Articles | Volume 14, issue 12
https://doi.org/10.5194/essd-14-5573-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5573-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global climate-related predictors at kilometer resolution for the past and future
Philipp Brun
CORRESPONDING AUTHOR
Land Change Science, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Niklaus E. Zimmermann
Land Change Science, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Chantal Hari
Land Change Science, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Climate and Environmental Physics, Physics Institute, University of
Bern, 3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
Loïc Pellissier
Land Change Science, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Ecosystems and Landscape Evolution, Institute of Terrestrial
Ecosystems, Department of Environmental System Science, ETH Zürich, 8092
Zürich, Switzerland
Dirk Nikolaus Karger
Land Change Science, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Related authors
Johannes Dollinger, Philipp Brun, Vivien Sainte Fare Garnot, and Jan Dirk Wegner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 41–48, https://doi.org/10.5194/isprs-annals-X-2-2024-41-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-41-2024, 2024
Joren Janzing, Niko Wanders, Marit van Tiel, Barry van Jaarsveld, Dirk Nikolaus Karger, and Manuela Irene Brunner
EGUsphere, https://doi.org/10.5194/egusphere-2024-3072, https://doi.org/10.5194/egusphere-2024-3072, 2024
Short summary
Short summary
Process representation in hyper-resolution large-scale hydrological models (LHM) limits model performance, particularly in mountain regions. Here, we update mountain process representation in an LHM and compare different meteorological forcing products. Structural and parametric changes in snow, glacier and soil processes improve discharge simulations, while meteorological forcing remains a major control on model performance. Our work can guide future development of LHMs.
Johanna Teresa Malle, Giulia Mazzotti, Dirk Nikolaus Karger, and Tobias Jonas
Earth Syst. Dynam., 15, 1073–1115, https://doi.org/10.5194/esd-15-1073-2024, https://doi.org/10.5194/esd-15-1073-2024, 2024
Short summary
Short summary
Land surface processes are crucial for the exchange of carbon, nitrogen, and energy in the Earth system. Using meteorological and land use data, we found that higher resolution improved not only the model representation of snow cover but also plant productivity and that water returned to the atmosphere. Only by combining high-resolution models with high-quality input data can we accurately represent complex spatially heterogeneous processes and improve our understanding of the Earth system.
Johannes Dollinger, Philipp Brun, Vivien Sainte Fare Garnot, and Jan Dirk Wegner
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 41–48, https://doi.org/10.5194/isprs-annals-X-2-2024-41-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-41-2024, 2024
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Tobias Siegfried, Aziz Ul Haq Mujahid, Beatrice Sabine Marti, Peter Molnar, Dirk Nikolaus Karger, and Andrey Yakovlev
EGUsphere, https://doi.org/10.5194/egusphere-2023-520, https://doi.org/10.5194/egusphere-2023-520, 2023
Preprint archived
Short summary
Short summary
Our study investigates climate change impacts on water resources in Central Asia's high-mountain regions. Using new data and a stochastic soil moisture model, we found increased precipitation and higher temperatures in the future, leading to higher water discharge despite decreasing glacier melt contributions. These findings are crucial for understanding and preparing for climate change effects on Central Asia's water resources, with further research needed on extreme weather event impacts.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Cited articles
Aguilos, M., Sun, G., Noormets, A., Domec, J.-C., McNulty, S., Gavazzi, M.,
Prajapati, P., Minick, K. J., Mitra, B., and King, J.: Ecosystem
Productivity and Evapotranspiration Are Tightly Coupled in Loblolly Pine
(Pinus taeda L.) Plantations along the Coastal Plain of the Southeastern
U.S., Carbon and Water Cycles in Coastal Forests under Climate Change and Variability, Forests, 12, 1123, https://doi.org/10.3390/f12081123, 2021.
Alduchov, O. A. and Eskridge, R. E.: Improved Magnus Form Approximation of
Saturation Vapor Pressure, J. Appl. Meteorol., 35, 601–609,
https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996.
