chemical species into a chemistry–climate model. While our results indicate that sprites have a minimal global influence on atmospheric chemistry, they underscore their noteworthy importance at a regional scale.
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
Thomas D. Hessilt, Brendan M. Rogers, Rebecca C. Scholten, Stefano Potter, Thomas A. J. Janssen, and Sander Veraverbeke
Biogeosciences, 21, 109–129, https://doi.org/10.5194/bg-21-109-2024, https://doi.org/10.5194/bg-21-109-2024, 2024
Short summary
Short summary
In boreal North America, snow and frozen ground prevail in winter, while fires occur in summer. Over the last 20 years, the northwestern parts have experienced earlier snow disappearance and more ignitions. This is opposite to the southeastern parts. However, earlier ignitions following earlier snow disappearance timing led to larger fires across the region. Snow disappearance timing may be a good proxy for ignition timing and may also influence important atmospheric conditions related to fires.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Annalie Dorph, Erica Marshall, Kate A. Parkins, and Trent D. Penman
Nat. Hazards Earth Syst. Sci., 22, 3487–3499, https://doi.org/10.5194/nhess-22-3487-2022, https://doi.org/10.5194/nhess-22-3487-2022, 2022
Short summary
Short summary
Wildfire spatial patterns are determined by fire ignition sources and vegetation fuel moisture. Fire ignitions can be mediated by humans (owing to proximity to human infrastructure) or caused by lightning (owing to fuel moisture, average annual rainfall and local weather). When moisture in dead vegetation is below 20 % the probability of a wildfire increases. The results of this research enable accurate spatial mapping of ignition probability to aid fire suppression efforts and future research.
Clement Jean Frédéric Delcourt and Sander Veraverbeke
Biogeosciences, 19, 4499–4520, https://doi.org/10.5194/bg-19-4499-2022, https://doi.org/10.5194/bg-19-4499-2022, 2022
Short summary
Short summary
This study provides new equations that can be used to estimate aboveground tree biomass in larch-dominated forests of northeast Siberia. Applying these equations to 53 forest stands in the Republic of Sakha (Russia) resulted in significantly larger biomass stocks than when using existing equations. The data presented in this work can help refine biomass estimates in Siberian boreal forests. This is essential to assess changes in boreal vegetation and carbon dynamics.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Thilo Erbertseder, Diego Loyola, Pieter Valks, Song Liu, Dale J. Allen, Kenneth E. Pickering, Eric J. Bucsela, Patrick Jöckel, Jos van Geffen, Henk Eskes, Sergio Soler, Francisco J. Gordillo-Vázquez, and Jeff Lapierre
Atmos. Meas. Tech., 15, 3329–3351, https://doi.org/10.5194/amt-15-3329-2022, https://doi.org/10.5194/amt-15-3329-2022, 2022
Short summary
Short summary
Lightning, one of the major sources of nitrogen oxides in the atmosphere, contributes to the tropospheric concentration of ozone and to the oxidizing capacity of the atmosphere. In this work, we contribute to improving the estimation of lightning-produced nitrogen oxides in the Ebro Valley and the Pyrenees by using two different TROPOMI products and comparing the results.
Nicolau Pineda, Juan Carlos Peña, Xavier Soler, Montse Aran, and Núria Pérez-Zanón
Adv. Sci. Res., 19, 39–49, https://doi.org/10.5194/asr-19-39-2022, https://doi.org/10.5194/asr-19-39-2022, 2022
Short summary
Short summary
Wildfire origins can be related to human activity or to natural phenomena, like lightning. Under favourable environmental conditions, lightning ignitions can develop into a fire. In the present study, we analyse the kind of weather that favours wildfires ignited by lightning in Catalonia. We have found that most fires occur under three types of weather. These results help to improve our understanding of lightning fires and are of great assistance to wildfire management agencies.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Patrick Jöckel, and Francisco J. Gordillo-Vázquez
Geosci. Model Dev., 15, 1545–1565, https://doi.org/10.5194/gmd-15-1545-2022, https://doi.org/10.5194/gmd-15-1545-2022, 2022
Short summary
Short summary
This study reports the first parameterization of long-continuing-current lightning in a climate model. Long-continuing-current lightning is proposed to be the main precursor of lightning-ignited wildfires and sprites, a type of transient luminous event taking place in the mesosphere. This parameterization can significantly contribute to improving the implementation of wildfires in climate models.
