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Abstract. A multitude of physical and biological processes on which ecosystems and human societies depend
are governed by the climate, and understanding how these processes are altered by climate change is central to
mitigation efforts. We developed a set of climate-related variables at as yet unprecedented spatiotemporal detail
as a basis for environmental and ecological analyses. We downscaled time series of near-surface relative humid-
ity (hurs) and cloud area fraction (clt) under the consideration of orography and wind as well as near-surface
wind speed (sfcWind) using the delta-change method. Combining these grids with mechanistically downscaled
information on temperature, precipitation, and solar radiation, we then calculated vapor pressure deficit (vpd),
surface downwelling shortwave radiation (rsds), potential evapotranspiration (pet), the climate moisture index
(cmi), and site water balance (swb) at a monthly temporal and 30 arcsec spatial resolution globally from 1980
until 2018 (time-series variables). At the same spatial resolution, we further estimated climatological normals
of frost change frequency (fcf), snow cover days (scd), potential net primary productivity (npp), growing degree
days (gdd), and growing season characteristics for the periods 1981–2010, 2011–2040, 2041–2070, and 2071–
2100, considering three shared socioeconomic pathways (SSP126, SSP370, SSP585) and five Earth system mod-
els (projected variables). Time-series variables showed high accuracy when validated against observations from
meteorological stations and when compared to alternative products. Projected variables were also highly cor-
related with observations, although some variables showed notable biases, e.g., snow cover days. Together, the
CHELSA-BIOCLIM+ dataset presented here (https://doi.org/10.16904/envidat.332, Brun et al., 2022) allows
improvement to our understanding of patterns and processes that are governed by climate, including the impact
of recent and future climate changes on the world’s ecosystems and the associated services on societies.

1 Introduction

Climate change is impacting multiple facets of the Earth sys-
tem, with consequences for the functioning of natural ecosys-
tems, for the persistence of biological diversity, and for hu-
man societies (IPCC, 2022; IPBES, 2018). Climate regulates
a broad variety of processes on Earth. It feeds, for example,
rivers with precipitation, it generates wind, which is critical
for renewable energy production (IPCC, 2011), and it fu-

els ecosystem and agricultural productivity (Howden et al.,
2007), which sustains nearly all life on Earth, including hu-
mans (Bellard et al., 2012; Araújo and Rahbek, 2006; Willis
and Bhagwat, 2009). Many of these processes react sensi-
bly to climate change (IPCC, 2022), and in order to miti-
gate negative impacts, a sound understanding of the under-
lying relationships is key. Among the impacts of climate
change are, for example, recent droughts and associated dis-

Published by Copernicus Publications.

https://doi.org/10.16904/envidat.332


5574 P. Brun et al.: Global climate-related predictors at kilometer resolution

turbances, such as forest diebacks (Allen et al., 2010), which
have fostered studies that attempted to identify and char-
acterize the responsible climate signatures (Seneviratne et
al., 2012; Zscheischler et al., 2018). Most of these disrup-
tive events can only be detected and analyzed at high spatial
and/or temporal resolutions and within a restricted area and
period (Easterling et al., 2000). In many regions of the world,
existing climate time series lack such high resolution and
thus only to a limited degree allow establishment of an under-
standing of how climate interacts with the natural and human
system (Easterling et al., 2016). By the end of the 21st cen-
tury climate change is expected to lead to profound changes
in the distribution ranges of species and ecosystems (Thuiller
et al., 2005, 2019). A reasonable anticipation of such changes
must rely on sound information on climate-related variables,
considering different climate-change scenarios at an infor-
mative spatial and temporal resolution. The availability of
relevant climate-related data at high spatiotemporal resolu-
tion for current conditions and for the decades ahead of us is
therefore crucial for filling the gaps in our understanding of
climate-change impact on the Earth system.

A popular repository for climate data is hosted by the cli-
matologies at high resolution for the Earth’s land surface ar-
eas (CHELSA) initiative (Karger et al., 2017, 2020, 2021b),
which provides information on temperature and precipitation
globally at kilometer resolution. Originally, the CHELSA
initiative offered climate data primarily as climatologies, i.e.,
as monthly and seasonal statistics typically averaged over a
representative period of 30 years or longer (Arguez and Vose,
2011), initially from 1979 to 2013. A key set of such cli-
matologies comprises the 19 bioclimatic variables (Hijmans
et al., 2005) that represent seasonal and annual statistics of
precipitation and temperature and are widely used as predic-
tors in macroecology (Fourcade et al., 2018). However, while
these original data may be relevant for many applications,
they have three primary limitations: they only (1) include
variables that independently summarize either temperature
or precipitation, (2) represent long-term climatic conditions,
and (3) represent the recent past.

For a sound understanding of how physical and biologi-
cal processes are driven by climate, information on temper-
ature and precipitation alone is not sufficient. Assessing the
potential for solar energy production, for example, is impos-
sible without knowing how much shortwave solar radiation
reaches a location of interest. Similarly, precipitation may
measure the amount of water that reaches the surface, but
across the globe this is an inaccurate proxy for the amount
of water that is available to plants: 300 kg m−2 annual pre-
cipitation, for instance, can be found in the Alaskan taiga,
in the Mongolian steppe, or in the Pakistani desert (Karger
et al., 2017), where the dominant vegetation exhibits large
differences in the ability to cope with water stress. Across
these systems a much more accurate indicator of water stress
is the climate moisture index (cmi, Hogg, 1997), i.e., the dif-
ference between precipitation and potential evapotranspira-

tion (pet), as pet differs by a factor of 3 between the Alaskan
taiga and the Pakistani desert (Singer et al., 2021). The pop-
ularity of the 19 bioclimatic variables to summarize climate
therefore appears to result rather from the lack of relevant al-
ternatives with kilometer resolution than from their imminent
relevance.

Time-series data on climate-related variables are indis-
pensable for understanding the drivers of the many impor-
tant Earth system processes that vary with time. Resolving
how the primary weather patterns unfold, for example, al-
lows for a much deeper understanding of the control of spa-
tiotemporal patterns of ecosystem productivity (Hartman et
al., 2020). Similarly, time series of pet and cmi can be used
to understand the country-wide temporal dynamics in crop
yield (Zhang et al., 2015; Santini et al., 2022). Modeling crop
yields based on sound pet and cmi data may, in turn, allow
for a better anticipation of shortages in food production and
agricultural planning. Moreover, extreme weather anomalies
such as droughts can be identified at large scales and better
linked to consequential disturbances like wildfires and forest
diebacks. While for temperature and precipitation such time
series of high temporal (daily) resolution data have recently
been published (Karger et al., 2020, 2021b), global time se-
ries at kilometer resolution are hardly available for additional
climate-related variables relevant to understanding ecosys-
tem processes.

