Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5737-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A compilation of global bio-optical in situ data for ocean colour satellite applications – version three
André Valente
CORRESPONDING AUTHOR
MARE - Marine and Environmental Sciences Centre,
Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016
Lisboa, Portugal
AIR Centre – Atlantic International Research Centre,
Parque de Ciência e Tecnologia da Ilha Terceira, 9700-702 Angra do
Heroísmo, Portugal
Shubha Sathyendranath
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Vanda Brotas
MARE - Marine and Environmental Sciences Centre,
Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016
Lisboa, Portugal
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Steve Groom
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Michael Grant
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt,
Germany
Thomas Jackson
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Andrei Chuprin
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Malcolm Taberner
EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt,
Germany
Ruth Airs
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
David Antoine
Sorbonne Université, CNRS, Laboratoire
d'Océanographie de Villefranche, LOV, 06230 Villefranche-sur-Mer,
France
Remote Sensing and Satellite Research Group, School of
Earth and Planetary Sciences, Curtin University, Perth, WA 6845,
Australia
Robert Arnone
University of Southern Mississippi, Stennis Space Center,
MS, USA
William M. Balch
Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr.,
East Boothbay ME 04544, Maine, USA
Kathryn Barker
ARGANS Ltd, UK
CSIRO Oceans and Atmosphere, Australia
Australian Research Data Commons, Caulfield East,
Australia
Ray Barlow
Bayworld Centre for Research and Education, Cape Town,
South Africa
Simon Bélanger
Université du Québec à Rimouski, Rimouski
(Québec), Canada
Jean-François Berthon
European Commission, Joint Research Centre, Ispra,
Italy
Şükrü Beşiktepe
Dokuz Eylul University, Institute of Marine Science and
Technology, Izmir, Turkey
Yngve Borsheim
Institute of Marine Research, Bergen,
Norway
Astrid Bracher
Alfred-Wegener-Institute Helmholtz Centre for Polar and
Marine Research, Bremerhaven, Germany
Institute of Environmental Physics, University Bremen,
Bremen, Germany
Vittorio Brando
CSIRO Oceans and Atmosphere, Australia
CNR – ISMAR, Rome, Italy
Robert J. W. Brewin
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Centre for Geography and Environmental Science, College
of Life and Environmental Sciences, Penryn Campus, University of Exeter,
Cornwall TR10 9FE, UK
Elisabetta Canuti
European Commission, Joint Research Centre, Ispra,
Italy
Francisco P. Chavez
Monterey Bay Aquarium Research Institute, Moss Landing,
CA, USA
Andrés Cianca
PLOCAN-Oceanic Platform of the Canary Islands. Carretera
de Taliarte, 35214 Telde, Gran Canaria, Spain
Hervé Claustre
Sorbonne Université, CNRS, Laboratoire
d'Océanographie de Villefranche, LOV, 06230 Villefranche-sur-Mer,
France
Lesley Clementson
CSIRO Oceans and Atmosphere, Australia
Richard Crout
Naval Research Laboratory, Stennis Space Center, MS,
USA
Afonso Ferreira
MARE - Marine and Environmental Sciences Centre,
Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016
Lisboa, Portugal
Scott Freeman
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA
Science Systems and Applications, Inc., 10210 Greenbelt
Road, Suite 600, Lanham, MD, USA
Robert Frouin
Scripps Institution of Oceanography, University of
California San Diego, CA, USA
Carlos García-Soto
Spanish Institute of Oceanography (IEO), Corazón de
María 8, 28002 Madrid, Spain
Plentziako Itsas Estazioa/Euskal Herriko Unibetsitatea
(PIE/EHU), Areatza z/g, 48620 Plentzia, Spain
Stuart W. Gibb
Environmental Research Institute, North Highland
College, University of the Highlands and Islands, Thurso, Scotland,
UK
Ralf Goericke
Scripps Institution of Oceanography, University of
California San Diego, CA, USA
Richard Gould
Naval Research Laboratory, Stennis Space Center, MS,
USA
Nathalie Guillocheau
Earth Research Institute, University of California,
Santa Barbara, California, USA
Stanford B. Hooker
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA
Chuamin Hu
College of Marine Science, University of South Florida,
140 Seventh Avenue, South, St. Petersburg FL 33701, USA
Mati Kahru
Scripps Institution of Oceanography, University of
California San Diego, CA, USA
Milton Kampel
Earth Observation and Geoinformatics Division, National
Space Research Institute (INPE), Sao Jose dos Campos, Brazil
Holger Klein
Operational Oceanography Group, Federal Maritime and
Hydrographic Agency, Hamburg, Germany
Susanne Kratzer
Department of Ecology, Environment and Plant Sciences,
Stockholm University, 106 91 Stockholm, Sweden
Raphael Kudela
University of California Santa Cruz, Santa Cruz, CA
USA
Jesus Ledesma
Instituto del Mar del Perú, Callao,
Peru
Steven Lohrenz
School for Marine Science and Technology, University of
Massachusetts Dartmouth, 836 South Rodney French Boulevard, New Bedford MA
02744, USA
Hubert Loisel
Laboratoire d'Océanologie et de Géosciences,
Université du Littoral-Côte-d'Opale, Université Lille, CNRS, UMR
8187, LOG, 32 avenue Foch, Wimereux, France
Antonio Mannino
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA
Victor Martinez-Vicente
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Patricia Matrai
Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr.,
East Boothbay ME 04544, Maine, USA
David McKee
Physics Dept, University of Strathclyde, Glasgow, G4
0NG, Scotland
Brian G. Mitchell
Scripps Institution of Oceanography, University of
California San Diego, CA, USA
Tiffany Moisan
NASA Goddard Space Flight Center, Wallops Flight
Facility, Wallops Island, VA, USA
deceased
Enrique Montes
Ocean Chemistry & Ecosystems Division, NOAA Atlantic
Oceanographic and Meteorological Laboratory, Miami, FL, USA
University of Miami Cooperative Institute for Marine
& Atmospheric Studies (CIMAS), 4600 Rickenbacker Causeway, Miami FL
33149, USA
Frank Muller-Karger
Institute for Marine Remote Sensing/ImaRS, College of
Marine Science, University of South Florida, FL, USA
Aimee Neeley
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA
Michael Novak
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA
Leonie O'Dowd
Fisheries and Ecosystem Advisory Services, Marine
Institute, Rinville – Oranmore, Galway, Ireland
Michael Ondrusek
NOAA/NESDIS/STAR/SOCD, College Park, MD,
USA
Trevor Platt
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
deceased
Alex J. Poulton
Lyell Centre for Earth and Marine Science and
Technology, Heriot-Watt University, Edinburgh, UK
Michel Repecaud
IFREMER Centre de Brest, Plouzane, France
Rüdiger Röttgers
Institute of Carbon Cycles, Helmholtz-Zentrum Hereon,
Geesthacht, Germany
Thomas Schroeder
CSIRO Oceans and Atmosphere, Australia
Timothy Smyth
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Denise Smythe-Wright
Ocean Biogeochemistry and Ecosystems, National
Oceanography Centre, Waterfront Campus, Southampton, UK
Heidi M. Sosik
Biology Department, Woods Hole Oceanographic
Institution, Woods Hole, MA, USA
Crystal Thomas
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA
Rob Thomas
Marine Institute, Rinville, Oranmore, Galway,
Ireland
Gavin Tilstone
Plymouth Marine Laboratory, Plymouth PL1 3DH,
UK
Andreia Tracana
MARE - Marine and Environmental Sciences Centre,
Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016
Lisboa, Portugal
Michael Twardowski
Harbor Branch Oceanographic Institute, Fort Pierce, FL,
USA
Vincenzo Vellucci
Sorbonne Université, CNRS, Institut de la Mer de
Villefranche, IMEV, 06230 Villefranche-sur-Mer, France
Kenneth Voss
University of Miami, Coral Gables, FL,
USA
Jeremy Werdell
NASA Goddard Space Flight Center, Greenbelt, Maryland,
USA
Marcel Wernand
Royal Netherlands Institute for Sea Research, Texel,
the Netherlands
deceased
Bozena Wojtasiewicz
CSIRO Oceans and Atmosphere, Australia
Simon Wright
Australian Antarctic Division; IMAS, University of
Tasmania; and the Antarctic Climate and Ecosystems Cooperative Research
Centre, Hobart, Australia
Giuseppe Zibordi
European Commission, Joint Research Centre, Ispra,
Italy
Related authors
No articles found.
Kévin Robache, Zéline Hubert, Clémentine Gallot, Alexandre Epinoux, Arnaud P. Louchart, Jean-Valéry Facq, Alain Lefebvre, Michel Répécaud, Vincent Cornille, Florine Verhaeghe, Yann Audinet, Laurent Brutier, François G. Schmitt, and Luis Felipe Artigas
Ocean Sci., 21, 1787–1811, https://doi.org/10.5194/os-21-1787-2025, https://doi.org/10.5194/os-21-1787-2025, 2025
Short summary
Short summary
By deploying an automated flow cytometer at a coastal monitoring station in France, we tracked phytoplankton changes every 2 h during spring (2021 and 2022) and summer (2022). Our study revealed distinct seasonal shifts, e.g., with diatoms and haptophytes in spring. Rare weather events rapidly altered community composition. We found that most variability occurred on short timescales, underscoring the importance of high-frequency monitoring for understanding marine phytoplankton dynamics.
Daniel J. Ford, Jamie D. Shutler, Katy L. Sheen, Gavin H. Tilstone, and Vassilis Kitidis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-463, https://doi.org/10.5194/essd-2025-463, 2025
Preprint under review for ESSD
Short summary
Short summary
Mesoscale eddies are abundant in the global oceans affect the physical, chemical and biological properties of the ocean. These changes can modify the air-sea CO2 fluxes. Here, we present a dataset of air-sea CO2 fluxes for 5996 long lived mesoscale eddies trajectories in the global ocean between 1993 to 2022. These trajectories can be used to understand the processes modifying and controlling the air-sea CO2 fluxes in mesoscale eddies which are supported by a comprehensive uncertainty budget.