Ingrid Vigna, Angelo Besana, Elena Comino, Alessandro Pezzoli, and Davide Ascoli
Abstr. Int. Cartogr. Assoc., 3, 304, https://doi.org/10.5194/ica-abs-3-304-2021, https://doi.org/10.5194/ica-abs-3-304-2021, 2021
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Dustin Hill, Marcelo Saba, Hugh Hunt, Lukas Schwalt, Christian Vergeiner, Carlos T. Mata, Carina Schumann, and Tom Warner
Nat. Hazards Earth Syst. Sci., 21, 1909–1919, https://doi.org/10.5194/nhess-21-1909-2021, https://doi.org/10.5194/nhess-21-1909-2021, 2021
Short summary
Short summary
Information about lightning properties is important in order to advance the current understanding of lightning, whereby the characteristics of ground strike points are in particular helpful to improving the risk estimation for lightning protection. High-speed video recordings of 1174 negative downward lightning flashes are taken in different regions around the world and analyzed in terms of flash multiplicity, duration, interstroke intervals and ground strike point properties.
Dieter R. Poelman, Wolfgang Schulz, Stephane Pedeboy, Leandro Z. S. Campos, Michihiro Matsui, Dustin Hill, Marcelo Saba, and Hugh Hunt
Nat. Hazards Earth Syst. Sci., 21, 1921–1933, https://doi.org/10.5194/nhess-21-1921-2021, https://doi.org/10.5194/nhess-21-1921-2021, 2021
Short summary
Short summary
The lightning flash density is a key input parameter for assessing the risk of occurrence of a lightning strike. Flashes tend to have more than one ground termination point on average; therefore the use of ground strike point densities is more appropriate. The aim of this study is to assess the ability of three distinct ground strike point algorithms to correctly determine the observed ground-truth strike points.
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021, https://doi.org/10.5194/acp-21-8557-2021, 2021
Short summary
Short summary
We analyzed high-resolution trace gas measurements collected from a tower in Alaska during a very active fire season to improve our understanding of trace gas emissions from boreal forest fires. Our results suggest previous studies may have underestimated emissions from smoldering combustion in boreal forest fires.
Magí Franquesa, Melanie K. Vanderhoof, Dimitris Stavrakoudis, Ioannis Z. Gitas, Ekhi Roteta, Marc Padilla, and Emilio Chuvieco
Earth Syst. Sci. Data, 12, 3229–3246, https://doi.org/10.5194/essd-12-3229-2020, https://doi.org/10.5194/essd-12-3229-2020, 2020
Short summary
Short summary
The article presents a database of reference sites for the validation of burned area products. We have compiled 2661 reference files from different international projects. The paper describes the methods used to generate and standardize the data. The Burned Area Reference Data (BARD) is publicly available and will facilitate the arduous task of validating burned area algorithms.
Alejandro Luque, Francisco José Gordillo-Vázquez, Dongshuai Li, Alejandro Malagón-Romero, Francisco Javier Pérez-Invernón, Anthony Schmalzried, Sergio Soler, Olivier Chanrion, Matthias Heumesser, Torsten Neubert, Víctor Reglero, and Nikolai Østgaard
Geosci. Model Dev., 13, 5549–5566, https://doi.org/10.5194/gmd-13-5549-2020, https://doi.org/10.5194/gmd-13-5549-2020, 2020
Short summary
Short summary
Lightning flashes are often recorded from space-based platforms. Besides being valuable inputs for weather forecasting, these observations also enable research into fundamental questions regarding lightning physics. To exploit them, it is essential to understand how light propagates from a lightning flash to a space-based observation instrument. Here, we present an open-source software tool to model this process that extends on previous work and overcomes some of the existing limitations.
I. C.F. Amaral, R. S. Libonati, and A. C. P. A. Palmeira
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 505–508, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-505-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-505-2020, 2020
P. S. Silva, J. A. Rodrigues, F. L. M. Santos, A. A. Pereira, J. Nogueira, C. C. DaCamara, and R. Libonati
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 135–140, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-135-2020, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-135-2020, 2020
Cited articles
Abatzoglou, J. T., Kolden, C. A., Balch, J. K., and Bradley, B. A.: Controls
on interannual variability in lightning-caused fire activity in the western
US, Environ. Res. Lett., 11, 045005,
https://doi.org/10.1088/1748-9326/11/4/045005, 2016.