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim,
J.-H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global
overview of drought and heat-induced tree mortality reveals emerging climate
change risks for forests, For. Ecol. Manage., 259, 660–684,
https://doi.org/10.1016/j.foreco.2009.09.001, 2010.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration – guidelines for computing crop water requirements, FAO
Irrig. Drain. Pap., 56, ISBN 9251042195, 1998.
Anandhi, A.: Growing degree days – Ecosystem indicator for changing diurnal
temperatures and their impact on corn growth stages in Kansas, Ecol. Indic.,
61, 149–158, https://doi.org/10.1016/j.ecolind.2015.08.023, 2016.
Andrade, A. M. D., Michel, R. F. M., Bremer, U. F., Schaefer, C. E. G. R.,
and Simões, J. C.: Relationship between solar radiation and surface
distribution of vegetation in Fildes Peninsula and Ardley Island, Maritime
Antarctica, Int. J. Remote Sens., 39, 2238–2254,
https://doi.org/10.1080/01431161.2017.1420937, 2018.
Araújo, M. B. and Rahbek, C.: How Does Climate Change Affect
Biodiversity?, Science, 313, 1396–1397,
https://doi.org/10.1126/science.1131758, 2006.
Arguez, A. and Vose, R. S.: The Definition of the Standard WMO Climate
Normal: The Key to Deriving Alternative Climate Normals, Bull. Am. Meteorol.
Soc., 92, 699–704, https://doi.org/10.1175/2010BAMS2955.1, 2011.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F.:
Impacts of climate change on the future of biodiversity, Ecol. Lett., 15,
365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x, 2012.
Bobrowski, M., Weidinger, J., and Schickhoff, U.: Is New Always Better?
Frontiers in Global Climate Datasets for Modeling Treeline Species in the
Himalayas, Atmosphere (Basel), 12, 543,
https://doi.org/10.3390/atmos12050543, 2021.
Böhner, J. and Antonic, O.: Land-Surface Parameters Specific to
Topo-Climatology, in: Geomorphometry: Concepts, Software, Applications,
195–226, https://doi.org/10.1016/S0166-2481(08)00008-1, 2009.
Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., and
Zemp, M.: The Concept of Essential Climate Variables in Support of Climate
Research, Applications, and Policy, Bull. Am. Meteorol. Soc., 95,
1431–1443, https://doi.org/10.1175/BAMS-D-13-00047.1, 2014.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J., Dupont, E., Éthé,
C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J., Guenet, B., Guez, Lionel, E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N.,
Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S.,
Madec, G., Madeleine, J., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton,
Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima,
A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M.,
Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and
Evaluation of the IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Syst.,
12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020.
Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L., and Karger, D. N.:
CHELSA-BIOCLIM+ A novel set of global climate-related predictors at
kilometre-resolution, EnviDat [data set], https://doi.org/10.16904/envidat.332, 2022.
Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y., Labba, N.,
Radionov, V., Bradley, R. S., Blangy, S., Bulygina, O. N., Christensen, T.
R., Colman, J. E., Essery, R. L. H., Forbes, B. C., Forchhammer, M. C.,
Golubev, V. N., Honrath, R. E., Juday, G. P., Meshcherskaya, A. V., Phoenix,
G. K., Pomeroy, J., Rautio, A., Robinson, D. A., Schmidt, N. M., Serreze, M.
C., Shevchenko, V. P., Shiklomanov, A. I., Shmakin, A. B., Sköld, P.,
Sturm, M., Woo, M., and Wood, E. F.: Multiple Effects of Changes in Arctic
Snow Cover, Ambio, 40, 32–45, https://doi.org/10.1007/s13280-011-0213-x,
2011.
Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E., and Ries, L.: Do
growing degree days predict phenology across butterfly species?, Ecology,
96, 1473–1479, https://doi.org/10.1890/15-0131.1, 2015.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Daly, C., Taylor, G. H., and Gibson, W. P.: The PRISM approach to mapping
precipitation and temperature, in: Proc 10th AMS Conf Appl. Climatol.,
20–23, https://prism.oregonstate.edu/documents/pubs/1997appclim_PRISMapproach_daly.pdf (last access: 12 December 2022), 1997.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation
data 2010 (GMTED2010), Earth Resources Observation And Science (EROS) Center, https://doi.org/10.5066/F7J38R2N, 2011.
Datta, A., Schweiger, O., and Kühn, I.: Origin of climatic data can
determine the transferability of species distribution models, 59, 61–76,
https://doi.org/10.3897/neobiota.59.36299, 2020.
Dawson, T. E.: Fog in the California redwood forest: ecosystem inputs and
use by plants, Oecologia, 117, 476–485,
https://doi.org/10.1007/s004420050683, 1998.
Dunn, R. J. H.: HadISD version 3: monthly updates, Hadley Centre Technical Note, https://digital.nmla.metoffice.gov.uk/digitalFile_13890750-fb6f-42c7-92df-1c4504621fae/ (last access: last access: 12 December 2022), 2019.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R.,
and Mearns, L. O.: Climate Extremes: Observations, Modeling, and Impacts,
Science, 289, 2068–2074,
https://doi.org/10.1126/science.289.5487.2068, 2000.
Easterling, D. R., Kunkel, K. E., Wehner, M. F., and Sun, L.: Detection and
attribution of climate extremes in the observed record, Weather Clim.
Extrem., 11, 17–27, https://doi.org/10.1016/j.wace.2016.01.001, 2016.
Elsen, P. R., Monahan, W. B., Dougherty, E. R., and Merenlender, A. M.:
Keeping pace with climate change in global terrestrial protected areas, Sci.
Adv., 6, eaay0814, https://doi.org/10.1126/sciadv.aay0814, 2020.
Evans, B. M., Walker, D. A., Benson, C. S., Nordstrand, E. A., and Petersen,
G. W.: Spatial interrelationships between terrain, snow distribution and
vegetation patterns at an arctic foothills site in Alaska, Ecography, 12, 270–278, https://doi.org/10.1111/j.1600-0587.1989.tb00846.x, 1989.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
FAO: FAOCLIM 2: world-wide agroclimatic data, Environment and Natural Resources, Working paper No. 5 (CD-ROM), FAO [data set], https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1028000/ (last access: 13 December 2022), 2001.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1 km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315,
https://doi.org/10.1002/joc.5086, 2017.
Fourcade, Y., Besnard, A. G., and Secondi, J.: Paintings predict the
distribution of species, or the challenge of selecting environmental
predictors and evaluation statistics, Glob. Ecol. Biogeogr., 27, 245–256,
https://doi.org/10.1111/geb.12684, 2018.
Gholz, H. L.: Environmental Limits on Aboveground Net Primary Production,
Leaf Area, and Biomass in Vegetation Zones of the Pacific Northwest,
Ecology, 63, 469–481, https://doi.org/10.2307/1938964, 1982.
Grier, C. G. and Running, S. W.: Leaf Area of Mature Northwestern Coniferous
Forests: Relation to Site Water Balance, Ecology, 58, 893–899,
https://doi.org/10.2307/1936225, 1977.
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B.,
Siegwolf, R. T. W., Sperry, J. S., and McDowell, N. G.: Plant responses to
rising vapor pressure deficit, New Phytol., 226, 1550–1566,
https://doi.org/10.1111/nph.16485, 2020.
Gutjahr, O., Putrasahan, D., Lohmann, K., Jungclaus, J. H., von Storch, J.-S., Brüggemann, N., Haak, H., and Stössel, A.: Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP), Geosci. Model Dev., 12, 3241–3281, https://doi.org/10.5194/gmd-12-3241-2019, 2019.
Hannah, L.: Protected Areas and Climate Change, Ann. N. Y. Acad. Sci., 1134,
201–212, https://doi.org/10.1196/annals.1439.009, 2008.
Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from
Temperature, Appl. Eng. Agric., 1, 96–99, https://doi.org/10.13031/2013.26773, 1985.
Hartman, M. D., Parton, W. J., Derner, J. D., Schulte, D. K., Smith, W. K.,
Peck, D. E., Day, K. A., Del Grosso, S. J., Lutz, S., Fuchs, B. A., Chen,
M., and Gao, W.: Seasonal grassland productivity forecast for the U.S. Great
Plains using Grass-Cast, 11, e03280, https://doi.org/10.1002/ecs2.3280, 2020.
Hauser, G., Rais, O., Morán Cadenas, F., Gonseth, Y., Bouzelboudjen, M.,
and Gern, L.: Influence of climatic factors on Ixodes ricinus nymph
abundance and phenology over a long-term monthly observation in Switzerland
(2000–2014), Parasit. Vectors, 11, 289,
https://doi.org/10.1186/s13071-018-2876-7, 2018.
Hay, L. E., Wilby, R. L., and Leavesley, G. H.: A Comparison Of Delta Change
And Downscaled Gcm Scenarios For Three Mountainous Basins In The United
States 1, JAWRA J. Am. Water Resour. Assoc., 36, 387–397,
https://doi.org/10.1111/j.1752-1688.2000.tb04276.x, 2000.
Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting,
J., Shevliakova, E., Winton, M., Zhao, M., Bushuk, M., Wittenberg, A. T.,
Wyman, B., Xiang, B., Zhang, R., Anderson, W., Balaji, V., Donner, L.,
Dunne, K., Durachta, J., Gauthier, P. P. G., Ginoux, P., Golaz, J. -C.,
Griffies, S. M., Hallberg, R., Harris, L., Harrison, M., Hurlin, W., John,
J., Lin, P., Lin, S. -J., Malyshev, S., Menzel, R., Milly, P. C. D., Ming,
Y., Naik, V., Paynter, D., Paulot, F., Ramaswamy, V., Reichl, B., Robinson,
T., Rosati, A., Seman, C., Silvers, L. G., Underwood, S., and Zadeh, N.:
Structure and Performance of GFDL's CM4.0 Climate Model, J. Adv. Model.
Earth Syst., 11, 3691–3727, https://doi.org/10.1029/2019MS001829, 2019.
Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G.
B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh,
M. G., and Gonzalez, M. R.: SoilGrids1km – Global Soil Information Based
on Automated Mapping, PLoS One, 9, e105992,
https://doi.org/10.1371/journal.pone.0105992, 2014.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLoS One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, r-project [code],
https://cran.r-project.org/package=raster (last access: 22 August 2019), 2019.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hogg, E. H.: Temporal scaling of moisture and the forest-grassland boundary
in western Canada, Agric. For. Meteorol., 84, 115–122,
https://doi.org/10.1016/S0168-1923(96)02380-5, 1997.
Hogg, E. H., Michaelian, M., Hook, T. I., and Undershultz, M. E.: Recent
climatic drying leads to age-independent growth reductions of white spruce
stands in western Canada, Glob. Chang. Biol., 23, 5297–5308,
https://doi.org/10.1111/gcb.13795, 2017.
Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M.,
and Meinke, H.: Adapting agriculture to climate change, Proc. Natl. Acad.
Sci., 104, 19691–19696, https://doi.org/10.1073/pnas.0701890104, 2007.
Hufkens, K., Friedl, M. A., Keenan, T. F., Sonnentag, O., Bailey, A.,
O'Keefe, J., and Richardson, A. D.: Ecological impacts of a widespread frost
event following early spring leaf-out, Glob. Chang. Biol., 18, 2365–2377,
https://doi.org/10.1111/j.1365-2486.2012.02712.x, 2012.
Iio, A., Hikosaka, K., Anten, N. P. R., Nakagawa, Y., and Ito, A.: Global
dependence of field-observed leaf area index in woody species on climate: a
systematic review, Glob. Ecol. Biogeogr., 23, 274–285,
https://doi.org/10.1111/geb.12133, 2014.