Martin Hieronymi, Daniel Behr, Shun Bi, and Rüdiger Röttgers
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-443, https://doi.org/10.5194/essd-2025-443, 2025
Preprint under review for ESSD
Short summary
Short summary
We provide scientific descriptions of a Copernicus satellite-based dataset and its novel processing chain. The data include water quality properties of lakes, rivers, coasts, as well as the entire North Sea and Baltic Sea. Moreover, the data include a novel estimate of organic carbon in diverse waters and results of a new optical water type classification. The dataset and algorithm behind offers many links to future oceanographic-limnological analysis.
Daniel J. Ford, Gemma Kulk, Shubha Sathyendranath, and Jamie D. Shutler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-389, https://doi.org/10.5194/essd-2025-389, 2025
Preprint under review for ESSD
Short summary
Short summary
Chlorophyll-a is routinely monitored using ocean colour satellites, however, these data records have gaps. Here we present a methodology to provide a spatially and temporally complete chlorophyll-a record, using Biogeochemical Argo floats as a constraint on wintertime chlorophyll-a, and a statistical kriging approach to fill cloud gaps. Thereby, providing a complete record at monthly 0.25° resolution between 1997 and 2023, consistent to the underlying climate data record.
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
Biogeosciences, 22, 3375–3396, https://doi.org/10.5194/bg-22-3375-2025, https://doi.org/10.5194/bg-22-3375-2025, 2025
Short summary
Short summary
We found that biogeochemical variability at the land–sea interface (LSI) in two major temperate estuaries is modulated by the 14 d spring–neap tidal cycle, with large effects on dissolved inorganic and organic carbon concentrations and distribution. As this effect increases the strength of the carbon source to the atmosphere by up to 74 % during spring tide, it should be accounted for in regional models, which aim to resolve biogeochemical processing at the LSI.
Anisbel Leon-Marcos, Moritz Zeising, Manuela van Pinxteren, Sebastian Zeppenfeld, Astrid Bracher, Elena Barbaro, Anja Engel, Matteo Feltracco, Ina Tegen, and Bernd Heinold
Geosci. Model Dev., 18, 4183–4213, https://doi.org/10.5194/gmd-18-4183-2025, https://doi.org/10.5194/gmd-18-4183-2025, 2025
Short summary
Short summary
This study represents the primary marine organic aerosol (PMOA) emissions, focusing on their sea–atmosphere transfer. Using the FESOM2.1–REcoM3 model, concentrations of key organic biomolecules were estimated and integrated into the ECHAM6.3–HAM2.3 aerosol–climate model. Results highlight the influence of marine biological activity and surface winds on PMOA emissions, with reasonably good agreement with observations improving aerosol representation in the southern oceans.
Qi Zheng, Johannes J. Viljoen, Xuerong Sun, Žarko Kovač, Shubha Sathyendranath, and Robert J. W. Brewin
Biogeosciences, 22, 3253–3278, https://doi.org/10.5194/bg-22-3253-2025, https://doi.org/10.5194/bg-22-3253-2025, 2025
Short summary
Short summary
Phytoplankton contribute to half of Earth’s primary production, but not a lot is known about subsurface phytoplankton, living at the base of the sunlit ocean. We develop a two-layered box model to simulate phytoplankton seasonal and interannual variations in different depth layers of the ocean. Our model captures seasonal and long-term trends of the two layers, explaining how they respond to a warming ocean, furthering our understanding of how phytoplankton are responding to climate change.
Ana I. Dogliotti, Reinaldo A. Maenza, Moira Luz Clara, Vivian A. Lutz, and Robert Frouin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2033, https://doi.org/10.5194/egusphere-2025-2033, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We analyzed 22 years of satellite and modeled data to study how light and mixing shape phytoplankton blooms on the Argentine Continental Shelf. Blooms start earlier on the central shelf and coast, and later on the deeper, colder Patagonian Shelf. Bloom intensity is highest in nutrient-rich, well-lit waters. Light penetration and mixing are key drivers, but local ocean features also influence bloom patterns. These results help improve bloom and productivity predictions.
Anisbel Leon-Marcos, Manuela van Pinxteren, Sebastian Zeppenfeld, Moritz Zeising, Astrid Bracher, Laurent Oziel, Ina Tegen, and Bernd Heinold
EGUsphere, https://doi.org/10.5194/egusphere-2025-2829, https://doi.org/10.5194/egusphere-2025-2829, 2025
Short summary
Short summary
This study links modelled ocean surface concentrations of key marine organic groups with the aerosol-climate model ECHAM-HAM to quantify species-resolved primary marine organic aerosol emissions from 1990 to 2019. Results show strong seasonality, driven by productivity and summer sea ice loss. Emissions and burdens increased over time with more frequent positive anomalies in the last decade, revealing an overall upward trend with regional differences across the Arctic and aerosol species.
Alain Fumenia, Hubert Loisel, Rick A. Reynolds, and Dariusz Stramski
Biogeosciences, 22, 2461–2484, https://doi.org/10.5194/bg-22-2461-2025, https://doi.org/10.5194/bg-22-2461-2025, 2025
Short summary
Short summary
Particulate organic nitrogen (PON) plays a central role in ocean biogeochemistry, yet limited in situ data hinder a full understanding of PON variability and associated processes. Measurements of optical properties offer an alternative for assessing PON across diverse marine environments. Our analysis reveals strong relationships between PON and optical properties, supporting a promising means to assess PON from optical measurements performed in situ or conducted from remote-sensing platforms.
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
J. Xavier Prochaska and Robert J. Frouin
EGUsphere, https://doi.org/10.5194/egusphere-2025-927, https://doi.org/10.5194/egusphere-2025-927, 2025
Short summary
Short summary
Satellites monitor ocean health globally, but we discovered a fundamental physics limitation in measuring phytoplankton – tiny plants essential to marine ecosystems. Our analysis shows even advanced satellites can't reliably distinguish phytoplankton from other ocean components. This challenges decades of research and suggests existing measurements have greater uncertainties than realized. Combining satellite data with direct ocean sampling is needed for better monitoring these vital organisms.
Ehsan Mehdipour, Hongyan Xi, Alexander Barth, Aida Alvera-Azcárate, Adalbert Wilhelm, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2025-112, https://doi.org/10.5194/egusphere-2025-112, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Phytoplankton are vital for marine ecosystems and nutrient cycling, detectable by optical satellites. Data gaps caused by clouds and other non-optimal conditions limit comprehensive analyses like trend monitoring. This study evaluated DINCAE and DINEOF gap-filling methods for reconstructing chlorophyll-a datasets, including total chlorophyll-a and five major phytoplankton groups. Both methods showed robust reconstruction capabilities, aiding pattern detection and long-term ocean colour analysis.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences, 22, 975–994, https://doi.org/10.5194/bg-22-975-2025, https://doi.org/10.5194/bg-22-975-2025, 2025
Short summary
Short summary
The Southern Ocean is a rapidly warming environment, with subsequent impacts on ecosystems and biogeochemical cycling. This study examines changes in phytoplankton and biogeochemistry using a range of climate models. Under climate change, the Southern Ocean will be warmer, more acidic and more productive and will have reduced nutrient availability by 2100. However, there is substantial variability between models across key productivity parameters. We propose ways of reducing this uncertainty.
Thomas M. Jordan, Giorgio Dall'Olmo, Gavin Tilstone, Robert J. W. Brewin, Francesco Nencioli, Ruth Airs, Crystal S. Thomas, and Louise Schlüter
Earth Syst. Sci. Data, 17, 493–516, https://doi.org/10.5194/essd-17-493-2025, https://doi.org/10.5194/essd-17-493-2025, 2025
Short summary
Short summary
We present a compilation of water optical properties and phytoplankton pigments from the surface of the Atlantic Ocean collected during nine cruises between 2009 and 2019. We derive continuous Chlorophyll a concentrations (a biomass proxy) from water absorption. We then illustrate geographical variations and relationships for water optical properties, Chlorophyll a, and other pigments. The dataset will be useful to researchers in ocean optics, remote sensing, ecology, and biogeochemistry.
Jaime Pitarch and Vittorio Ernesto Brando
Earth Syst. Sci. Data, 17, 435–460, https://doi.org/10.5194/essd-17-435-2025, https://doi.org/10.5194/essd-17-435-2025, 2025
Short summary
Short summary
This research presents a comprehensive synthetic dataset of bio-optical properties and radiometric quantities in the optical domain, resolved for all sun-view angular combinations, from ultraviolet to visible light, that provide aid in the development of satellite algorithms, including directional problems. The dataset will significantly enhance research on light behavior in water and support future hyperspectral missions. It has been made publicly available on Zenodo.
Henry F. Houskeeper and Stanford B. Hooker
EGUsphere, https://doi.org/10.5194/egusphere-2024-4163, https://doi.org/10.5194/egusphere-2024-4163, 2025
Short summary
Short summary
The manuscript assesses the dominant spectral patterns in the aquatic light field and relates the patterns observed to fluctuations in relevant environmental variables. The key finding is that the dominant light patterns in the ocean depend more strongly on variability in dissolved organic matter compared to phytoplankton.
Alex T. Archibald, Bablu Sinha, Maria R. Russo, Emily Matthews, Freya A. Squires, N. Luke Abraham, Stephane J.-B. Bauguitte, Thomas J. Bannan, Thomas G. Bell, David Berry, Lucy J. Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian A. King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Bengamin I. Moat, Katie Read, Chris Reed, Malcolm J. Roberts, Reinhard Schiemann, David Schroeder, Timothy J. Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Mingxi Yang
Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, https://doi.org/10.5194/essd-17-135-2025, 2025
Short summary
Short summary
Here, we present an overview of the data generated as part of the North Atlantic Climate System Integrated Study (ACSIS) programme that are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA; www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC; bodc.ac.uk). The datasets described here cover the North Atlantic Ocean, the atmosphere above (it including its composition), and Arctic sea ice.