Anderson, K.: A model to predict lightning-caused fire occurrences, Int. J.
Wildland Fire, 11, 163–172, https://doi.org/10.1071/WF02001, 2002.
Anderson, K., Martell, D. L., Flannigan, M. D., and Wang, D.: Modeling of
fire occurrence in the boreal forest region of Canada, in: Fire, climate
change, and carbon cycling in the boreal forest, vol. 138, edited by:
Kasischke, E. S. and Stocks, B. J., Springer, New York, USA, 357–367,
https://doi.org/10.1007/978-0-387-21629-4_19, 2000.
Barrows, J. S.: Forest fires in the Northern Rocky Mountains, USDA Forest
Service, Rocky Mountain Forest and Range Experiment Station, Research Paper
RM-28, Missoula, USA, 252 pp., 1951.
Barrows, J. S.: Lightning fires in Southwestern forests, Northern Forest
Fire Laboratory, Final Report, Missoula, USA, 154 pp., 1978.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A.,
and Wood, E. F.: Present and future Köppen-Geiger climate classification
maps at 1-km resolution, Sci. Data, 5, 180214,
https://doi.org/10.1038/sdata.2018.214, 2018.
Braun, W. J. and Stafford, J. E.: Multivariate density estimation for
interval-censored data with application to a forest fire modelling problem,
Environmetrics, 27, 345–354, https://doi.org/10.1002/env.2396, 2016.
Cesti, G., Conedera, M., and Spinedi, F.: Considerazioni sugli incendi
boschivi causati da fulmini, Schweiz. Z. Forstwes., 156, 353–361,
https://doi.org/10.3188/szf.2005.0353, 2005.
Chen, F., Du, Y., Niu, S., and Zhao, J.: Modeling forest lightning fire
occurrence in the Daxinganling Mountains of Northeastern China with MAXENT,
Forests, 6, 1422–1438, https://doi.org/10.3390/f6051422, 2015.
Chen, Y., Romps, D. M., Seeley, J. T., Veraverbeke, S., Riley, W. J.,
Mekonnen, Z. A., and Randerson, J. T.: Future increases in Arctic lightning
and fire risk for permafrost carbon, Nat. Clim. Change, 11, 404–410,
https://doi.org/10.1038/s41558-021-01011-y, 2021.
Conedera, M., Cesti, G., Pezzatti, G. B., Zumbrunnen. T., and Spinedi, F:
Lightning-induced fires in the alpine region: an increasing problem, in: V
International Conference on Forest Fire Research, Coimbra, Portugal, 9 pp.,
2006.
Cummins, K. L. and Murphy, M. J.: An overview of lightning locating systems:
history, techniques, and data uses, with an in-depth look at the U.S. NLDN,
IEEE Trans. Electromagn. Compat., 51, 499–518,
https://doi.org/10.1109/TEMC.2009.2023450, 2009.
Dobber, M. and Grandell, J.: Meteosat Third Generation (MTG) Lightning
Imager (LI) instrument performance and calibration from user perspective,
in: 23rd CALCON Technical Conference, 11–14 August 2014, Logan, USA, 13 pp., 2014.
Dorph, A., Marshall, E., Parkins, K. A., and Penman, T. D.: Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia, Nat. Hazards Earth Syst. Sci., 22, 3487–3499, https://doi.org/10.5194/nhess-22-3487-2022, 2022.
Dowdy, A. J. and Mills, G. A.: Atmospheric states associated with the
ignition of lightning-attributed fires, Centre for Australian Weather and
Climate Research, Technical Report No. 019, Melbourne, Australia, 42 pp.,
2009.
Flannigan, M. D. and Wotton, B. M.: Lightning-ignited forest fires in
northwestern Ontario, Can. J. For. Res., 21, 277–287,
https://doi.org/10.1139/x91-035, 1991.
Frost, P. E., Kleyn, L. G., van den Dool, R., Burgess, M., Vhengani, L.,
Steenkamp, K., and Wessels, K.: The Elandskraal Fire, Knysna: a data driven
analysis, CSIR Report number 271960-1, Pretoria, South Africa, 71 pp., 2018.