IPBES: The IPBES regional assessment report on biodiversity and ecosystem
services for Europe and Central Asia., edited by: Rounsevell, M., Fischer,
M., Torre-Marin Rando, A., and Mader, A., Secretariat of the
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services, Bonn, Germany, 892 pp., https://doi.org/10.5281/zenodo.3237428, 2018.
IPCC: Renewable Energy Sources and Climate Change Mitigation: Special Report
of the Intergovernmental Panel on Climate Change, edited by: Edenhofer, O.,
Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S.,
Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., and von Stechow,
C., Cambridge University Press, Cambridge, ISBN 9781107607101, 2011.
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability.
Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O.,
Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K.,
Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V.,
Okem, A., and Rama, B., Cambridge University Press, United Kingdom, https://doi.org/10.1017/9781009325844., 2022.
Irmak, S.: Evapotranspiration, in: Encyclopedia of Ecology, edited by: Jørgensen, S. E. and Fath, B. D., Academic Press,
1432–1438, https://doi.org/10.1016/B978-008045405-4.00270-6, 2008.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas, Sci.
Data, 4, 170122, https://doi.org/10.1038/sdata.2017.122, 2017.
Karger, D. N., Schmatz, D. R., Dettling, G., and Zimmermann, N. E.:
High-resolution monthly precipitation and temperature time series from 2006
to 2100, Sci. Data, 7, 248, https://doi.org/10.1038/s41597-020-00587-y,
2020.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M.:
Climatologies at high resolution for the earth's land surface areas, EnviDat [data set],
https://doi.org/10.16904/envidat.228.v2.1, 2021a.
Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E., and Jetz, W.:
Global daily 1 km land surface precipitation based on cloud cover-informed
downscaling, Sci. Data, 8, 307, https://doi.org/10.1038/s41597-021-01084-6,
2021b.
Karger, D. N., Kessler, M., Lehnert, M., and Jetz, W.: Limited protection
and ongoing loss of tropical cloud forest biodiversity and ecosystems
worldwide, Nat. Ecol. Evol., 5, 854–862,
https://doi.org/10.1038/s41559-021-01450-y, 2021c.
Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., Conrad, O., Zimmermann, N. E., and Frieler, K.: CHELSA-W5E5: Daily 1 km meteorological forcing data for climate impact studies, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-367, in review, 2022.
Kawamiya, M., Hajima, T., Tachiiri, K., Watanabe, S., and Yokohata, T.: Two
decades of Earth system modeling with an emphasis on Model for
Interdisciplinary Research on Climate (MIROC), Prog. Earth Planet. Sci., 7,
64, https://doi.org/10.1186/s40645-020-00369-5, 2020.
Knauer, J., El-Madany, T. S., Zaehle, S., and Migliavacca, M.: Bigleaf – An
R package for the calculation of physical and physiological ecosystem
properties from eddy covariance data, PLoS One, 13, e0201114,
https://doi.org/10.1371/journal.pone.0201114, 2018.
Körner, C., Paulsen, J., and Spehn, E. M.: A definition of mountains and
their bioclimatic belts for global comparisons of biodiversity data, Alp.
Bot., 121, 73, https://doi.org/10.1007/s00035-011-0094-4, 2011.
Lange, S.: ISIMIP3b bias adjustment fact sheet, Inter-Sectoral Impact Model, Intercomparison Project, 40 pp., https://www.isimip.org/documents/413/ISIMIP3b_bias_adjustment_fact_sheet_Gnsz7CO.pdf (last access: 12 December 2022), 2021.
Larcher, W.: Ökophysiologie der Pflanzen: Leben und
Stressbewältigung der Pflanzen in ihrer Umwelt, 5th edn., Verlag Eugen
Ulmer, Stuttgart, 394 pp., ISBN 3825280748, 1994.