In order to anticipate and mitigate the manifold impacts of
climate change until the end of this century, future projec-
tions of meaningful climate-related variables are required.
Climate change is expected to continue or even accelerate
in the coming decades, and its impacts on ecosystems and
human societies are likely becoming stronger (IPCC, 2022).
Crop yields, for example, are expected to change, tracking
their optimal climate (Leng and Hall, 2019; IPCC, 2022):
at high latitudes, harvests may become bigger due to warm-
ing, whereas elsewhere irrigation may become necessary to
keep growing traditional crops (Liu et al., 2021; Masia et
al., 2021). In certain areas some crops will likely have to be
abandoned entirely and replaced with better-adapted alterna-
tives (Sloat et al., 2020). Such agricultural system changes
are costly, take time, and are only efficient if the expected
changes can be reasonably well anticipated. Similarly, cop-
ing with the ongoing biodiversity crisis requires a rapid es-
tablishment of an optimally designed global network of pro-
tected areas (Elsen et al., 2020; Hannah, 2008; Pollock et al.,
2017). However, finding the most sustainable way of creating
such a network requires knowledge of the expected changes
in climate and their impacts on the distribution ranges of
species. For temperature and precipitation, high-resolution
future climatologies have been made available (Karger et al.,
2017), but this is generally not the case for other climate-
related variables that are more directly linked to ecosystem
processes.

Here, we present the CHELSA-BIOCLIM+ (climatolo-
gies at high resolution for the Earth’s land surface areas
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Figure 1. Input data, analyses, and output variables generated. tasmin represents daily minimum near-surface air temperature; tasmax repre-
sents daily maximum near-surface air temperature; pr represents precipitation rates; tas represents near-surface daily average air temperature;
hurs represents near-surface relative humidity; clt represents cloud area fraction; rsdscs represents surface downwelling shortwave radiation
assuming clear sky; orog represents orography; fcf represents frost change frequency; scd represents snow cover days; npp represents poten-
tial net primary productivity; gdd represents growing degree days; vpd represents vapor pressure deficit; rsds represents surface downwelling
shortwave radiation corrected for atmospheric transmissivity and topography; sfcWind represents near-surface wind speed; sfcWE represents
near-surface wind speed from ERA5; windG represents wind speed from the Global Wind Atlas; rlus represents surface upwelling longwave
radiation; gsl represents growing season length; gsp represents growing season precipitation; gst represents growing season temperature; pet
represents potential evapotranspiration; cmi represents the climate moisture index; awc represents available soil water capacity; swb repre-
sents site water balance. Green squares represent climate variables for which monthly time series are available for the period 1980–2018;
orange squares represent variables for which future projections of climatologies exist; hashed squares represent variables with both time
series for the recent past and future projections. Squares with border lines are part of the dataset presented.

– bioclimatic variables plus) dataset of global kilometer-
resolution time series and climatologies for 15 climate-
related variables. We compiled input data from CHELSA
V.2.1 (Karger et al., 2021a) and other high-quality sources
and used state-of-the-art approaches to generate two groups
of biologically relevant climate-related variables: for one
group of variables, we created time series covering 39 years
of the recent past (hereafter: time-series variables), and for
the other group we created climatologies for current and
expected future conditions (hereafter: projected variables).
Time-series variables are available for the period of 1980–
2018 and include near-surface relative humidity (hurs), cloud
area fraction (clt), near-surface wind speed (sfcWind), va-
por pressure deficit (vpd), surface downwelling shortwave
radiation (rsds), pet, and cmi, each containing 468 monthly
layers at a 30 arcsec resolution (i.e., less than 1 km), and
an annual statistic, i.e., site water balance (swb), contain-
ing 38 annual layers. For all of these variables but site water

balance, we further calculated climatologies monthly, annu-
ally, and for annual ranges and extrema for the period 1981–
2010, which is the climate-normal period recommended by
the World Meteorological Organization (Arguez and Vose,
2011). Projected variables include frost change frequency
(fcf), snow cover days (scd), potential net primary productiv-
ity (npp), growing degree days (gdd), growing season length
(gsl), growing season temperature (gst), and growing sea-
son precipitation (gsp), for which we calculated climatolog-
ical means for the same kilometer-resolution grid for the pe-
riods 1981–2010, 2011–2040, 2041–2070, and 2071–2100.
For the latter three periods, climatological values were gen-
erated for each combination of three shared socioeconomic
pathways (SSPs, O’Neill et al., 2014) and five Earth system
models. To demonstrate the robustness of these variables,
we validated them, where feasible, against global sets of ob-
servations from meteorological stations, and we compared
them with existing products. Together, our layers of climate-
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related variables allow the characterization of each pixel of
the life-supporting landmass on Earth far more comprehen-
sively than would be possible from temperature and precipi-
tation alone: for the recent decades with monthly resolution
and until the end of this century as projected climatologies.

2 Material and methods

We developed 15 climate-related variables that complement
and build on existing products of the CHELSA initiative
(Karger et al., 2017). We classified these variables into five
orders, representing increasing degrees of abstraction from
in situ measurements (Fig. 1). First-order variables are di-
rectly measurable properties, including near-surface temper-
ature (daily means and extrema), precipitation rates, near-
surface relative humidity, cloud area fraction, solar radiation,
and near-surface wind speed. While downscaled climatolo-
gies and time series of temperature and precipitation rates
have been made available previously (Karger et al., 2017,
2020, 2021b), here we downscaled corresponding layers for
the remaining first-order variables clt, near-surface (10 m),
and hurs. Directly based on these first-order variables, we
have generated time series and climatologies for five biolog-
ically meaningful second-order variables, including fcf, scd,
potential npp, and vpd. In addition, we aggregated daily high-
resolution time series of rsds that have been developed in a
related study (Karger et al., 2022). Similarly, we have gener-
ated time series and climatologies of four third-order climate
variables (based on first- and second-order variables), includ-
ing gsl, gsp, and gst, and pet as well as one fourth- and one
fifth-order variable, i.e., the cmi and the swb, respectively.