Fuquay, D. M., Baughman, R. G., Taylor, A. R., and Hawe, R. G.:
Characteristics of seven lightning discharges that caused forest fires, J.
Geophys. Res., 72, 6371–6373, https://doi.org/10.1029/JZ072i024p06371,
1967.
Ganteaume, A. and Syphard, A. D.: Ignition sources, in: Encyclopedia of
Wildfires and Wildland-Urban Interface (WUI) Fires, edited by: Manzello, S.
L., Springer, Cham, Switzerland, 17 pp.,
https://doi.org/10.1007/978-3-319-51727-8_43-1, 2018.
Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel,
M., and Lampin, C.: A review of the main driving factors of forest fire
ignition over Europe, Environ. Manage., 51, 651–662,
https://doi.org/10.1007/s00267-012-9961-z, 2013.
Gisbone, H. T.: Lightning and forest fires in the northern Rocky Mountain
region, Mon. Weather Rev., 54, 281–286,
https://doi.org/10.1175/1520-0493(1926)54<281:LAFFIT>2.0.CO;2, 1926.
Gisbone, H. T.: A five-year record of lightning storms and forest fires,
Mon. Weather Rev., 59, 139–150,
https://doi.org/10.1175/1520-0493(1931)59<139:AFROLS>2.0.CO;2, 1931.
Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey, J.,
Buechler, D., Carey, L., Schultz, C., Bateman, M., McCaul, E., and Stano,
G.: The GOES-R Geostationary Lightning Mapper (GLM), Atmos. Res., 125–126,
34–49, https://doi.org/10.1016/j.atmosres.2013.01.006, 2013.
Hanes, C. C., Wang, X., Jain, P., Parisien, M.-A., Little, J. M., and
Flannigan, M. D.: Fire-regime changes in Canada over the last half century,
Can. J. For. Res., 49, 256–269, https://doi.org/10.1139/cjfr-2018-0293,
2019.
Hessilt, T. D., Abatzoglou, J. T., Chen, Y., Randerson, J. T., Scholten, R.
C., van der Werf, G., and Veraverbeke, S.: Future increases in lightning
ignition efficiency and wildfire occurrence expected from drier fuels in
boreal forest ecosystems of western North America, Environ. Res. Lett., 17,
054008, https://doi.org/10.1088/1748-9326/ac6311, 2022.
Hunt, H. G. P., Nixon, K. J., and Naudé, J. A.: Using lightning location
system stroke reports to evaluate the probability that an area of interest
was struck by lightning, Electr. Pow. Syst. Res., 153, 32–37,
https://doi.org/10.1016/j.epsr.2016.12.010, 2017.
Johnston, J., Johnston, L., Wooster, M., Brookes, A., McFayden, C., and
Cantin, A.: Satellite detection limitations of sub-canopy smouldering
wildfires in the North American boreal forest, Fire, 1, 28,
https://doi.org/10.3390/fire1020028, 2018.
Kharyutkina, E., Pustovalov, K., Moraru, E., and Nechepurenko, O.: Analysis
of spatio-temporal variability of lightning activity and wildfires in
western Siberia during 2016–2021, Atmosphere, 13, 669,
https://doi.org/10.3390/atmos13050669, 2022.
Kourtz, P.: Lightning behaviour and lightning fires in Canadian forests,
Department of Forestry and Rural Development, Publication No. 1179, Ottawa,
Canada, 33 pp., 1967.
Larjavaara, M., Pennanen, J., and Tuomi T. J.: Lightning that ignites forest
fires in Finland. Agr. For. Meteorol., 132, 171–180,
https://doi.org/10.1016/j.agrformet.2005.07.005, 2005.
Manry, D. E. and Knight, R. S.: Lightning density and burning frequency in
South African vegetation, Vegetatio, 66, 67–76,
https://doi.org/10.1007/BF00045496, 1986.
Martell, D. L. and Sun, H.: The impact of fire suppression, vegetation, and
weather on the area burned by lightning-caused forest fires in Ontario, Can.