Giuseppe Zibordi and Jean-François Berthon
Earth Syst. Sci. Data, 16, 5477–5502, https://doi.org/10.5194/essd-16-5477-2024, https://doi.org/10.5194/essd-16-5477-2024, 2024
Short summary
Short summary
The Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP) programs produced bio-optical data supporting satellite ocean color applications across European seas for almost 2 decades. CoASTS and BiOMaP applied equal standardized instruments, measurement methods, quality control schemes and processing codes to ensure temporal and spatial consistency with data products.
Robert Lampe, Ariel Rabines, Steffaney Wood, Anne Schulberg, Ralf Goericke, Pratap Venepally, Hong Zheng, Michael Stukel, Michael Landry, Andrew Barton, and Andrew Allen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3285, https://doi.org/10.5194/egusphere-2024-3285, 2024
Short summary
Short summary
With the likely emergence of satellite-based phytoplankton pigment data, it is increasingly important to examine relationships between phytoplankton pigments and other metrics of phytoplankton community composition. By using quantitative approaches, we show that phytoplankton pigments correlate with DNA- and RNA-based abundances, and examine how integration of these data addresses ecological questions relating to diversity patterns, harmful algal blooms, and inferring cellular activity.
Hongyan Xi, Marine Bretagnon, Ehsan Mehdipour, Julien Demaria, Antoine Mangin, and Astrid Bracher
State Planet Discuss., https://doi.org/10.5194/sp-2024-15, https://doi.org/10.5194/sp-2024-15, 2024
Revised manuscript accepted for SP
Short summary
Short summary
To better understand the marine phytoplankton variability on different scales in both space and time, this study proposed a machine learning based scheme to provide continuous and consistent long-term observations of various phytoplankton groups from space on a global scale, which enables time series analysis for further trend and anomaly investigations. This study provides an essential ocean variable to help assess the ocean health in the biogeochemical aspect.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Sébastien Petton, Fabrice Pernet, Valérian Le Roy, Matthias Huber, Sophie Martin, Éric Macé, Yann Bozec, Stéphane Loisel, Peggy Rimmelin-Maury, Émilie Grossteffan, Michel Repecaud, Loïc Quemener, Michael Retho, Soazig Manac'h, Mathias Papin, Philippe Pineau, Thomas Lacoue-Labarthe, Jonathan Deborde, Louis Costes, Pierre Polsenaere, Loïc Rigouin, Jérémy Benhamou, Laure Gouriou, Joséphine Lequeux, Nathalie Labourdette, Nicolas Savoye, Grégory Messiaen, Elodie Foucault, Vincent Ouisse, Marion Richard, Franck Lagarde, Florian Voron, Valentin Kempf, Sébastien Mas, Léa Giannecchini, Francesca Vidussi, Behzad Mostajir, Yann Leredde, Samir Alliouane, Jean-Pierre Gattuso, and Frédéric Gazeau
Earth Syst. Sci. Data, 16, 1667–1688, https://doi.org/10.5194/essd-16-1667-2024, https://doi.org/10.5194/essd-16-1667-2024, 2024
Short summary
Short summary
Our research highlights the concerning impact of rising carbon dioxide levels on coastal areas. To better understand these changes, we've established an observation network in France. By deploying pH sensors and other monitoring equipment at key coastal sites, we're gaining valuable insights into how various factors, such as freshwater inputs, tides, temperature, and biological processes, influence ocean pH.
S. Alejandra Castillo Cieza, Rachel H. R. Stanley, Pierre Marrec, Diana N. Fontaine, E. Taylor Crockford, Dennis J. McGillicuddy Jr., Arshia Mehta, Susanne Menden-Deuer, Emily E. Peacock, Tatiana A. Rynearson, Zoe O. Sandwith, Weifeng Zhang, and Heidi M. Sosik
Biogeosciences, 21, 1235–1257, https://doi.org/10.5194/bg-21-1235-2024, https://doi.org/10.5194/bg-21-1235-2024, 2024
Short summary
Short summary
The coastal ocean in the northeastern USA provides many services, including fisheries and habitats for threatened species. In summer 2019, a bloom occurred of a large unusual phytoplankton, the diatom Hemiaulus, with nitrogen-fixing symbionts. This led to vast changes in productivity and grazing rates in the ecosystem. This work shows that the emergence of one species can have profound effects on ecosystem function. Such changes may become more prevalent as the ocean warms due to climate change.
Christian Lønborg, Cátia Carreira, Gwenaël Abril, Susana Agustí, Valentina Amaral, Agneta Andersson, Javier Arístegui, Punyasloke Bhadury, Mariana B. Bif, Alberto V. Borges, Steven Bouillon, Maria Ll. Calleja, Luiz C. Cotovicz Jr., Stefano Cozzi, Maryló Doval, Carlos M. Duarte, Bradley Eyre, Cédric G. Fichot, E. Elena García-Martín, Alexandra Garzon-Garcia, Michele Giani, Rafael Gonçalves-Araujo, Renee Gruber, Dennis A. Hansell, Fuminori Hashihama, Ding He, Johnna M. Holding, William R. Hunter, J. Severino P. Ibánhez, Valeria Ibello, Shan Jiang, Guebuem Kim, Katja Klun, Piotr Kowalczuk, Atsushi Kubo, Choon-Weng Lee, Cláudia B. Lopes, Federica Maggioni, Paolo Magni, Celia Marrase, Patrick Martin, S. Leigh McCallister, Roisin McCallum, Patricia M. Medeiros, Xosé Anxelu G. Morán, Frank E. Muller-Karger, Allison Myers-Pigg, Marit Norli, Joanne M. Oakes, Helena Osterholz, Hyekyung Park, Maria Lund Paulsen, Judith A. Rosentreter, Jeff D. Ross, Digna Rueda-Roa, Chiara Santinelli, Yuan Shen, Eva Teira, Tinkara Tinta, Guenther Uher, Masahide Wakita, Nicholas Ward, Kenta Watanabe, Yu Xin, Youhei Yamashita, Liyang Yang, Jacob Yeo, Huamao Yuan, Qiang Zheng, and Xosé Antón Álvarez-Salgado
Earth Syst. Sci. Data, 16, 1107–1119, https://doi.org/10.5194/essd-16-1107-2024, https://doi.org/10.5194/essd-16-1107-2024, 2024
Short summary
Short summary
In this paper, we present the first edition of a global database compiling previously published and unpublished measurements of dissolved organic matter (DOM) collected in coastal waters (CoastDOM v1). Overall, the CoastDOM v1 dataset will be useful to identify global spatial and temporal patterns and to facilitate reuse in studies aimed at better characterizing local biogeochemical processes and identifying a baseline for modelling future changes in coastal waters.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Moritz Zeising, Astrid Bracher, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 15561–15587, https://doi.org/10.5194/acp-23-15561-2023, https://doi.org/10.5194/acp-23-15561-2023, 2023
Short summary
Short summary
Marine carbohydrates are produced in the surface of the ocean, enter the atmophere as part of sea spray aerosol particles, and potentially contribute to the formation of fog and clouds. Here, we present the results of a sea–air transfer study of marine carbohydrates conducted in the high Arctic. Besides a chemo-selective transfer, we observed a quick atmospheric aging of carbohydrates, possibly as a result of both biotic and abiotic processes.
Andrea J. McEvoy, Angus Atkinson, Ruth L. Airs, Rachel Brittain, Ian Brown, Elaine S. Fileman, Helen S. Findlay, Caroline L. McNeill, Clare Ostle, Tim J. Smyth, Paul J. Somerfield, Karen Tait, Glen A. Tarran, Simon Thomas, Claire E. Widdicombe, E. Malcolm S. Woodward, Amanda Beesley, David V. P. Conway, James Fishwick, Hannah Haines, Carolyn Harris, Roger Harris, Pierre Hélaouët, David Johns, Penelope K. Lindeque, Thomas Mesher, Abigail McQuatters-Gollop, Joana Nunes, Frances Perry, Ana M. Queiros, Andrew Rees, Saskia Rühl, David Sims, Ricardo Torres, and Stephen Widdicombe
Earth Syst. Sci. Data, 15, 5701–5737, https://doi.org/10.5194/essd-15-5701-2023, https://doi.org/10.5194/essd-15-5701-2023, 2023
Short summary
Short summary
Western Channel Observatory is an oceanographic time series and biodiversity reference site within 40 km of Plymouth (UK), sampled since 1903. Differing levels of reporting and formatting hamper the use of the valuable individual datasets. We provide the first summary database as monthly averages where comparisons can be made of the physical, chemical and biological data. We describe the database, illustrate its utility to examine seasonality and longer-term trends, and summarize previous work.
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023, https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Short summary
This study evaluated the retrievability and uncertainty of aerosol and ocean properties from PACE's HARP2 instrument using enhanced neural network models with the FastMAPOL algorithm. A cascading retrieval method is developed to improve retrieval performance. A global set of simulated HARP2 data is generated and used for uncertainty evaluations. The performance assessment demonstrates that the FastMAPOL algorithm is a viable approach for operational application to HARP2 data after PACE launch.
Neranga K. Hannadige, Peng-Wang Zhai, Meng Gao, Yongxiang Hu, P. Jeremy Werdell, Kirk Knobelspiesse, and Brian Cairns
Atmos. Meas. Tech., 16, 5749–5770, https://doi.org/10.5194/amt-16-5749-2023, https://doi.org/10.5194/amt-16-5749-2023, 2023
Short summary
Short summary
We evaluated the impact of three ocean optical models with different numbers of free parameters on the performance of an aerosol and ocean color remote sensing algorithm using the multi-angle polarimeter (MAP) measurements. It was demonstrated that the three- and seven-parameter bio-optical models can be used to accurately represent both open and coastal waters, whereas the one-parameter model has smaller retrieval uncertainty over open water.