2.1 Input data

Data on near-surface air temperature (tasmin, tasmax, tas)
as well as precipitation rates (pr) and rsds have been taken
from CHELSA V2.1 (Karger et al., 2021b). For past con-
ditions, forcing from ERA5 (Hersbach et al., 2020) with a
GPCC bias correction (Ziese et al., 2018) was used as well
as an air temperature algorithm that builds on an atmospheric
lapse rate-based downscaling (Karger et al., 2017). Precipita-
tion rates are based on a mechanistic downscaling that takes
orographic effects into account (Karger et al., 2021b). rsds
in CHELSA V2.1 is based on a terrain-specific, mechanis-
tic model (Böhner and Antonic, 2009). For tasmin, tasmax,
tas, and pr we also used data on projected monthly clima-
tologies for the periods 2011–2040, 2041–2070, and 2071–
2100 from CHELSA V2.1. Such climatologies were gen-
erated for three official SSPs (O’Neill et al., 2016, 2017):
SSP126 is an optimistic emission scenario, assuming that the
world shifts gradually to a more sustainable path, resulting
in an additional radiative forcing of 2.6 W m−2 by 2100 rel-
ative to preindustrial levels, SSP370 is an intermediate-to-
pessimistic scenario, assuming that international fragmenta-
tion and regional rivalry hamper efficient implementations

of globally sustainable solutions, leading to an additional ra-
diative forcing of 7.0 W m−2 by 2100, and SSP585 is a pes-
simistic emission scenario, assuming that developing coun-
tries follow the trajectories of first-world countries in rapid
economic development that hardly relies on greenhouse-gas-
efficient technologies. It assumes an additional radiative forc-
ing of 8.5 W m−2 by 2100. For each of these SSPs, we used
global simulations of five Earth system models that were pre-
pared for the Intersectoral Impact Model Intercomparison
Project round 3b (ISIMIP3b, https://www.isimip.org/, last
access: 21 January 2020) to generate future climatic anoma-
lies of precipitation and temperature. Earth system mod-
els were chosen based on the availability of all needed cli-
mate variables and model performances following ISIMIP3b
(Lange, 2021) and included GFDL-ESM4 (Held et al., 2019),
IPSL-CM6A-LR (Boucher et al., 2020), MPI-ESM 1-2-HR
(Gutjahr et al., 2019), MRI-ESM2-0 (Yukimoto et al., 2019),
and UKESM1-0-LL (Sellar et al., 2019). In a first step, for
each variable (tasmin, tasmax, tas, and pr), the dynamic
model outputs were used to generate monthly climatologies
for the 3 periods ×3 SSPs ×5 Earth system models. In addi-
tion, for each Earth system model and climate variable, one
climatology was generated for the period 1981–2010. Then,
each of these climatologies was downscaled to 30 arcsec us-
ing the delta-change method (Hay et al., 2000).

In addition, we compiled data for orography (orog), wind
speed (windG, sfcWE), relative humidity (hur), total cloud
cover (tcc), surface upwelling longwave radiation (rlus), and
available soil water content (awc). Orography data origi-
nated from the Global Multi-resolution Terrain Elevation
Data 2010 (GMTED2010; Danielson and Gesch, 2011) at a
resolution of 30 arcsec. We obtained two types of wind speed
data: long-term averages at high spatial resolution (9 arcsec)
and monthly time series at coarser spatial resolution. Wind
speed averages for the period 2008–2017 at 10 (windG10 )
and 50 (windG10 ) m above the surface were obtained from
the Global Wind Atlas 3.0, a free, web-based application de-
veloped, owned, and operated by the Technical University
of Denmark (https://globalwindatlas.info, last access: 28 July
2021). From these layers, we derived roughness length as

z0 = e

windG10
ln(50)−windG50

ln(10)
windG10

−windG50 . (1)

Then, we aggregated windG10 and roughness length from the
original 9 arcsec resolution to 30 arcsec, using a two-step ap-
proach. First, we aggregated to 27 arcsec (factor of 3) by the
median, and then we resampled to 30 arcsec, using cell area-
weighted means. Finally, in order to keep aggregated rough-
ness length estimates in a realistic range and to remove a few
outliers, we bounded them by the typical values for the open
sea (0.0002) as minimum and city centers with skyscrapers/-
mountain tops (4) as maximum (WMO, 2018). Monthly time
series of wind speed 10 m above the surface were obtained
from the ERA5 global reanalysis product (sfcWE, Hersbach
et al., 2020) released by the European Centre for Medium-
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Table 1. Input data used to generate the CHELSA-BIOCLIM+ dataset.

Variable Description Spatial Temporal Time Source
name resolution resolution period

tasmin Daily minimum near-surface 30 arcsec
Monthly

1979–2019 Karger et al. (2017)

air temperature 0.5◦ 2011–2100 ISIMIP3b

tasmax Daily maximum near-surface 30 arcsec
Monthly

1979–2019 Karger et al. (2017)

air temperature 0.5◦ 2011–2100 ISIMIP3b

tas Mean near-surface 30 arcsec
Monthly

1979–2019 Karger et al. (2017)

air temperature 0.5◦ 2011–2100 ISIMIP3b

pr Precipitation rate 30 arcsec
Monthly

1979–2018 Karger et al. (2017)

0.5◦ 2011–2100 ISIMIP3b

rsds Surface downwelling 30 arcsec Daily 1980–2018 Karger et al. (2022)
shortwave radiation

orog Orography 30 arcsec – – Danielson and Gesch (2011)

hur Relative humidity 0.25◦ Monthly 1980–2018 ERA5

tcc Total cloud cover 0.25◦ Monthly 1980–2018 ERA5

sfcWE Wind speed at 10 m above the surface 0.25◦ Monthly 1979–2020 ERA5

rlus Surface upwelling longwave radiation 0.1◦ Monthly 1979–2020 ERA5-Land

windG10 Wind speed at 10 m above the surface 9 arcsec – 2008–2017 Global Wind Atlas 3.0

windG50 Wind speed at 50 m above the surface 9 arcsec – 2008–2017 Global Wind Atlas 3.0

awc Available soil water capacity 30 arcsec – – SoilGrids

Range Weather Forecasts (ECMWF) and covered the pe-
riod 1979–2020 with a horizontal resolution of 0.25◦. From
ERA5, we also used hur and tcc at 0.25◦ resolution monthly
for the period 1980–2018. Monthly information on the sur-
face upwelling longwave radiation needed for the calculation
of pet was obtained from the ERA5-Land reanalysis product
(Muñoz Sabater, 2019, 2021) that is also maintained by the
ECMWF. It covered the period 1979–2020 with a horizon-
tal resolution of 0.1◦. Information on awc was obtained from
SoilGrids (Hengl et al., 2014, 2017) with a horizontal reso-
lution of 30 arcsec and a vertical resolution of six soil layers.
From these data, we calculated one layer of available water
volume by integrating over the soil profiles. A summary of
all input data used is provided in Table 1.