J. For. Res., 38, 1547–1563, https://doi.org/10.1139/X07-210, 2008.
Menezes, L. S., de Oliveira, A. M., Santos, F. L. M., Russo, A., de Souza,
R. A. F., Roque, F. O., and Libonati, R.: Lightning patterns in the
Pantanal: untangling natural and anthropogenic-induced wildfires, Sci. Total
Environ., 820, 153021, https://doi.org/10.1016/j.scitotenv.2022.153021,
2022.
Moris, J. V., Conedera, M., Nisi, L., Bernardi, M., Cesti, G., and Pezzatti,
G. B.: Lightning-caused fires in the Alps: identifying the igniting strokes,
Agr. For. Meteorol., 290, 107990,
https://doi.org/10.1016/j.agrformet.2020.107990, 2020.
Moris, J. V., Álvarez-Álvarez, P., Conedera, M., Dorph, A., Hessilt,
T. D., Hunt, H. G. P., Libonati, R., Menezes, L. S., Müller, M. M.,
Pérez-Invernón, F. J., Pezzatti, G. B., Pineda, N., Scholten, R. C.,
Veraverbeke, S., Wotton, B. M., and Ascoli, D.: Database on holdover time of
lightning-ignited wildfires, Zenodo [data set],
https://doi.org/10.5281/zenodo.7352172, 2022.
Morris, W. G.: What is the time between ignition and discovery of lightning
fires?, Pacific Northwest Forest Experiment Station, Forest Research Notes
40, Portland, USA, 5 pp., 1947.
Müller, M. M. and Vacik, H.: Characteristics of lightnings igniting
forest fires in Austria, Agr. For. Meteorol., 240–241, 26–34,
https://doi.org/10.1016/j.agrformet.2017.03.020, 2017.
Müller, M. M., Vacik, H., Diendorfer, G., Arpaci, A., Formayer, H., and
Gossow, H.: Analysis of lightning-induced forest fires in Austria, Theor.
Appl. Climatol., 111, 183–193, https://doi.org/10.1007/s00704-012-0653-7,
2013.
Nampak, H., Love, P., Fox-Hughes, P., Watson, C., Aryal, J., and Harris, R.
M. B.: Characterizing spatial and temporal variability of lightning activity
associated with wildfire over Tasmania, Australia, Fire, 4, 10,
https://doi.org/10.3390/fire4010010, 2021.
Nash, C. H. and Johnson, E. A.: Synoptic climatology of lightning-caused
forest fires in subalpine and boreal forests, Can. J. For. Res., 26,
1859–1874, https://doi.org/10.1139/x26-211, 1996.
Ogilvie, C. J.: Lightning fires in Saskatchewan forests, Fire Manage. Notes,
50, 31–32, 1989.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E.,
Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y.,
Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial
ecoregions of the World: a new map of life on Earth, BioScience, 51,
933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2,
2001.
Pérez-Invernón, F. J., Huntrieser, H., Soler, S., Gordillo-Vázquez, F. J., Pineda, N., Navarro-González, J., Reglero, V., Montanyà, J., van der Velde, O., and Koutsias, N.: Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions, Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, 2021.
Pérez-Invernón, F. J., Huntrieser, H., and Moris, J. V.:
Meteorological conditions associated with lightning ignited fires and
long-continuing-current lightning in Arizona, New Mexico and Florida, Fire,
5, 96, https://doi.org/10.3390/fire5040096, 2022.
Pineda, N. and Rigo, T.: The rainfall factor in lightning-ignited wildfires
in Catalonia, Agr. For. Meteorol., 239, 249–263,
https://doi.org/10.1016/j.agrformet.2017.03.016, 2017.
Pineda, N., Montanyà, J., and van der Velde, O. A.: Characteristics of
lightning related to wildfire ignitions in Catalonia, Atmos. Res., 135–136,
380–387, https://doi.org/10.1016/j.atmosres.2012.07.011, 2014.
Pineda, N., Altube, P., Alcasena, F. J., Casellas, E., San Segundo, H., and
Montanyà, J.: Characterizing the holdover phase of lightning-ignited
wildfires in Catalonia, Agr. For. Meteorol., 324, 109111,
https://doi.org/10.1016/j.agrformet.2022.109111, 2022.
Plummer, F. G.: Lightning in relation to forest fires, USDA Forest Service,
Bulletin 111, Washington D.C., USA, 39 pp., 1912.