Eva Álvarez, Gianpiero Cossarini, Anna Teruzzi, Jorn Bruggeman, Karsten Bolding, Stefano Ciavatta, Vincenzo Vellucci, Fabrizio D'Ortenzio, David Antoine, and Paolo Lazzari
Biogeosciences, 20, 4591–4624, https://doi.org/10.5194/bg-20-4591-2023, https://doi.org/10.5194/bg-20-4591-2023, 2023
Short summary
Short summary
Chromophoric dissolved organic matter (CDOM) interacts with the ambient light and gives the waters of the Mediterranean Sea their colour. We propose a novel parameterization of the CDOM cycle, whose parameter values have been optimized by using the data of the monitoring site BOUSSOLE. Nutrient and light limitations for locally produced CDOM caused aCDOM(λ) to covary with chlorophyll, while the above-average CDOM concentrations observed at this site were maintained by allochthonous sources.
Aleksandra Cherkasheva, Rustam Manurov, Piotr Kowalczuk, Alexandra N. Loginova, Monika Zabłocka, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2495, https://doi.org/10.5194/egusphere-2023-2495, 2023
Preprint archived
Short summary
Short summary
We aimed to improve the quality of regional Greenland Sea primary production estimates. Seventy two versions of primary production model setups were tested against field data. Best performing models had local biomass and light absorption profiles. Thus by using local parametrizations for these parameters we can improve Arctic primary production model performance. Annual Greenland Sea basin estimates are larger than previously reported.
Hongyan Xi, Marine Bretagnon, Svetlana N. Losa, Vanda Brotas, Mara Gomes, Ilka Peeken, Leonardo M. A. Alvarado, Antoine Mangin, and Astrid Bracher
State Planet, 1-osr7, 5, https://doi.org/10.5194/sp-1-osr7-5-2023, https://doi.org/10.5194/sp-1-osr7-5-2023, 2023
Short summary
Short summary
Continuous monitoring of phytoplankton groups using satellite data is crucial for understanding global ocean phytoplankton variability on different scales in both space and time. This study focuses on four important phytoplankton groups in the Atlantic Ocean to investigate their trend, anomaly and phenological characteristics both over the whole region and at subscales. This study paves the way to promote potentially important ocean monitoring indicators to help sustain the ocean health.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Raed Halawi Ghosn, Émilie Poisson-Caillault, Guillaume Charria, Armel Bonnat, Michel Repecaud, Jean-Valery Facq, Loïc Quéméner, Vincent Duquesne, Camille Blondel, and Alain Lefebvre
Earth Syst. Sci. Data, 15, 4205–4218, https://doi.org/10.5194/essd-15-4205-2023, https://doi.org/10.5194/essd-15-4205-2023, 2023
Short summary
Short summary
This article describes a long-term (2004–2022) dataset from an in situ instrumented station located in the eastern English Channel and belonging to the COAST-HF network (ILICO). It provides high temporal resolution (sub-hourly) oceanographic and meteorological measurements. The MAREL Carnot dataset can be used to conduct research in marine ecology, oceanography, and data science. It was utilized to characterize recurrent, rare, and extreme events in the coastal area.
Bror F. Jönsson, Christopher L. Follett, Jacob Bien, Stephanie Dutkiewicz, Sangwon Hyun, Gemma Kulk, Gael L. Forget, Christian Müller, Marie-Fanny Racault, Christopher N. Hill, Thomas Jackson, and Shubha Sathyendranath
Geosci. Model Dev., 16, 4639–4657, https://doi.org/10.5194/gmd-16-4639-2023, https://doi.org/10.5194/gmd-16-4639-2023, 2023
Short summary
Short summary
While biogeochemical models and satellite-derived ocean color data provide unprecedented information, it is problematic to compare them. Here, we present a new approach based on comparing probability density distributions of model and satellite properties to assess model skills. We also introduce Earth mover's distances as a novel and powerful metric to quantify the misfit between models and observations. We find that how 3D chlorophyll fields are aggregated can be a significant source of error.
Hubert Loisel, Daniel Schaffer Ferreira Jorge, Rick A. Reynolds, and Dariusz Stramski
Earth Syst. Sci. Data, 15, 3711–3731, https://doi.org/10.5194/essd-15-3711-2023, https://doi.org/10.5194/essd-15-3711-2023, 2023
Short summary
Short summary
Studies of light fields in aquatic environments require data from radiative transfer simulations that are free of measurement errors. In contrast to previously published synthetic optical databases, the present database was created by simulations covering a broad range of seawater optical properties that exhibit probability distributions consistent with a global ocean dominated by open-ocean pelagic environments. This database is intended to support ocean color science and applications.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Tihomir S. Kostadinov, Lisl Robertson Lain, Christina Eunjin Kong, Xiaodong Zhang, Stéphane Maritorena, Stewart Bernard, Hubert Loisel, Daniel S. F. Jorge, Ekaterina Kochetkova, Shovonlal Roy, Bror Jonsson, Victor Martinez-Vicente, and Shubha Sathyendranath
Ocean Sci., 19, 703–727, https://doi.org/10.5194/os-19-703-2023, https://doi.org/10.5194/os-19-703-2023, 2023
Short summary
Short summary
We present a remote sensing algorithm to estimate the size distribution of particles suspended in natural near-surface ocean water using ocean color data. The algorithm can be used to estimate the abundance and carbon content of phytoplankton, photosynthesizing microorganisms that are at the basis of the marine food web and play an important role in Earth’s carbon cycle and climate. A merged, multi-sensor satellite data set and the model scientific code are provided.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Alexandre Mignot, Hervé Claustre, Gianpiero Cossarini, Fabrizio D'Ortenzio, Elodie Gutknecht, Julien Lamouroux, Paolo Lazzari, Coralie Perruche, Stefano Salon, Raphaëlle Sauzède, Vincent Taillandier, and Anna Teruzzi
Biogeosciences, 20, 1405–1422, https://doi.org/10.5194/bg-20-1405-2023, https://doi.org/10.5194/bg-20-1405-2023, 2023
Short summary
Short summary
Numerical models of ocean biogeochemistry are becoming a major tool to detect and predict the impact of climate change on marine resources and monitor ocean health. Here, we demonstrate the use of the global array of BGC-Argo floats for the assessment of biogeochemical models. We first detail the handling of the BGC-Argo data set for model assessment purposes. We then present 23 assessment metrics to quantify the consistency of BGC model simulations with respect to BGC-Argo data.
Markus A. Min, David M. Needham, Sebastian Sudek, Nathan Kobun Truelove, Kathleen J. Pitz, Gabriela M. Chavez, Camille Poirier, Bente Gardeler, Elisabeth von der Esch, Andrea Ludwig, Ulf Riebesell, Alexandra Z. Worden, and Francisco P. Chavez
Biogeosciences, 20, 1277–1298, https://doi.org/10.5194/bg-20-1277-2023, https://doi.org/10.5194/bg-20-1277-2023, 2023
Short summary
Short summary
Emerging molecular methods provide new ways of understanding how marine communities respond to changes in ocean conditions. Here, environmental DNA was used to track the temporal evolution of biological communities in the Peruvian coastal upwelling system and in an adjacent enclosure where upwelling was simulated. We found that the two communities quickly diverged, with the open ocean being one found during upwelling and the enclosure evolving to one found under stratified conditions.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Ben J. Fisher, Alex J. Poulton, Michael P. Meredith, Kimberlee Baldry, Oscar Schofield, and Sian F. Henley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-10, https://doi.org/10.5194/bg-2023-10, 2023
Revised manuscript not accepted
Short summary
Short summary
The Southern Ocean is warming faster than the global average. As a globally important carbon sink and nutrient source, climate driven changes in ecosystems can be expected to cause widespread changes to biogeochemical cycles. We analysed earth system models and showed that productivity is expected to increase across the Southern Ocean, driven by different phytoplankton groups at different latitudes. These predictions carry large uncertainties, we propose targeted studies to reduce this error.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 4287–4304, https://doi.org/10.5194/bg-19-4287-2022, https://doi.org/10.5194/bg-19-4287-2022, 2022
Short summary
Short summary
This study explores the seasonal, inter-annual, and multi-year drivers of the South Atlantic air–sea CO2 flux. Our analysis showed seasonal sea surface temperatures dominate in the subtropics, and the subpolar regions correlated with biological processes. Inter-annually, the El Niño–Southern Oscillation correlated with the CO2 flux by modifying sea surface temperatures and biological activity. Long-term trends indicated an important biological contribution to changes in the air–sea CO2 flux.
Benjamin R. Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark E. Inall, Jan Kaiser, Bastien Y. Queste, Matt Tobermann, Charlotte A. J. Williams, and Matthew R. Palmer
Earth Syst. Sci. Data, 14, 3997–4016, https://doi.org/10.5194/essd-14-3997-2022, https://doi.org/10.5194/essd-14-3997-2022, 2022
Short summary
Short summary
Using a new approach to combine autonomous underwater glider data and satellite Earth observations, we have generated a 19-month time series of North Sea net primary productivity – the rate at which phytoplankton absorbs carbon dioxide minus that lost through respiration. This time series, which spans 13 gliders, allows for new investigations into small-scale, high-frequency variability in the biogeochemical processes that underpin the carbon cycle and coastal marine ecosystems in shelf seas.