2.2 Generating raster layers

2.2.1 First-order climate layers

Near-surface relative humidity

Near-surface relative humidity controls the biologically im-
portant variable vapor pressure deficit (see below) as well
as fog formation (at hurs= 100 %), which can be a criti-
cal water source for vegetation in certain coastal ecosystems

(e.g., in the California redwood forest; Dawson, 1998). We
calculated hurs from atmospheric hur at pressure levels z.
We used all pressure levels from ERA5 and horizontally B-
spline (Sxy)-interpolated hur at pressure levels zi=1. . .zn to a
30 arcsec resolution, using longitude (x) and latitude (y) as
predictors and hur as a response, so that

Sxy (hur)= f (x,y) . (2)

From the resulting spline-interpolated values Sxy (hur) for
each pressure level z, we then calculated a vertical spline
interpolation separately for each 30 arcsec grid cell, using
the geopotential height of each layer divided by the gravi-
tational constant g = 9.80665 m s−2 as a predictor and the
values given by the function Sxy (hur) as a response so that

Sz (hur)= S
(
Sxy (hur)

)
= f (z) . (3)

We then used the vertical spline Sz (hur) to calculate a first
approximation of hursorog at 30 arcsec, with orog referring to
surface elevation. This first approximation of the relative hu-
midity at the surface, however, does not include orographic
effects such as increased hurs on the windward sides and
lower hurs on the leeward sides of an orographic barrier.
Moist air is rising on the windward side of an orographic
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barrier, potentially losing moisture and cooling with a wet-
adiabatic lapse rate, and sinking on its leeward side, usually
warming with a higher, dry-adiabatic lapse rate. This effect
of differing adiabatic lapse rates and consequent tempera-
ture changes affects relative humidity. To include these oro-
graphic effects in the estimation of hurs, we use

hurs=
1

(1+ exp(−1 ·h))
, (4)

with

h=
ht · (H + (Hc−H ) (1−Hc))

Hc
(5)

and ht being the logit-transformed version of hursorog:

ht = log
(

hursorog

1− hursorog

)
, (6)

H being the windward leeward index at 30 arcsec resolu-
tion calculated following the same parametrization as used
in Karger et al. (2021b) and Hc being the spline-interpolated
mean of all H values that overlap with the respective 0.25◦

grid cell from ERA5. We calculated hurs monthly for the
period 1980–2018. For the period 1981–2010, we derived
monthly climatologies and climatological means, annual
ranges, and extrema. All hurs data are reported as percent-
ages.

Cloud area fraction

The cloud area fraction represents the fraction of a grid cell
that is covered by clouds across the entire atmospheric col-
umn, as seen from the Earth’s surface or the top of the atmo-
sphere. It includes both large-scale and convective clouds.
Cloud area fraction determines the amount of downwelling
solar radiation that reaches the Earth’s surface and is an
important constraint on productivity in tropical ecosystems
(Nemani et al., 2003). Moreover, low-hanging clouds can be
a key water source, and thus in mountain regions clt can be
an important determinant of the distribution of tropical cloud
forests (Karger et al., 2021c). We calculated clt monthly for
the period 1980–2018 based on tcc and following the proce-
dure described in Karger et al. (2022). Unlike all other vari-
ables presented here, we downscaled clt to a cruder spatial
resolution of 1.5 arcmin. This resolution was chosen because
it is similar to the resolution at which orographic wind ef-
fects for precipitation are calculated (Karger et al., 2021b)
and because it avoids over-representing terrain effects (Daly
et al., 1997). For the period 1981–2010, we derived monthly
climatologies and climatological means, annual ranges, and
extrema. All clt data are reported as percentages.

Near-surface wind speed

Numerous direct and indirect effects of wind speed on terres-
trial ecosystems exist, including gas and heat exchange, dis-
persal of pollen, seeds, pests or pollutants, and wind throw

(Nobel, 1981). The impacts of wind exposure on microcli-
mate and vegetation patterns are particularly evident, for ex-
ample, in the polar and subpolar zones (Schultz, 2005). We
estimated monthly averages of sfcWind at 30 arcsec resolu-
tion by downscaling and bias-correcting the ERA5 time se-
ries (sfcWE) using an aggregation of the Global Wind Atlas
product (windG10 ; see subsection “Input data”). In a first step,
we averaged sfcWE for the period 2008–2017, for which the
Global Wind Atlas is representative. Then, we estimated the
average deviation between sfcWE and windG10 . This devia-
tion raster contained information about both small-scale de-
viations from the ERA5 cell mean due to topography and bias
in long-term estimates of wind speed. Next, we added this
difference layer to each monthly ERA5 layer (from 1979 to
2019) after log-transforming all layers. Our approach there-
fore corresponded to the delta-change method (Hay et al.,
2000), except that we applied it to log-transformed wind
speed estimates. This was done because wind speed follows a
Weibull distribution (Weibull, 1951), which can be related to
the normal distribution through a log-link function. Finally,
we back-transformed the two-layer sums by exponentiating
them. For the period 1981–2010, we derived monthly clima-
tologies of sfcWind and climatological means, annual ranges,
and extrema. All sfcWind data are reported in meters per sec-
ond.

2.2.2 Second-order climate layers

Frost change frequency

Frost change frequency describes the number of days per
year with temperature minima below 0 ◦C and maxima above
0 ◦C. Coping with frost requires adapted behaviors or elab-
orate physiological adaptations for both ectothermal and en-
dothermal organisms and especially for non-migrating life
forms that cannot escape, such as plants. Frost change fre-
quency carries information about the occurrence frequency
of freezing and thawing events and – indirectly – about their
duration, both of which are crucial constraints determining
the best-suited adaptation strategies; see, e.g., Hufkens et
al. (2012). We used a B-spline interpolation S (tasmax, t)
and S (tasmin, t) to get both daily minimum (tasmini) and
maximum (tasmaxi) near-surface 2 m air temperatures from
monthly values, with t the sequence of Julian days marking
the middle of each month, i.e., [349, 15, 45, 74, 105, 135,
166, 196, 227, 258, 288, 319, 349, 15]. As B-spline inter-
polations cannot predict values outside their bounding knots,
we first extended the sequence of knots to start on 15 Decem-
ber (Julian day 349) and end on 15 January (Julian day 15)
and cut the interpolated sequence to range from 1 January to
31 December in a second step. A frost change event was then
defined by tasmini<0 ◦C and tasmaxi>0 ◦C. We calculated
fcf from the monthly climatologies of tasmin and tasmax for
the periods 1981–2010, 2011–2040, 2041–2070, and 2071–
2100 for all combinations of SSPs and Earth system models
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(see subsection “Input data”). fcf is reported as the number
of days per year with frost change events.