Leng, G. and Hall, J.: Crop yield sensitivity of global major agricultural
countries to droughts and the projected changes in the future, Sci. Total
Environ., 654, 811–821, https://doi.org/10.1016/j.scitotenv.2018.10.434,
2019.
Lenihan, J. M.: Ecological response surfaces for North American boreal tree
species and their use in forest classification, J. Veg. Sci., 4, 667–680,
https://doi.org/10.2307/3236132, 1993.
Levins, R.: The Strategy Of Model Building In Population Biology, Am. Sci.,
54, 421–431, 1966.
Lieth, H.: Modeling the Primary Productivity of the World, in: Primary Productivity of the Biosphere, Springer, vol. 14, 237–263, https://doi.org/10.1007/978-3-642-80913-2_12, 1975.
Liu, W., Ye, T., Jägermeyr, J., Müller, C., Chen, S., Liu, X., and
Shi, P.: Future climate change significantly alters interannual wheat yield
variability over half of harvested areas, Environ. Res. Lett., 16, 094045,
https://doi.org/10.1088/1748-9326/ac1fbb, 2021.
Masia, S., Trabucco, A., Spano, D., Snyder, R. L., Sušnik, J., and
Marras, S.: A modelling platform for climate change impact on local and
regional crop water requirements, Agric. Water Manag., 255, 107005,
https://doi.org/10.1016/j.agwat.2021.107005, 2021.
Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., and Yao, T.: WRF simulation of a precipitation event over the Tibetan Plateau, China – an assessment using remote sensing and ground observations, Hydrol. Earth Syst. Sci., 15, 1795–1817, https://doi.org/10.5194/hess-15-1795-2011, 2011.
Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and
Finkelnburg, R.: Precipitation Seasonality and Variability over the Tibetan
Plateau as Resolved by the High Asia Reanalysis, J. Clim., 27, 1910–1927,
https://doi.org/10.1175/JCLI-D-13-00282.1, 2014.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19,
205–234, 1965.
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2019.
Muñoz‐Sabater, J.: ERA5-Land monthly averaged data from 1950 to 1980, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.68d2bb30, 2021.
Neilson, R. P.: A Model for Predicting Continental-Scale Vegetation
Distribution and Water Balance, Ecol. Appl., 5, 362–385,
https://doi.org/10.2307/1942028, 1995.
Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C.,
Tucker, C. J., Myneni, R. B., and Running, S. W.: Climate-Driven Increases
in Global Terrestrial Net Primary Production from 1982 to 1999, Science, 300, 1560–1563, https://doi.org/10.1126/science.1082750, 2003.
Nobel, P. S.: Wind as an Ecological Factor, in: Physiological Plant Ecology
I, Springer Berlin Heidelberg, Berlin, Heidelberg, vol. 12/A, 475–500,
https://doi.org/10.1007/978-3-642-68090-8_16, 1981.
O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter,
T. R., Mathur, R., and van Vuuren, D. P.: A new scenario framework for
climate change research: the concept of shared socioeconomic pathways, Clim.
Change, 122, 387–400, https://doi.org/10.1007/s10584-013-0905-2, 2014.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Glob.
Environ. Chang., 42, 169–180,
https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017.
Ooms, J.: magick: Advanced Graphics and Image-Processing in R, magick [code],
https://CRAN.R-project.org/package=magick (last access: 12 December 2022), 2020.
Ouisse, T., Bonte, D., Lebouvier, M., Hendrickx, F., and Renault, D.: The
importance of relative humidity and trophic resources in governing
ecological niche of the invasive carabid beetle Merizodus soledadinus in the
Kerguelen archipelago, J. Insect Physiol., 93–94, 42–49,
https://doi.org/10.1016/j.jinsphys.2016.08.006, 2016.
Paulsen, J. and Körner, C.: A climate-based model to predict potential
treeline position around the globe, Alp. Bot., 124, 1–12,
https://doi.org/10.1007/s00035-014-0124-0, 2014.