Liliane Merlivat, Michael Hemming, Jacqueline Boutin, David Antoine, Vincenzo Vellucci, Melek Golbol, Gareth A. Lee, and Laurence Beaumont
Biogeosciences, 19, 3911–3920, https://doi.org/10.5194/bg-19-3911-2022, https://doi.org/10.5194/bg-19-3911-2022, 2022
Short summary
Short summary
We use in situ high-temporal-resolution measurements of dissolved inorganic carbon and atmospheric parameters at the air–sea interface to analyse phytoplankton bloom initiation identified as the net rate of biological carbon uptake in the Mediterranean Sea. The shift from wind-driven to buoyancy-driven mixing creates conditions for blooms to begin. Active mixing at the air–sea interface leads to the onset of the surface phytoplankton bloom due to the relaxation of wind speed following storms.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
James P. J. Ward, Katharine R. Hendry, Sandra Arndt, Johan C. Faust, Felipe S. Freitas, Sian F. Henley, Jeffrey W. Krause, Christian März, Allyson C. Tessin, and Ruth L. Airs
Biogeosciences, 19, 3445–3467, https://doi.org/10.5194/bg-19-3445-2022, https://doi.org/10.5194/bg-19-3445-2022, 2022
Short summary
Short summary
The seafloor plays an important role in the cycling of silicon (Si), a key nutrient that promotes marine primary productivity. In our model study, we disentangle major controls on the seafloor Si cycle to better anticipate the impacts of continued warming and sea ice melt in the Barents Sea. We uncover a coupling of the iron redox and Si cycles, dissolution of lithogenic silicates, and authigenic clay formation, comprising a Si sink that could have implications for the Arctic Ocean Si budget.
Müjdat Aydın and Şükrü Turan Beşiktepe
Ocean Sci., 18, 1081–1091, https://doi.org/10.5194/os-18-1081-2022, https://doi.org/10.5194/os-18-1081-2022, 2022
Short summary
Short summary
This study provides observational evidence and dynamical reasoning for the sub-inertial waves in the Black Sea using a series of sea level data and Black Sea reanalysis products from the Copernicus Marine Environment Monitoring Service. These waves were generated by strong alongshore winds during autumn–winter and caused 10–20 cm of variability in sea level. They accelerated the coastal current and quickly transferred waters from west to east.
Tristan Petit, Børge Hamre, Håkon Sandven, Rüdiger Röttgers, Piotr Kowalczuk, Monika Zablocka, and Mats A. Granskog
Ocean Sci., 18, 455–468, https://doi.org/10.5194/os-18-455-2022, https://doi.org/10.5194/os-18-455-2022, 2022
Short summary
Short summary
We provide the first insights on bio-optical processes in Storfjorden (Svalbard). Information on factors controlling light propagation in the water column in this arctic fjord becomes crucial in times of rapid sea ice decline. We find a significant contribution of dissolved matter to light absorption and a subsurface absorption maximum linked to phytoplankton production. Dense bottom waters from sea ice formation carry elevated levels of dissolved and particulate matter.
Chuanmin Hu
Earth Syst. Sci. Data, 14, 1183–1192, https://doi.org/10.5194/essd-14-1183-2022, https://doi.org/10.5194/essd-14-1183-2022, 2022
Short summary
Short summary
Using data collected by the Hyperspectral Imager for the Coastal Ocean (HICO) between 2010–2014, hyperspectral reflectance of various floating matters in global oceans and lakes is derived for the spectral range of 400–800 nm. Such reflectance spectra are expected to provide spectral endmembers to differentiate and quantify the floating matters from existing multi-band satellite sensors and future hyperspectral satellite missions such as NASA’s PACE, SBG, and GLIMR missions.
Martí Galí, Marcus Falls, Hervé Claustre, Olivier Aumont, and Raffaele Bernardello
Biogeosciences, 19, 1245–1275, https://doi.org/10.5194/bg-19-1245-2022, https://doi.org/10.5194/bg-19-1245-2022, 2022
Short summary
Short summary
Part of the organic matter produced by plankton in the upper ocean is exported to the deep ocean. This process, known as the biological carbon pump, is key for the regulation of atmospheric carbon dioxide and global climate. However, the dynamics of organic particles below the upper ocean layer are not well understood. Here we compared the measurements acquired by autonomous robots in the top 1000 m of the ocean to a numerical model, which can help improve future climate projections.
Marie Barbieux, Julia Uitz, Alexandre Mignot, Collin Roesler, Hervé Claustre, Bernard Gentili, Vincent Taillandier, Fabrizio D'Ortenzio, Hubert Loisel, Antoine Poteau, Edouard Leymarie, Christophe Penkerc'h, Catherine Schmechtig, and Annick Bricaud
Biogeosciences, 19, 1165–1194, https://doi.org/10.5194/bg-19-1165-2022, https://doi.org/10.5194/bg-19-1165-2022, 2022
Short summary
Short summary
This study assesses marine biological production in two Mediterranean systems representative of vast desert-like (oligotrophic) areas encountered in the global ocean. We use a novel approach based on non-intrusive high-frequency in situ measurements by two profiling robots, the BioGeoChemical-Argo (BGC-Argo) floats. Our results indicate substantial yet variable production rates and contribution to the whole water column of the subsurface layer, typically considered steady and non-productive.
M. A. Soppa, D. A. Dinh, B. Silva, F. Steinmetz, L. Alvarado, and A. Bracher
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-1-W1-2021, 69–72, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-69-2022, https://doi.org/10.5194/isprs-archives-XLVI-1-W1-2021-69-2022, 2022
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Daniel J. Ford, Gavin H. Tilstone, Jamie D. Shutler, and Vassilis Kitidis
Biogeosciences, 19, 93–115, https://doi.org/10.5194/bg-19-93-2022, https://doi.org/10.5194/bg-19-93-2022, 2022
Short summary
Short summary
This study identifies the most accurate biological proxy for the estimation of seawater pCO2 fields, which are key to assessing the ocean carbon sink. Our analysis shows that the net community production (NCP), the balance between photosynthesis and respiration, was more accurate than chlorophyll a within a neural network scheme. The improved pCO2 estimates, based on NCP, identified the South Atlantic Ocean as a net CO2 source, compared to a CO2 sink using chlorophyll a.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Meng Gao, Bryan A. Franz, Kirk Knobelspiesse, Peng-Wang Zhai, Vanderlei Martins, Sharon Burton, Brian Cairns, Richard Ferrare, Joel Gales, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Brent McBride, Anin Puthukkudy, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 14, 4083–4110, https://doi.org/10.5194/amt-14-4083-2021, https://doi.org/10.5194/amt-14-4083-2021, 2021
Short summary
Short summary
Multi-angle polarimetric measurements can retrieve accurate aerosol properties over complex atmosphere and ocean systems; however, most retrieval algorithms require high computational costs. We propose a deep neural network (NN) forward model to represent the radiative transfer simulation of coupled atmosphere and ocean systems and then conduct simultaneous aerosol and ocean color retrievals on AirHARP measurements. The computational acceleration is 103 times with CPU or 104 times with GPU.
Paolo Lazzari, Stefano Salon, Elena Terzić, Watson W. Gregg, Fabrizio D'Ortenzio, Vincenzo Vellucci, Emanuele Organelli, and David Antoine
Ocean Sci., 17, 675–697, https://doi.org/10.5194/os-17-675-2021, https://doi.org/10.5194/os-17-675-2021, 2021
Short summary
Short summary
Multispectral optical sensors and models are increasingly adopted to study marine systems. In this work, bio-optical mooring and biogeochemical Argo float optical observations are combined with the Ocean-Atmosphere Spectral Irradiance Model (OASIM) to analyse the variability of sunlight at the sea surface. We show that the model skill in simulating data varies according to the wavelength of light and temporal scale considered and that it is significantly affected by cloud dynamics.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Joost de Vries, Fanny Monteiro, Glen Wheeler, Alex Poulton, Jelena Godrijan, Federica Cerino, Elisa Malinverno, Gerald Langer, and Colin Brownlee
Biogeosciences, 18, 1161–1184, https://doi.org/10.5194/bg-18-1161-2021, https://doi.org/10.5194/bg-18-1161-2021, 2021
Short summary
Short summary
Coccolithophores are important calcifying phytoplankton with an overlooked life cycle. We compile a global dataset of marine coccolithophore abundance to investigate the environmental characteristics of each life cycle phase. We find that both phases contribute to coccolithophore abundance and that their different environmental preference increases coccolithophore habitat. Accounting for the life cycle of coccolithophores is thus crucial for understanding their ecology and biogeochemical impact.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Rafael Rasse, Hervé Claustre, and Antoine Poteau
Biogeosciences, 17, 6491–6505, https://doi.org/10.5194/bg-17-6491-2020, https://doi.org/10.5194/bg-17-6491-2020, 2020
Short summary
Short summary
Here, data collected by BGC-Argo floats are used to investigate the origin of the suspended small-particle layer inferred from optical sensors in the oxygen-poor Black Sea. Our results suggest that this layer is at least partially composed of the microbial communities that produce dinitrogen. We propose that oxygen and the optically derived small-particle layer can be used in combination to refine delineation of the effective N2-yielding section of the Black Sea and oxygen-deficient zones.
E. Spyrakos, P. Hunter, S. Simis, C. Neil, C. Riddick, S. Wang, A. Varley, M. Blake, S. Groom, J. Torres Palenzuela, L. Vilas Gonzalez, C. Cardenas, M. Frangopulos, X. Aguilar Vega, J. L. Iriarte, and A. Tyler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-3-W2-2020, 101–106, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-101-2020, https://doi.org/10.5194/isprs-annals-IV-3-W2-2020-101-2020, 2020
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Mark E. Baird, Karen A. Wild-Allen, John Parslow, Mathieu Mongin, Barbara Robson, Jennifer Skerratt, Farhan Rizwi, Monika Soja-Woźniak, Emlyn Jones, Mike Herzfeld, Nugzar Margvelashvili, John Andrewartha, Clothilde Langlais, Matthew P. Adams, Nagur Cherukuru, Malin Gustafsson, Scott Hadley, Peter J. Ralph, Uwe Rosebrock, Thomas Schroeder, Leonardo Laiolo, Daniel Harrison, and Andrew D. L. Steven
Geosci. Model Dev., 13, 4503–4553, https://doi.org/10.5194/gmd-13-4503-2020, https://doi.org/10.5194/gmd-13-4503-2020, 2020
Short summary
Short summary
For 20+ years, the Commonwealth Science Industry and Research Organisation (CSIRO) has been developing a biogeochemical (BGC) model for coupling with a hydrodynamic and sediment model for application in estuaries, coastal waters and shelf seas. This paper provides a full mathematical description (equations, parameters), model evaluation and access to the numerical code. The model is particularly suited to applications in shallow waters where benthic processes are critical to ecosystem function.