Snow cover days

Snow cover days are the number of days per year on which
the ground is covered with snow. Snow cover affects lo-
cal climate, hydrology, and ecosystems in complex ways
(Callaghan et al., 2011; Schultz, 2005) by insulating the
soil from temperature minima during winter months (Zhang,
2005), determining Arctic vegetation patterns (Evans et al.,
1989), or providing hiding opportunities from predators for
small mammals (Callaghan et al., 2011). We used a B-spline
interpolation S (tas, t) to get from monthly to daily esti-
mates of tas, with t being a vector of Julian days marking
the middle of each month, i.e., [349, 15, 45, 74, 105, 135,
166, 196, 227, 258, 288, 319, 349, 15], and tas being the
mean of near-surface 2 m air temperature for the respective
month. We used a stepwise interpolation of monthly precipi-
tation rates to daily precipitation rates following Paulsen and
Körner (2014). The daily pr in this approach is directly cou-
pled to the near-surface air temperature as follows.

pr=


5kg ·m−2

· d−1 if tas< 5 ◦C
10kg ·m−2

· d−1 if 5 ◦C≤ tas< 10 ◦C
15kg ·m−2

· d−1 if 10 ◦C≤ tas< 15 ◦C
20kg ·m−2

· d−1 if 15 ◦C≤ tas

(7)

The total amount of pr is distributed to as many rainfall
events as are necessary to obtain the monthly amount of pre-
cipitation, with events being evenly distributed across the
month. Precipitation is solid (snow) when tas<0 ◦C and ac-
cumulates as long as tas remains below 0 ◦C. If tas>0 ◦C, it
melts by a rate of 0.84 kg m−2 d−1 K−1 (Paulsen and Körner,
2014). When liquid precipitation falls on an existing snow
layer, it cools to 0 ◦C, and the thermal energy released
(4.186 kJ kg−1 K−1) is assumed to melt snow (Körner et al.,
2011). The number of snow cover days is then given by the
days of the year on which a snow layer with a snow water
content of ≥ 1 kg m−2 existed. We calculated scd from the
monthly climatologies of tas and pr for the periods 1981–
2010, 2011–2040, 2041–2070, and 2071–2100 for all com-
binations of SSPs and Earth system models (see subsection
“Input data”). scd is reported as the number of days per year
with snow cover.

Potential net primary productivity

Potential net primary productivity is the potential difference
between the rate at which carbon is fixed by photoautotrophs
and the rate at which carbon is emitted through cell respira-
tion if only climate was limiting. Primary productivity is the
main way in which carbon dioxide is removed from the atmo-
sphere and biomass is produced and is thus a key ecosystem
function (Schimel, 1995). Here, we used the Miami model

(Lieth, 1975) to estimate npp solely based on climatic con-
straints, resulting in a potential estimate that is independent
of the existing vegetation on the ground. The unit of npp is
g m−2 yr−1, where “g” stands for grams of dry matter. The
estimates are based on mean annual near-surface 2 m air tem-
perature in ◦C and annual precipitation rates in kg m−2 yr−1.
The Miami model assumes that npp increases asymptotically
with both increasing temperature and increasing precipita-
tion, approaching an upper limit of 3000 g m−2 yr−1. The
precipitation component of npp is given as

npppr = 3000× (1− exp(−0.000664× pr)) , (8)

and the air temperature component is given as

npptas = 3000× (1+ exp(1.315− 0.119× tas))−1. (9)

Based on these two components, npp is either limited by tem-
perature or precipitation and determined by the minimum es-
timate of npp from either the temperature or the precipitation
component:

npp=min
(

npptas,npppr

)
. (10)

We calculated npp from the monthly climatologies of tas and
pr for the periods 1981–2010, 2011–2040, 2041–2070, and
2071–2100 for all combinations of SSPs and Earth system
models (see subsection “Input data”).

Growing degree days

Growing degree days are a measure of heat accumulation
over a specific time period. They have been used to under-
stand the phenology of plants and animals for centuries in
agronomy (Anandhi, 2016) and for a shorter period in ecol-
ogy (Cayton et al., 2015). It has been shown that the heat sum
above a critical threshold accumulated through time better
explains, e.g., plant phenology than a threshold temperature
alone (Larcher, 1994). The gdd threshold temperature ascer-
tains that cool periods, during which phenological progress
stagnates, are omitted. The threshold temperature is species-
specific and varies, e.g., between 0 ◦C for cold-adapted plants
(Larcher, 1994) and 5 or 5.5 ◦C for many temperate to bo-
real tree species (Prentice et al., 1992; Lenihan, 1993), while
tropical plants are limited by temperatures below 10 ◦C and
even much higher (Larcher, 1994). Growing degree days are
calculated by first assessing whether daily mean near-surface
2 m air temperatures surpass a baseline threshold temperature
tasb (e.g., 5 ◦C) and then summing all the surpluses. To ob-
tain daily estimates of near-surface 2 m air temperature from
monthly values, we have used the same approach of B-spline
interpolation as for snow cover days. The growing degree
sum is then given as the sum

gddb =
∑365

i=1
(max(tasi − tasb,0)) , (11)
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where tasb is the baseline temperature and i represents the
Julian day. We calculated gdd for three baseline temperatures
(0, 5, and 10 ◦C) from the monthly climatologies of tas for
the periods 1981–2010, 2011–2040, 2041–2070, and 2071–
2100 for all combinations of SSPs and Earth system models
(see subsection “Input data”). However, here we only report
the results for gdd with the 5 ◦C baseline (gdd5). All gdd data
are reported as degree days (◦C d).