R Core Team: R: a language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org (last access: 21 November 2022), 2021.
Rein, G.: Smoldering combustion, in: SFPE Handbook of Fire Protection
Engineering, edited by: Hurley, M. J., Gottuk, D., Hall, J. R., Harada, K.,
Kuligowski, E., Puchovsky, M., Torero, J., Watts, J. M., and Wieczorek, C.,
Springer, New York, USA, 581–603,
https://doi.org/10.1007/978-1-4939-2565-0_19, 2016.
Rein, G. and Huang, X.: Smouldering wildfires in peatlands, forests and the
arctic: challenges and perspectives, Curr. Opin. Environ. Sci. Health, 24,
100296, https://doi.org/10.1016/j.coesh.2021.100296, 2021.
Rohatgi, A.: WebPlotDigitizer version 4.5,
https://automeris.io/WebPlotDigitizer (last access: 21 November 2022), 2021.
Santoso, M. A., Christensen, E. G., Yang, J., and Rein, G.: Review of the
transition from smouldering to flaming combustion in wildfires, Front. Mech.
Eng., 5, 49, https://doi.org/10.3389/fmech.2019.00049, 2019.
Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M., and Veraverbeke,
S.: Overwintering fires in boreal forests, Nature, 593, 399–404,
https://doi.org/10.1038/s41586-021-03437-y, 2021.
Schultz, C. J., Nauslar, N. J., Wachter, J. B., Hain, C. R., and Bell, J.
R.: Spatial, temporal and electrical characteristics of lightning in
reported lightning-initiated wildfire events, Fire, 2, 18,
https://doi.org/10.3390/fire2020018, 2019.
Show, S. B. and Kotok, E. I.: The occurrence of lightning storms in relation
to forest fires in California, Mon. Weather Rev., 51, 175–180,
https://doi.org/10.1175/1520-0493(1923)51<175:TOOLSI>2.0.CO;2, 1923.
Show, S. B. and Kotok, E. I.: The determination of hour control for adequate
fire protection in the major cover types of the California Pine Region,
USDA, Technical Bulletin No. 209, Washington D.C., USA, 47 pp., 1930.
Soler, A., Pineda, N., San Segundo, H., Bech, J., and Montanyà, J.:
Characterisation of thunderstorms that caused lightning-ignited wildfires,
Int. J. Wildland Fire, 30, 954–970, https://doi.org/10.1071/WF21076, 2021.
Taylor, A. R.: Lightning effects on the forest complex, in: Proceedings of
the 9th Tall Timbers Fire Ecology Conference, 10–11 April 1969, Tallahassee, USA, 127–150,
1969.
Veraverbeke, S., Sedano, F., Hook, S. J., Randerson, J. T., Jin, Y., and
Rogers, B. M.: Mapping the daily progression of large wildland fires using
MODIS active fire data, Int. J. Wildland Fire, 23, 655–667,
https://doi.org/10.1071/WF13015, 2014.
Veraverbeke, S., Rogers, B. M., Goulden, M. L., Jandt, R. R., Miller, C. E.,
Wiggins, E. B., and Randerson, J. T.: Lightning as a major driver of recent
large fire years in North American boreal forests, Nat. Clim. Change, 7,
529–534, https://doi.org/10.1038/nclimate3329, 2017.
Wotton, B. M. and Martell, D. L.: A lightning fire occurrence model for
Ontario, Can. J. For. Res., 35, 1389–1401, https://doi.org/10.1139/x05-071,
2005.
Xu, W., Scholten, R. C., Hessilt, T. D., Liu, Y., and Veraverbeke, S.:
Overwintering fires rising in eastern Siberia, Environ. Res. Lett., 17,
045005, https://doi.org/10.1088/1748-9326/ac59aa, 2022.
Short summary
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover time is defined as the time between lightning-induced fire ignition and fire detection. The database contains 42 datasets built with data on more than 152 375 LIWs from 13 countries in five continents from 1921 to 2020. This database is the first freely-available, harmonized and ready-to-use global source of holdover time data, which may be used to investigate LIWs and model the holdover phenomenon.
This work describes a database on holdover times of lightning-ignited wildfires (LIWs). Holdover...
Altmetrics
Final-revised paper
Preprint