Pebesma, E. J. and Bivand, R. S.: Classes and methods for spatial data in
{R}, R News, 5, 9–13, 2005.
Pollock, L. J., Thuiller, W., and Jetz, W.: Large conservation gains
possible for global biodiversity facets, Nature, 546, 141–144,
https://doi.org/10.1038/nature22368, 2017.
Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A.,
and Solomon, A. M.: Special Paper: A Global Biome Model Based on Plant
Physiology and Dominance, Soil Properties and Climate, J. Biogeogr., 19,
117, https://doi.org/10.2307/2845499, 1992.
Pryor, S. C. and Hahmann, A. N.: Downscaling Wind, in: Oxford Research
Encyclopedia of Climate Science, Oxford University Press,
https://doi.org/10.1093/acrefore/9780190228620.013.730, 2019.
R Development Core Team: R: A Language and Environment for Statistical
Computing, http://www.r-project.org (last access: 12 December 2022), 2008.
Santini, M., Noce, S., Antonelli, M., and Caporaso, L.: Complex drought
patterns robustly explain global yield loss for major crops, Sci. Rep., 12,
5792, https://doi.org/10.1038/s41598-022-09611-0, 2022.
Schimel, D. S.: Terrestrial ecosystems and the carbon cycle, Glob. Chang.
Biol., 1, 77–91, https://doi.org/10.1111/j.1365-2486.1995.tb00008.x, 1995.
Schultz, J.: The Ecozones of the World, The Ecological Divisions of the Geosphere, Springer Berlin Heidelberg, Berlin,
Heidelberg, https://doi.org/10.1007/3-540-28527-X, 2005.
Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire,
A., O'Connor, F. M., Stringer, M., Hill, R., Palmieri, J., Woodward, S.,
Mora, L., Kuhlbrodt, T., Rumbold, S. T., Kelley, D. I., Ellis, R., Johnson,
C. E., Walton, J., Abraham, N. L., Andrews, M. B., Andrews, T., Archibald,
A. T., Berthou, S., Burke, E., Blockley, E., Carslaw, K., Dalvi, M.,
Edwards, J., Folberth, G. A., Gedney, N., Griffiths, P. T., Harper, A. B.,
Hendry, M. A., Hewitt, A. J., Johnson, B., Jones, A., Jones, C. D., Keeble,
J., Liddicoat, S., Morgenstern, O., Parker, R. J., Predoi, V., Robertson,
E., Siahaan, A., Smith, R. S., Swaminathan, R., Woodhouse, M. T., Zeng, G.,
and Zerroukat, M.: UKESM1: Description and Evaluation of the U.K. Earth
System Model, J. Adv. Model. Earth Syst., 11, 4513–4558,
https://doi.org/10.1029/2019MS001739, 2019.
Seneviratne, S. I., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J.,
Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M., Sorteberg,
A., Vera, C., and Zhang, X.: Changes in climate extremes and their impacts
on the natural physical environment, in: Managing the Risks of Extreme
Events and Disasters to Advance Climate Change Adaptation, edited by: Field,
C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L.,
Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M.,
and Midgley, P. M., A Special Report of Working Groups I and II of the
Intergovernmental Panel on Climate Change (IPCC), Cambridge, UK and New
York, NY, USA, 109–230, https://doi.org/10.7916/d8-6nbt-s431, 2012.
Singer, M. B., Asfaw, D. T., Rosolem, R., Cuthbert, M. O., Miralles, D. G.,
MacLeod, D., Quichimbo, E. A., and Michaelides, K.: Hourly potential
evapotranspiration at 0.1∘ resolution for the global land surface
from 1981-present, Sci. Data, 8, 224,
https://doi.org/10.1038/s41597-021-01003-9, 2021.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J. Comput. Phys.,
227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Sloat, L. L., Davis, S. J., Gerber, J. S., Moore, F. C., Ray, D. K., West,
P. C., and Mueller, N. D.: Climate adaptation by crop migration, Nat.
Commun., 11, 1243, https://doi.org/10.1038/s41467-020-15076-4, 2020.