Vapor pressure deficit

Vapor pressure deficit is the difference between the actual
amount of moisture in the air and the maximum amount of
moisture the air can hold at a given temperature. vpd is a key
meteorological property for terrestrial biomes, determining
plant functioning and drought-induced mortality (Grossiord
et al., 2020). Moreover, the distributions of animals prone
to desiccation such as small arthropods are limited by vpd
(Hauser et al., 2018; Ouisse et al., 2016). Near-surface vpd
can be calculated from hurs, considered a unitless fraction,
and tas in ◦C as

vpd= esat (tas)× (1− hurs) , (12)

where esat (tas) is the saturation vapor pressure. In order to
approximate esat (tas), we used the Magnus equation with the
coefficients of Sonntag (1990):

esat (tas)= 0.6112× e
17.62·tas

(243.12+tas) . (13)

vpd was calculated in the R environment (R Development
Core Team, 2008), using the package bigleaf (Knauer et
al., 2018). We calculated vapor pressure deficit monthly for
the period 1980–2018. For the period 1981–2010, we de-
rived monthly climatologies and climatological means, an-
nual ranges, and extrema. All vpd data are reported in Pascal
(Pa).

Surface downwelling shortwave radiation

rsds is the amount of direct and diffuse shortwave radiation
that reaches the Earth’s surface, considering the filtering ef-
fects of air and clouds throughout the atmosphere as well as
the effects of the local topography. rsds describes the amount
of solar energy available. It can critically affect local climate
and vegetation patterns in high-latitude environments (An-
drade et al., 2018; Schultz, 2005). In the tropics with year-
round rain, where temperature and precipitation are not lim-
iting, it can constrain primary productivity (Nemani et al.,
2003). To calculate rsds, surface downwelling solar radia-
tion under clear-sky conditions (rsdscs) is first calculated by
computing 30 arcsec clear-sky radiation using the method de-
scribed in Böhner and Antonic (2009) for each day of the
year. Then daily estimates of rsdscs and clt are combined
through the following relationship:

rsds= rsdscs ·
(

1− 0.75 · clt3.4
)
. (14)

In this way, daily estimates of rsds from 1980 to 2018 were
generated in a related project (Karger et al., 2022). Here, we
summarized these estimates to monthly means, and for the
period 1981–2010 we derived monthly climatologies and cli-
matological means, annual ranges, and extrema. All rsds data
are reported in MJ m−2 d−1.

2.2.3 Third-order climate layers

Growing-season-related predictors

The growing season is the annual period, during which con-
ditions are favorable for vegetation growth. Growing sea-
son length indicates the amount of time available for plant
growth, which is an important determinant of life-history
traits and productivity (Paulsen and Körner, 2014). Like gdd,
gsl is species-specific and can vary considerably between
plants adapted to different biomes. Here, we estimate gsl for
tree species forming treelines, i.e., growing at the cold/dry
boundary of forested biomes worldwide. Under such condi-
tions gsl can be defined as the number of days per year with
temperatures >0.9 ◦C, with no snow cover being present
and with sufficient water available in the soil (Paulsen and
Körner, 2014). Daily precipitation rates and near-surface 2 m
air temperature averages were calculated in the same way as
for snow cover. In addition, potential evapotranspiration was
estimated using the Hargreaves equation and tasmin and tas-
max as input (Hargreaves and Samani, 1985). Note that this
estimate of pet is specific to the estimated growing season-
related predictors and is independent of the more sophisti-
cated approach presented below. Water balance in the soil
was calculated by a two-layer bucket model. The upper layer
is assumed to be able to hold 30 kg of liquid water per square
meter at maximum. For the lower layer we used empirical
data on water holding capacity awc (see “Input data”). Liquid
precipitation or snowmelt fills the upper layer first. If the soil
water content of the upper layer (swc1) exceeds 30 kg m−2,
water flows to the lower layer until saturated. If the second
layer is saturated, the remaining flux is assumed to be lost
as runoff. If water is present in the upper layer, actual evap-
otranspiration (aet) is equal to pet. We used a square-root
correction for the estimation of the actual daily evapotran-
spiration from deeper layers as soon as the upper layer was
empty: aet= pet× (swc2/awc)1/2 in kg m−2 d−1, with soil
water given in kg m−2. A growing season day is defined as a
day on which swc1>0 and tas>0.9 ◦C and snow<1 kg m−2.
Growing season length is then the number of days per year
on which this condition holds true, gsp is the amount of pre-
cipitation that falls during the days on which the condition is
true, and gst is the mean near-surface air temperature during
days on which the condition is true. We calculated gsl, gsp,
and gst from the monthly climatologies of tasmin, tasmax,
tas, and pr and from the scd estimates described above for
the periods 1981–2010, 2011–2040, 2041–2070, and 2071–
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2100 for all combinations of SSPs and Earth system models
(see subsection “Input data”).

Potential evapotranspiration

Potential evapotranspiration is defined as the amount of wa-
ter per area and time that could evaporate at the soil sur-
face or be transpired through plants if soil water availabil-
ity was not limiting. Evapotranspiration is a crucial part of
the water cycle and strongly interacts with vegetation traits
such as leaf area (Irmak, 2008). We calculated pet with
the Penman–Monteith equation (Monteith, 1965) as imple-
mented in R package bigleaf (function “potential.ET”). This
function builds on the following equation (Knauer et al.,
2018):

λEpot =
1 (Rn−G− S)+ ρ× cp × vpd×Ga

1+ γ
(

1+ Ga
Gspot

) , (15)

where 1 is the slope of the saturation vapor pressure curve
(kPa K−1) that is approximated with Eq. (3), Rn is net radi-
ation (W m−2), G is the ground heat flux (W m−2), S is the
sum of all storage fluxes (W m−2), ρ is the mean air density
(kg m−3), cp is the specific heat of the air (J K−1 kg−1), γ
is the psychrometric constant (kPa K−1), Ga is the aerody-
namic conductance (m s−1), and Gspot is the potential sur-
face conductance (mol m−2 s−1). To calculate pet with the
bigleaf framework, information on the following general en-
vironmental conditions is required: tas, vpd, Rn, pressure, G,
and S. For tas, we used monthly layers of the CHELSA tas
product (see “Input data”). For vpd, we used the layers calcu-
lated here. Rn was calculated as the difference between rsds
calculated here and rlus from ERA5-Land, following Singer
et al. (2021). Since these radiation layers had different spa-
tial resolutions (30 arcsec and 0.1◦, respectively), we used
the grid calculus tool of the System for Automated Geosci-
entific Analyses (SAGA, Conrad et al., 2015) to calculate the
differences on the fine grid, using bilinear interpolation to
downscale the coarse grid of rlus. In a few pixels (in rugged
terrain) estimates of Rn could be negative, in which case
we manually set them to zero. Pressure was calculated with
the function “pressure.from.elevation” of R package bigleaf
(Knauer et al., 2018), considering orography, tas, and vpd to
be driving factors. Ground heat flux (G) was assumed to cor-
respond to 10 % ofRn (Allen et al., 1998; Singer et al., 2021),
and storage fluxes (S) were assumed to sum to zero.