Cited articles
Aiken, J., Cummings, D. G., Gibb, S. W., Rees, N. W., Woodd-Walker, R.,
Woodward, E. M. S., Woolfenden, J., Hooker, S. B., Berthon, J.-F., Dempsey,
C. D., Suggett, D. J., Wood, P., Donlon, C., Gonzalez-Benitez, N., Huskin, I.,
Quevedo, M., Barciela-Fernandez, R., de Vargas, C., and McKee, C.: AMT-5
Cruise Report. NASA Tech. Memo. 1998–206892, Vol. 2, edited by: Hooker, S. B. and
Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland,
113 pp., https://oceancolor.gsfc.nasa.gov/docs/technical/seawifs_reports/postlaunch/PLVol2.pdf (last access: 18 December 2022), 1998.
Amante, C. and Eakins, B. W.: ETOPO1, 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS
NGDC-24. National Geophysical Data Center, NOAA, https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf (last access: 18 December 2022), 2009.
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production: 2.
Estimation at global scale from satellite (CZCS)
chlorophyll, Global Biogeochem. Cy., 10, 57–70, 1996.
Antoine, D., Chami, M., Claustre, H., D'Ortenzio, F., Morel, A., Bécu,
G., Gentili, B., Louis, F., Ras, J., Roussier, E., Scott, A. J., Tailliez,
D., Hooker, S. B.,Guevel, P., Desté, J.-F., Dempsey, C., and Adams, D.:
BOUSSOLE: a joint CNRS-INSU, ESA, CNES and NASA Ocean Color Calibration And
Validation Activity. NASA Technical memorandum No. 2006-214147,
61 pp., https://ntrs.nasa.gov/api/citations/20070028812/downloads/20070028812.pdf (last access: 18 December 2022), 2006.
Antoine, D., Guevel, P., Desté, J.-F., Bécu, G., Louis, F., Scott,
A., and Bardey, P.: The “BOUSSOLE” Buoy–A New Transparent-to-Swell Taut
Mooring Dedicated to Marine Optics: Design, Tests, and Performance at Sea,
J. Atmos. Ocean. Tech., 25, 968–989, 2008.
Bailey, S. W. and Werdell, P. J.: A multi-sensor approach for the on-orbit
validation of ocean color satellite data products, Remote Sens. Environ., 102,
12–23, 2006.
Barker, K.: In-situ Measurement Protocols. Part A: Apparent Optical
Properties, Issue 2.0, Doc. no: CO-SCI-ARG-TN-0008, ARGANS Ltd., p. 126,
http://mermaid.acri.fr/dataproto/CO-SCI-ARG-TN-0008_In-situ_Measurement_Protocols-AOPs_Issue2_Mar2013.pdf (last access: 18 December 2022), 2013a.
Barker, K.: In-situ Measurement Protocols. Part B: Inherent Optical
Properties and in-water constituents, Issue 1.0, Doc. no:
CO-SCI-ARG-TN-0008, ARGANS Ltd., p. 39, http://mermaid.acri.fr/dataproto/CO-SCI-ARG-TN-0008_In-situ_Measurement_Protocols-IOPs-Constituents_Issue1_Mar2013.pdf (last access: 18 December 2022), 2013b.
Bracher, A.: Phytoplankton pigment concentrations during POLARSTERN cruise ANT-XXVII/2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.848590, 2015.
Bracher, A.: Phytoplankton pigment concentrations during RV Sonne cruise SO243. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898920, 2019a.
Bracher, A.: Phytoplankton pigment concentrations in the Southern Ocean during RV POLARSTERN cruise PS103 in Dec 2016 to Jan 2017. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898941, 2019b.
Bracher, A. and Taylor, B. B.: Phytoplankton pigment concentrations measured by HPLC during Maria S. Merian cruise MSM9/1. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.873070, 2017.
Bracher, A. and Wiegmann, S.: Phytoplankton pigment concentrations in the North Sea and Sogne Fjord from 29 April to 7 May 2016 during RV HEINCKE cruise HE462. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.899043, 2019.
Bracher, A., Taylor, M. H., Taylor, B. B., Dinter, T., Röttgers, R., and Steinmetz, F.: Phytoplankton pigments, hyperspectral downwelling irradiance and remote sensing reflectance during POLARSTERN cruises ANT-XXIII/1, ANT-XXIV/1, ANT-XXIV/4, ANT-XXVI/4, and Maria S. Merian cruise MSM18/3, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.847820, 2015a.
Bracher, A., Taylor, M. H., Taylor, B. B., Dinter, T., Röttgers, R., and Steinmetz, F.: Phytoplankton pigment concentrations during POLARSTERN cruise ANT-XXIII/1. PANGAEA [data set], https://doi.org/10.1594/PANGAEA.871713, 2015b.
Bracher, A., Gonçalves-Araujo, R., Dinter, T., and Cherkasheva, A.: Remote sensing reflectance obtained from spectral underwater upwelling radiance and solar downwelling irradiance measurements during POLARSTERN cruise ARK-XXVI/3 (PS78). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.884528, 2018.
Bracher, A., Cheah, W., and Wiegmann, S.: Phytoplankton pigment concentrations in the tropical Indian Ocean in July and August 2014 during RV Sonne cruises SO234 and SO235. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.898929, 2019.
Bracher, A., Wiegmann, S., Xi, H., and Dinter, T.: Phytoplankton pigment concentration and phytoplankton groups measured on water samples obtained during POLARSTERN cruise PS113 in the Atlantic Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.911061, 2020.
Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K.: Natural variability
of phytoplanktonic absorption in oceanic waters: Influence of the size
sctructure of algal populations, J. Geophys. Res., 109, C11010,
https://doi.org/10.1029/2004JC002419, 2004.
California Current Ecosystem LTER and Goericke, R.: Chlorophyll and phaeopigments measured from discrete bottle samples from CCE LTER process cruises in the California Current System, determined by extraction and bench fluorometry, 2006–2017 (ongoing), ver 9, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/bbb278091dee3c96972087b7dee3673c, 2020.
Clark, D. K., Yarborough, M. A., Feinholz, M. E., Flora, S., Broenkow, W.,
Kim, Y. S., Johnson, B. C., Brown, S. W., Yuen, M., and Mueller, J. L.: MOBY,
A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of
Satellite Ocean Colour Sensors: Measurements and Data Analysis Protocols, in:
Ocean Optics Protocols for Satellite Ocean Colour Sensor Validation, NASA
Technical Memo. 2003-211621/Rev4, Vol VI, 3–34, edited by: Muller, J. L., Fargion G.,
and McClain, C., Greenbelt, MD.: NASA/GSFC, https://ntrs.nasa.gov/api/citations/20030063145/downloads/20030063145.pdf (last access: 18 December 2022), 2003.
Dandonneau, Y. and Niang, A.: Assemblages of phytoplankton pigments along a
shipping line through the North Atlantic and Tropical Pacific, Prog.
Oceanogr., 73, 127–144,
https://doi.org/10.1016/j.pocean.2007.02.003, 2007.
Devine, L., Kennedy, M. K., St-Pierre, I., Lafleur, C., Ouellet, M., and
Bond, S.: BioChem: the Fisheries and Oceans Canada database for biological
and chemical data, Can. Tech. Rep. Fish. Aquat. Sci., 3073: iv + 40 pp.,
http://waves-vagues.dfo-mpo.gc.ca/Library/351319.pdf (last access: 18 December 2022), 2014.
DFO: BioChem: database of biological and chemical oceanographic data.
Department of Fisheries and Oceans, Canada,
http://www.dfo-mpo.gc.ca/science/data-donnees/biochem/index-eng.html
(last access: 18 December 2022), 2018.
Gonçalves-Araujo, R., Wiegmann, S., and Bracher, A.: Phytoplankton absorption coefficient spectra during POLARSTERN cruise ARK-XXVI/3 (PS78, TRANSARC), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.885246, 2018.
Gordon, H. R. and Clark, D. K.: Clear water radiances for atmospheric
correction of coastal zone color scanner imagery, Appl. Optics, 20,
4175–4180, 1981.
Gregg, W. W. and Carder, K. L.: A simple spectral solar irradiance model for
cloudless maritime atmospheres, Limnol. Oceanogr., 35, 1657–1675, 1990.
Hepach, H., Quack, B., Tegtmeier, S., Engel, A., Bracher, A., Fuhlbrügge, S., Galgani, L., Atlas, E. L., Lampel, J., Frieß, U., and Krüger, K.: Pigment measured on water bottle samples during METEOR cruise M91, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.864786, 2016.
Hooker, S. B., McClain, C. R., Firestone, J. K., Westphal, T. L., Yeh, E.-N., and
Ge, Y.: The SeaWiFS Bio-Optical Archive and Storage System (SeaBASS), Part
1. NASA Tech. Memo. 104566, Vol. 20, edited by: Hooker, S. B. and Firestone, E. R.,
NASA Goddard Space Flight Center, Greenbelt, Maryland, 40 pp., https://ntrs.nasa.gov/api/citations/19940032451/downloads/19940032451.pdf (last access: 18 December 2022), 1994.
Hooker, S. B., Zibordi, G., Berthon, J.-F., Bailey, S. W., and Pietras, C. M.:
The SeaWiFS Photometer Revision for Incident Surface Measurement (SeaPRISM)
Field Commissioning. NASA Tech. Memo. 2000–206892, edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center, Greenbelt, Maryland,
24 pp., https://oceancolor.gsfc.nasa.gov/docs/technical/seawifs_reports/postlaunch/PLVol13.pdf (last access: 18 December 2022), 2000.
IOCCG: Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of
Algorithms, and Applications, edited by: Lee, Z.-P., Reports of the International
Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada, http://ioccg.org/wp-content/uploads/2015/10/ioccg-report-05.pdf (last access: 18 December 2022), 2006.