Sonntag, D.: Important new values of the physical constants of 1986, vapor
pressure formulations based on the ITS-90 and psychrometric formulae,
Z. Meteorol., 70, 340–344, 1990.
Sparks, A. H., Hengl, T., and Nelson, A.: GSODR: Global Summary Daily
Weather Data in R, J. Open Source Softw., 2, 177,
https://doi.org/10.21105/joss.00177, 2017.
Suwal, M. K., Huettmann, F., Regmi, G. R., and Vetaas, O. R.: Parapatric
subspecies of Macaca assamensis show a marginal overlap in their predicted
potential distribution: Some elaborations for modern conservation
management, Ecol. Evol., 8, 9712–9727, https://doi.org/10.1002/ece3.4405,
2018.
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I.
C.: Climate change threats to plant diversity in Europe, Proc. Natl. Acad.
Sci., 102, 8245–8250, https://doi.org/10.1073/pnas.0409902102, 2005.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., and Zimmermann, N.
E.: Uncertainty in ensembles of global biodiversity scenarios, Nat. Commun.,
10, 1446, https://doi.org/10.1038/s41467-019-09519-w, 2019.
Global Surface Summary of Day (GSOD): Index of /data/global-summary-of-the-day, NOAA [data set],
https://www.ncei.noaa.gov/data/global-summary-of-the-day/, last access: 15 October 2022.
Weibull, W.: A Statistical Distribution Function of Wide Applicability, J.
Appl. Mech., 18, 293–297, https://doi.org/10.1115/1.4010337, 1951.
Willis, K. J. and Bhagwat, S. A.: Biodiversity and Climate Change, Science, 326, 806–807, https://doi.org/10.1126/science.1178838, 2009.
WMO: Guide to Instruments and Methods of Observation, 8th edn., World
Meteorological Organization, Geneva, 548 pp., ISBN 9789263100085, 2018.
Woodward, F. I.: Climate and plant distribution, Cambridge University Press,
Cambridge, 192 pp., ISBN 9780521282147, 1987.
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0,
MRI-ESM2.0: Description and Basic Evaluation of the Physical Component, J.
Meteorol. Soc. Japan. Ser. II, 97, 931–965,
https://doi.org/10.2151/jmsj.2019-051, 2019.
Zeng, Z., Ziegler, A. D., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao,
S., Li, L. Z. X., Ciais, P., Chen, D., Liu, J., Azorin-Molina, C., Chappell,
A., Medvigy, D., and Wood, E. F.: A reversal in global terrestrial stilling
and its implications for wind energy production, Nat. Clim. Chang., 9,
979–985, https://doi.org/10.1038/s41558-019-0622-6, 2019.
Zhang, K., Bosch-Serra, A. D., Boixadera, J., and Thompson, A. J.:
Investigation of Water Dynamics and the Effect of Evapotranspiration on
Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A
Modelling Approach, PLoS One, 10, e0131360,
https://doi.org/10.1371/journal.pone.0131360, 2015.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal
regime: An overview, Rev. Geophys., 43, 2004RG000157, https://doi.org/10.1029/2004RG000157, 2005.
Ziese, M., Rauthe-Schöch, A., Becker, A., Finger, P., Meyer-Christoffer,
A., and Schneider, U.: GPCC Full Data Daily Version.2018 at 1.0∘:
Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and
Historic Data, https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100, 2018.
Zomer, R. J., Xu, J., and Trabucco, A.: Version 3 of the Global Aridity
Index and Potential Evapotranspiration Database, Sci. Data, 9, 409,
https://doi.org/10.1038/s41597-022-01493-1, 2022.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I.,
Ward, P. J., Pitman, A., AghaKouchak, A., Bresch, D. N., Leonard, M., Wahl,
T., and Zhang, X.: Future climate risk from compound events, Nat. Clim.
Chang., 8, 469–477, https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant,...
Altmetrics
Final-revised paper
Preprint