In addition to general environmental conditions, informa-
tion on aerodynamic and potential surface conductance was
needed to calculate pet with the Penman–Monteith equation,
and these metrics depend on the property of the surface con-
sidered. We estimated conductances for a reference crop of
12 cm height, using the simplified relationships provided by
Allen et al. (1998). Ga was estimated as w2∗

208 , with w2∗ being
wind speed 2 m above the roughness length (m s−1). We de-
rived w2∗ from our monthly estimates of sfcWind (which are

estimated 10 m above the surface) in the following way:

w2∗ = sfcWind×
ln
(
z0+2
z0

)
ln
(

10
z0

) , (16)

where z0 is roughness length (see subsection “Input data”).
Gspot was calculated assuming a constant surface resistance
of 70 s m−1 (Allen et al., 1998) and considering local tas and
pressure (using the bigleaf function “ms.to.mol”). We calcu-
lated pet monthly from 1979 to 2019. For the period 1981–
2010, we derived monthly climatologies of pet and climato-
logical means, annual ranges, and extrema. All pet data are
reported in kg m−2 month−1.

2.2.4 Fourth-order climate layers

Climate moisture index

Climate moisture index is the difference between precipita-
tion and potential evapotranspiration (Hogg, 1997). cmi in-
forms about the moisture regime and has been related to
biome boundaries and drought impact on tree health and
regeneration (Hogg et al., 2017; Hogg, 1997). We calcu-
lated cmi for each month of the period 1980–2018 using the
CHELSA pr layers and the pet layers generated in this study.
For the period 1981–2010, we derived monthly climatolo-
gies of cmi and climatological means, annual ranges, and ex-
trema. All cmi data are reported in kg m−2 month−1.

2.2.5 Fifth-order climate layers

Site water balance

Site water balance is an estimate of the water available to
plants during a year that considers soil parameters in ad-
dition to climate variables. swb has been shown to closely
correlate with functional plant traits such as leaf area (Grier
and Running, 1977; Gholz, 1982), and it is considered one of
the main determinants of plant distribution (Neilson, 1995;
Woodward, 1987). We used an approach similar to that of
Grier and Running (1977) to calculate the site water balance.
From the cmi climatologies, we identified the start of the hy-
drological year, i.e., either the first month after the arid pe-
riod (with a negative cmi) or the month after the one with
the lowest cmi. Then, monthly estimates of cmi are summed
over the hydrological year, whereby the running sum is never
allowed to exceed the available water volume of the soil (ap-
proximated here by awc; see “Input data”), and excess water
is assumed to run off. When pet exceeds precipitation (neg-
ative cmi), the difference is subtracted from the water bal-
ance, which often leads to distinctly negative values over the
course of a hydrological year. We calculated swb for each
year of the period 1980–2018, i.e., choosing 1981 as the first
representative year and allowing hydrological years to start in
1980 already. For the period 1981–2010, we derived clima-
tological means. All swb data are reported in kg m−2 yr−1.
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Figure 2. Overview of the spatiotemporal distribution of near-surface relative humidity (hurs). (a) Global map of the climatological mean
for the period 1981–2010; (b) global map of the range (max–min) of monthly hurs means for the period 1981–2010; (c) seasonal cycle of
hurs in the biomes of the Northern Hemisphere for the period 1981–2010. Polygons indicate the range from the 40th to 60th percentiles, and
lines indicate medians. (d) Temporal change in annual mean hurs by biome. Shown are deviations in percent of the long-term (1979–2018)
annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents dry midlatitudes;
green (D) represents temperate midlatitudes; purple (E) represents subtropics with year-round rain; orange (F) represents subtropics with
winter rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics with summer rain; grey (I) represents tropics with
year-round rain. (e) An exemplary high-resolution map of the climatological mean of hurs for the northeastern boundary region of the Andes.
For the exact location, see the inset in panel (a).

2.3 Validation

2.3.1 Station data

We validated 9 of the 15 climate-related variables at three
levels of temporal aggregation, using global sets of station
measurements. We validated primarily variables that could
either be measured directly or derived readily from measure-
ments, using three different data sources. hurs, sfcWind, fcf,
scd, gdd5, and vpd were validated against station measure-
ments from the Global Surface Summary of Day (GSOD)
database (Global Surface Summary of Day, 2022), contain-
ing measurements of weather conditions of >28000 sta-
tions globally, with a focus on the Northern Hemisphere. We
used R package GSODR (Sparks et al., 2017) to download
and quality-control daily averages from 1979 to 2020 and
to calculate saturation vapor pressure, actual vapor pressure,
and relative humidity from measured properties using the
improved August–Roche–Magnus approximation (Alduchov
and Eskridge, 1996). For each station, we then calculated va-
por pressure deficit as the difference between saturation va-
por pressure and actual vapor pressure, defined frost change