IOCCG: Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology.
edited by: Platt, T., Hoepffner, N., Stuart, V., and Brown, C., Reports of the
International Ocean-Colour Coordinating Group, No. 7, IOCCG, Dartmouth,
Canada, http://ioccg.org/wp-content/uploads/2015/10/ioccg-report-07.pdf (last access: 18 December 2022), 2008.
Karl, D. M. and Michaels, A. F.: The Hawaiian Ocean Time-series (HOT) and
Bermuda Atlantic Time-series Study (BATS)–Preface, Deep-Sea Res. Pt. II, 43,
127–128, 1996.
Liu, Y., Roettgers, R., Ramírez-Pérez, M., Dinter, T., Steinmetz,
F., Noethig, E.-M., Hellmann, S., Wiegmann, S., and Bracher A.: Underway
spectrophotometry in the Fram Strait (European Arctic Ocean): a highly
resolved chlorophyll a data source for complementing satellite ocean color,
Opt. Express, 26, A678–A698, https://doi.org/10.1364/OE.26.00A678,
2018a.
Liu, Y., Boss, E., Chase, A. P., Xi, H., Zhang, X., Röttgers, R., Pan, Y., and Bracher, A.: Phytoplankton pigment concentration measured by HPLC during POLARSTERN cruise PS93.2. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.894872, 2018b.
Liu, Y., Boss, E., Chase, A. P., Xi, H., Zhang, X., Röttgers, R., Pan, Y., and Bracher, A.: Phytoplankton pigment concentration measured by HPLC during POLARSTERN cruise PS99. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.894874, 2018c.
Liu, Y., Boss, E., Chase, A. P., Xi, H., Zhang, X., Röttgers, R., Pan, Y., and Bracher, A.: Phytoplankton pigment concentration measured by HPLC during POLARSTERN cruise PS107. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.894860, 2018d.
Liu, Y., Hellmann, S., Wiegmann, S., and Bracher, A.: Phytoplankton pigment concentrations measured by HPLC during POLARSTERN cruise PS99.1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.905502, 2019a.
Liu, Y., Wiegmann, S., and Bracher, A.: Spectrophotometric measurements of absorption coefficients and optical density by total particles, phytoplankton and non-algal particles during POLARSTERN cruise PS99, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.907648, 2019b.
Liu, Y., Wiegmann, S., and Bracher, A.: Spectrophotometric measurements of absorption coefficients and optical density by total particles, phytoplankton and non-algal particles during POLARSTERN cruise PS107, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.907419, 2019c.
Matrai, P. A., Olson, E., Suttles, S., Hill, V. J., Codispoti, L. A., Light,
B., and Steele, M.: Synthesis of primary production in the Arctic Ocean: I.
Surface waters, 1954–2007, Prog. Oceanogr., 110, 93–106,
https://doi.org/10.1016/j.pocean.2012.11.004, 2013.
McClain, C. R.: A decade of satellite ocean color observations, Annu. Rev.
Mar. Sci., 1, 19–42, 2009.
Morel, A. and Gentilli, B.: Diffuse Reflectance of Oceanic Waters. 3.
Implications of Bidirectionality for the Remote-Sensing Problem,
Appl. Optics, 35, 4850–4862, 1996.
Morel, A. and Maritorena, S.: Bio-optical properties of oceanic waters: A
reappraisal, J. Geophys. Res., 106, 7163–7180, 2001.
Morel, A., Antoine, D., and Gentilli, B.: Bidirectional reflectance of
oceanic waters: accounting for Raman emission and varying particle
scattering phase function, Appl. Optics, 41, 6289–6306, 2002.
Nechad, B., Ruddick, K., Schroeder, T., Oubelkheir, K., Blondeau-Patissier, D., Cherukuru, N., Brando, V., Dekker, A., Clementson, L., Banks, A. C., Maritorena, S., Werdell, P. J., Sá, C., Brotas, V., Caballero de Frutos, I., Ahn, Y.-H., Salama, S., Tilstone, G., Martinez-Vicente, V., Foley, D., McKibben, M., Nahorniak, J., Peterson, T., Siliò-Calzada, A., Röttgers, R., Lee, Z., Peters, M., and Brockmann, C.: CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters, Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, 2015a.
Nechad, B., Ruddick, K., Schroeder, T., Blondeau-Patissier, D., Cherukuru, N., Brando, V. E., Dekker, A. G., Clementson, L., Banks, A., Maritorena, S., Werdell, P. J., Sá, C., Brotas, V., Caballero de Frutos, I., Ahn, Y.-H., Salama, S., Tilstone, G., Martinez-Vicente, V., Foley, D., McKibben, M., Nahorniak, J., Peterson, T. D., Siliò-Calzada, A., Röttgers, R., Lee, Z., Peters, M., and Brockmann, C.: CoastColour Round Robin datasets, Version 1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.841950, 2015b.
Neuer, S., Cianca, A., Helmke, P., Freudenthal, T., Davenport, R., Meggers,
H., Knoll, M., Santana-Casiano, J. M., González-Davila, M., Rueda, M.-J.,
and Llinás, O.: Biogeochemistry and hydrography in the eastern
subtropical North Atlantic gyre. Results from the European time-series
station ESTOC, Prog. Oceanogr., 72, 1–29,
https://doi.org/10.1016/j.pocean.2006.08.001, 2007.
Palmer Station Antarctica LTER, Schofield, O., Vernet, M., and Prezelin, B.: Photosynthetic pigments of water column samples and analyzed with High Performance Liquid Chromatography (HPLC), collected aboard Palmer LTER annual cruises off the coast of the Western Antarctica Peninsula, 1991–2016, ver 8, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/4d583713667a0f52b9d2937a26d0d82e, 2018.
Palmer Station Antarctica LTER, Schofield, O., Vernet, M., and Smith, R.: Chlorophyll and phaeopigments from water column samples, collected at selected depths at Palmer Station Antarctica, during the Palmer LTER field seasons, 1991–2019, ver 7, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/09a1f2cc150b547e3c9b20c39e10cfc2, 2020a.
Palmer Station Antarctica LTER, Schofield, O., Vernet, M. ,and Smith, R.: Chlorophyll and phaeopigments from water column samples, collected at selected depths aboard Palmer LTER annual cruises off the coast of the Western Antarctic Peninsula, 1991–2019, ver 10, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/6bbce1e3264571463c0354874dba88cf, 2020b.
Palmer Station Antarctica LTER, Schofield, O., Vernet, M., and Prezelin, B.: Photosynthetic pigments of water column samples analyzed using High Performance Liquid Chromatography (HPLC), sampled during the Palmer LTER field seasons at Palmer Station, Antarctica, 1991–2015, ver 6, Environmental Data Initiative [data set], https://doi.org/10.6073/pasta/ec55e3d0d7260e1df98c9156f9becdeb, 2020c.
Peloquin, J., Swan, C., Gruber, N., Vogt, M., Claustre, H., Ras, J., Uitz, J., Barlow, R., Behrenfeld, M., Bidigare, R., Dierssen, H., Ditullio, G., Fernandez, E., Gallienne, C., Gibb, S., Goericke, R., Harding, L., Head, E., Holligan, P., Hooker, S., Karl, D., Landry, M., Letelier, R., Llewellyn, C. A., Lomas, M., Lucas, M., Mannino, A., Marty, J.-C., Mitchell, B. G., Muller-Karger, F., Nelson, N., O'Brien, C., Prezelin, B., Repeta, D., Jr. Smith, W. O., Smythe-Wright, D., Stumpf, R., Subramaniam, A., Suzuki, K., Trees, C., Vernet, M., Wasmund, N., and Wright, S.: The MAREDAT global database of high performance liquid chromatography marine pigment measurements, Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, 2013a.
Peloquin, J. M., Swan, C., Gruber, N., Vogt, M., Claustre, H., Ras, J., Uitz, J., Barlow, R. G., Behrenfeld, M. J., Bidigare, R. R., Dierssen, H. M., Ditullio, G., Fernández, E., Gallienne, C., Gibb, S. W., Goericke, R., Harding, L., Head, E. J. H., Holligan, P. M., Hooker, S. B., Karl, D., Landry, M. R., Letelier, R., Llewellyn, C., Lomas, M. W., Lucas, M., Mannino, A., Marty, J.-C., Mitchell, B. G., Muller-Karger, F. E., Nelson, N., O'Brien, C. J., Prezelin, B., Repeta, D. J., Smith, W. O. Jr., Smythe-Wright, D., Stumpf, R., Subramaniam, A., Suzuki, K., Trees, C., Vernet, M., Wasmund, N., and Wright, S.: The MAREDAT global database of high performance liquid chromatography marine pigment measurements – Gridded data product (NetCDF) – Contribution to the MAREDAT World Ocean Atlas of Plankton Functional Types, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.793246, 2013b.
Philipson, P., Kratzer, S., Ben Mustapha, S., Strömbeck, N., and Stelzer,
K.: Satellite-based water quality monitoring in Lake Vänern, Sweden,
Int. J. Remote Sens., 37, 3938–3960,
https://doi.org/10.1080/01431161.2016.1204480, 2016.
Pope, R. and Fry, E.: Absorption spectrum (380–700nm) of pure waters: II.
Integrating cavity measurements, Appl. Optics, 36, 8710–8723, 1997.
Robinson, C., Poulton, A. J., Holligan, P. M., Baker, A. R., Forster, G.,
Gist, N., Jickells, T. D., Malin G., Upstill-Goddard, R., Williams, R. G.,
Woodward, E. M. S., and Zubkov, M. V.: The Atlantic Meridional Transect (AMT)
Programme: a contextual view 1995–2005, Deep-Sea Res. Pt. II, 53, 1485–1515,
https://doi.org/10.1016/j.dsr2.2006.05.015, 2006.
Robins, D. B., Bale, A. J., Moore, G. F., Rees, N. W., Hooker, S. B., Gallienne,
C. P., Westbrook, A. G., Marañon, E., Spooner, W. H., and Laney, S. R.: AMT-1
Cruise Report and Preliminary Results. NASA Tech. Memo. 104566, Vol. 35,
edited by: Hooker, S. B. and Firestone, E. R., NASA Goddard Space Flight Center,
Greenbelt, Maryland, 87 pp., https://ntrs.nasa.gov/api/citations/19960018537/downloads/19960018537.pdf (last access: 18 December 2022), 1996.
Sathyendranath, S., Stuart, V., Nair, A., Oka, K., Nakane, T., Bouman, H.,
Forget, M.-H., Maass, H., and Platt, T.: Carbon-to-chlorophyll ratio and
growth rate of phytoplankton in the sea, Mar. Ecol. Prog. Ser., 383, 73–84,
https://doi.org/10.3354/meps07998, 2009.
Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V., Ciavatta,
S., Chuprin, A., Couto, A. B., Dowell, M., Franz, B., Grant, M., Groom, S.,
Horseman, A., Jackson, T., Krasemann, H., Lavender, S., Martinez Vicente,
V., Melin, F., Platt, T., Regner, P., Roy, S., Steinmetz, F., Swinton, J.,
Thompson, A., Valente, A., Werdell, J., Zuhlk, M., Brando, V. E., Frouin,
R., Gould, R. W., Hooker, S., Kahru, M., Mitchell, B. G., Muller-Karger, F.,
Sosik, H. M., and Voss, K. J.: An ocean-colour time series for use in climate
studies: the experience of the ocean-colour climate change initiative
(OC-CCI), Sensors, 19, 4285, https://doi.org/10.3390/s19194285, 2019.
Schroeder, T., Lovell, J., King, E., Clementson, L., and Scott, R.: IMOS
Ocean Colour Validation Report 2015-16, Report to the Integrated Marine
Observing System (IMOS), CSIRO Oceans and Atmosphere, 33 pp., https://imos.org.au/fileadmin/user_upload/shared/SRS/ocean_colour/IMOS_OC_Validation_Report_2015-16_Final_Upload.pdf (last access: 18 December 2022), 2016.
Soppa, M. A., Dinter, T., Taylor, B. B., and Bracher, A.: Particulate and phytoplankton absorption during POLARSTERN cruises ANT-XXVI/3 and ANT-XXVIII/3, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.819617, 2013.
Soppa, M. A., Hirata, T., Silva, B., Dinter, T., Peeken, I., Wiegmann, S., and Bracher, A.: Phytoplankton pigment concentrations in the South Atlantic Ocean, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.848591, 2014.
Taylor, B. B., Torrecilla, E., Bernhardt, A., Taylor, M. H., Peeken, I., Röttgers, R., Piera, J., and Bracher, A.: Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance, Biogeosciences, 8, 3609–3629, https://doi.org/10.5194/bg-8-3609-2011, 2011a.
Taylor, B. B., Torrecilla, E., Bernhardt, A., Taylor, M. H., Peeken, I., Röttgers, R., Piera, J., and Bracher, A.: Phytoplankton pigments, composition, hyperspectral light field data and biooptical properties during POLARSTERN cruise ANT-XXV/1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.819099, 2011b.
Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W.,
Gillotay, D., Simon, P. C., and Mandel, H.: The solar spectral irradiance
from 200 nnm to 2400 nm as measured by the SOLSPEC spectrometer from the
ATLAS 1-2-3 and EURECA missions, Sol. Phys., 214, 1–22, 2003.
Tilstone, G., Dall'Olmo, G., Hieronymi, M., Ruddick, K., Beck, M., Ligi, M.,
Costa, M., D'Alimonte, D., Vellucci, V., Vansteenwegen, D., Bracher, A.,
Wiegmann, S., Kuusk, J., Vabson, V., Ansko, I., Vendt, R., Donlon, C., and
Casal, T.: Field intercomparison of radiometer measurements for ocean colour
validation, Remote Sens., 12, 1587, https://doi.org/10.3390/rs12101587, 2020.
Tiwari, S. P. and Shanmugam, P.: An optical model for deriving the spectral particulate backscattering coefficients in oceanic waters, Ocean Sci., 9, 987–1001, https://doi.org/10.5194/os-9-987-2013, 2013.
Trees, C. C., Kennicutt II, M. C., and Brooks, J. M.: Errors associated with
the standard fluorimetric determination of chlorophylls and phaeopigments,
Mar. Chem., 17, 1–12, 1985.
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Brando, V., Canuti, E., Chavez, F., Claustre, H., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W., Gould, R., Hooker, S., Kahru, M., Klein, H., Kratzer, S., Loisel, H., McKee, D., Mitchell, B. G., Moisan, T., Muller-Karger, F., O'Dowd, L., Ondrusek, M., Poulton, A. J., Repecaud, M., Smyth, T., Sosik, H. M., Twardowski, M., Voss, K., Werdell, J., Wernand, M., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean-colour satellite applications, Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, 2016.
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Borsheim, Y., Bracher, A., Brando, V., Canuti, E., Chavez, F., Cianca, A., Claustre, H., Clementson, L., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W., Gould, R., Hooker, S. B., Kahru, M., Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Loisel, H., Matrai, P., McKee, D., Mitchell, B. G., Moisan, T., Muller-Karger, F., O'Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud, M., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H. M., Twardowski, M., Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wright, S., and Zibordi, G.: A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two, Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, 2019.
Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Jackson,
T., Chuprin, A., Taberner, M., Airs, R., Antoine, D., Arnone, R., Balch, W.
M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe,
Ş., Borsheim, Y., Bracher, A., Brando, V., Brewin, R. J. W., Canuti, E.,
Chavez, F. P., Cianca, A., Claustre, H., Clementson, L., Crout, R.,
Ferreira, A., Freeman, S., Frouin, R., García-Soto, C., Gibb, S. W.,
Goericke, R., Gould, R., Guillocheau, N., Hooker, S. B., Hu, C., Kahru, M.,
Kampel, M., Klein, H., Kratzer, S., Kudela, R., Ledesma, J., Lohrenz, S.,
Loisel, H., Mannino, A., Martinez-Vicente, V., Matrai, P., McKee, D.,
Mitchell, B. G., Moisan, T., Montes, E., Muller-Karger, F., Neeley, A.,
Novak, M., O'Dowd, L., Ondrusek, M., Platt, T., Poulton, A. J., Repecaud,
M., Röttgers, R., Schroeder, T., Smyth, T., Smythe-Wright, D., Sosik, H.
M., Thomas, C., Thomas, R., Tilstone, G., Tracana, A., Twardowski, M.,
Vellucci, V., Voss, K., Werdell, J., Wernand, M., Wojtasiewicz, B., Wright,
S., and Zibordi, G: : A compilation of global bio-optical in situ data for
ocean-colour satellite applications – version 3, PANGAEA [data set],
https://doi.pangaea.de/10.1594/PANGAEA.941318, 2022.
Voss, K. J., Gordon, H. R., Flora, S., Johnson, B. C., Yarbrough, M.,
Feinholz, M., and Houlihan, T.: A method to extrapolate the diffuse upwelling
radiance attenuation coefficient to the surface as applied to the Marine
Optical Buoy (MOBY), J. Atmos. Ocean. Tech., 34, 1423–1432, https://doi.org/10.1175/JTECH-D-16-0235.1, 2017.
Werdell, P. J. and Bailey, S. W.: An improved bio-optical data set for ocean
color algorithm development and satellite data product validation, Remote
Sens. Environ., 98, 122–140, 2005.
Werdell, P. J., Bailey, S., Fargion, G., Pietras, C., Knobelspiesse, K.,
Feldman, G., and McClain, C.: Unique data repository facilitates ocean color
satellite validation, EOS Transactions AGU, 84, 379–387,
https://doi.org/10.1029/2003EO380001, 2003.
Wiegmann, S., Liu, Y., and Bracher, A.: Spectrophotometric measurements of absorption coefficients by total particles, phytoplankton and non-algal particles during POLARSTERN cruise PS93.2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.907605, 2019.
Zibordi, G., Hooker, S. B., Berthon, J. F., and D'Alimonte, D.: Autonomous
above-water radiance measurements from an offshore platform: a field
assessment experiment, J. Atmos. Ocean. Tech. 19,
808–819, 2002.
Zibordi, G., Holben, B. N., Hooker, S. B., Mélin, F., Berthon, J.-F.,
Slutsker, I., Giles, D., Vandemark, D., Feng, H., Rutledge, K., Schuster, G.,
and Al Mandoos, A.: A network for standardized ocean color validation
measurements, EOS T. Am. Geophys. Un., 87, 293–297,
https://doi.org/10.1029/2006EO300001, 2006.
Zibordi, G., Holben, B.N., Slutsker, I., Giles, D., D'Alimonte, D.,
Mélin, F., Berthon, J.-F., Vandemark, D., Feng, H., Schuster, G.,
Fabbri, B. E., Kaitala, S., and Seppälä, J.: AERONET-OC: A network for
the validation of ocean color primary radiometric products, J. Atmos. Ocean.
Tech., 26, 1634–1651, 2009.
Zibordi, G., Holben, B. N., Talone, M., D'Alimonte, D., Slutsker, I., Giles,
D. M., and Sorokin, M. G.: Advances in the Ocean Color Component of the
Aerosol Robotic Network (AERONET-OC), J. Atmos. Ocean. Tech., 38,
725–746, 2021.
Zindler, C., Bracher, A., Marandino, C. A., Taylor, B. B., Torrecilla, E., Kock, A., and Bange, H. W.: Sulphur compounds, methane, and phytoplankton during SONNE cruise SO202/2 (Transbrom Sonne), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.820607, 2013.
Zhang, X., Hu, L., and He, M.-X.: Scattering by pure seawater:
Effect of Salinity, Opt. Express, 17, 5698–5710, 2009.
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data...
Altmetrics
Final-revised paper
Preprint