days as days with maximum temperature >0 ◦C and mini-
mum temperature <0 ◦C, defined daily growing degree days
as average temperature minus 5 ◦C if the average temperature
was >5 and 0 ◦C otherwise, and defined snow cover days as
days with measured snow depth. To validate clt, we used sta-
tion measurements from the HadISD (v.3.2.0.2021f) global
subdaily database (Dunn, 2019) provided by the UK Met
Office Hadley Centre (https://www.metoffice.gov.uk/hadobs/
hadisd/ last access: 19 October 2022). For each station, we
aggregated all 1979–2020 hourly, non-flagged measurements
of total cloud cover to daily averages and converted the orig-
inal eight-level scale to percent. Station measurements for
pet and cmi were obtained from the World-wide Agroclimate
Data of FAO (FAOCLIM; FAO, 2001). This agroclimatic
database contains data for 28 800 stations and 14 observed
and computed agroclimatic parameters. For validation, we
used monthly climatologies provided by FAOCLIM version
2, which cover the period 1961–1990 and thus only par-
tially overlap with our 1981–2010 climatologies. For poten-
tial evapotranspiration these values were available directly,
while for the climate moisture index we calculated them
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Figure 3. Overview of the spatiotemporal distribution of the cloud area fraction (clt). (a) Global map of the climatological mean for the
period 1981–2010. (b) Global map of the range (max–min) of monthly clt means for the period 1981–2010. (c) Seasonal cycle of clt in
the biomes of the Northern Hemisphere for the period 1981–2010. Polygons indicate the range from the 40th to 60th percentiles, and lines
indicate medians. (d) Temporal change in annual mean clt by biome. Shown are deviations in percent of the long-term (1979–2019) annual
mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents dry midlatitudes; green (D)
represents temperate midlatitudes; purple (E) represents subtropics with year-round rain; orange (F) represents subtropics with winter rain;
brown (G) represents dry tropics and subtropics; pink (H) represents tropics with summer rain; grey (I) represents the boundary region of the
Andes. (e) An exemplary high-resolution map of the climatological mean of clt for the northeastern boundary region of the Andes. For the
exact location, see the inset in panel (a).

station-wise, considering only stations that simultaneously
reported potential evapotranspiration and precipitation.

We aggregated station measurements temporally to three
levels. Firstly, we aggregated data on hurs, clt, sfcWind, fcf,
scd, gdd5, and vpd by month. For hurs, clt, sfcWind, and vpd,
we calculated monthly means for each combination of station
and month for which 25 or more daily averages were avail-
able. For fcf, scd, and gdd5, we calculated monthly sums
when 25 or more daily estimates were available (for scd,
we thereby considered temperature measurements, as snow
depth was only reported when snow was present). If esti-
mates were missing for some days, we multiplied the sum
by the inverse of the fraction of days covered. Secondly, we
aggregated hurs, clt, sfcWind, and vpd to monthly climatolo-
gies. To this end, we first filtered for measurements made
between 1981 and 2010 and counted, for each combination
of month and station, how many years were available. When
data for more than 15 years existed, we calculated monthly
climatological means. Finally, we calculated annual clima-
tological means. For hurs, clt, sfcWind, vpd, pet, and cmi,
we did this by station-wise averaging monthly climatologies,

considering stations for which estimates were missing for no
more than 1 month. For fcf, scd, and gdd5, we first derived
yearly sums from 1981 to 2010, expecting 12 monthly sums
per station and year. For scd we did this for all combina-
tions of stations and years with at least one observation of
snow depth per year, and we further considered combinations
of stations and years with daily temperature minima consis-
tently above ◦C as having zero snow cover days. Then, we
calculated climatological means for stations with more than
15 yearly sums.

2.3.2 Gridded data

In addition to station measurements, we compared
CHELSA-BIOCLIM+ variables to gridded data from
station-based interpolation and from a weather research
and forecasting (WRF) model simulation. Gridded data
from station-based interpolations originated or were built
from WorldClim v2.0 (Fick and Hijmans, 2017) and from
the Global Aridity Index and Potential Evapotranspiration
Database version 3 (Zomer et al., 2022) and had a global
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Figure 4. Overview of the spatiotemporal distribution of near-surface wind speed (sfcWind). (a) Global map of the climatological mean
for the period 1981–2010. (b) Global map of the range (max–min) of monthly sfcWind means for the period 1981–2010. (c) Seasonal
cycle of sfcWind in the biomes of the Northern Hemisphere for the period 1981–2010. Polygons indicate the range from the 40th to 60th
percentiles, and lines indicate medians. (d) Temporal change in long-term (1980–2018) annual mean sfcWind by biome. Shown are deviations
in percent of the annual mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents
dry midlatitudes; green (D) represents temperate midlatitudes; purple (E) represents subtropics with year-round rain; orange (F) represents
subtropics with winter rain; brown (G) represents dry tropics and subtropics; pink (H) represents tropics with summer rain; grey (I) represents
tropics with year-round rain. (e) An exemplary high-resolution map of the climatological mean of sfcWind for the northeastern boundary
region of the Andes. For the exact location, see the inset in panel (a).

coverage and spatial resolution of 30 arcsec. We calculated
annual climatologies from WorldClim’s monthly wind speed
and solar-radiation climatologies and from the monthly cli-
matology of Global-AI_PET’s potential evapotranspiration.
Moreover, we derived estimates for relative humidity, vapor
pressure deficit, and climate moisture index. We calculated
relative humidity and vapor pressure using WorldClim’s
vapor pressure, maximum temperature, and minimum
temperature following the procedure described in Zomer et
al. (2022). For the climate moisture index, we subtracted
Global-AI_PET’s potential evapotranspiration from World-
Clim’s precipitation. Derived variables were first calculated
for each climatological month and then averaged to annual
climatologies. Note that these climatologies are representa-
tive for the period 1970–2000 and thus only partially overlap
with the CHELSA-BIOCLIM+ climatologies.

For a second comparison, we considered outputs of the
High Asia Refined analysis version 1 (Maussion et al., 2011,
2014) that were generated through dynamical downscaling
using WRF model version 3.3.1 (Skamarock and Klemp,
2008). Simulated layers have a resolution of 10 km and are

representative of the period 2000–2014, which only par-
tially overlaps with the CHELSA-BIOCLIM+ climatolo-
gies. From these simulations, we used wind speed 10 m
above the surface and downward shortwave flux at the
ground surface (compared to rsds) after converting the units.
Relative humidity and vapor pressure deficit were derived
from daily estimates of water vapor mixing ratio (q), tem-
perature at 2 m (tas), and surface pressure (p). To this end,
we first calculated saturation vapor pressure from tempera-
ture, using Eq. (13), and actual vapor pressure according to
the formula

ea =
q ·p

q · (1−MWratio)+MWratio
, (17)

where MWratio is the ratio of molecular weights of water va-
por and dry air and equals 0.622. Relative humidity was then
calculated by dividing actual vapor pressure by saturation
vapor pressure, and vapor pressure deficit was calculated as
the difference between saturation vapor pressure and actual
vapor pressure. Daily estimates of relative humidity and va-
por pressure deficit were aggregated to 2000–2014 averages.

Earth Syst. Sci. Data, 14, 5573–5603, 2022 https://doi.org/10.5194/essd-14-5573-2022



P. Brun et al.: Global climate-related predictors at kilometer resolution 5585

Figure 5. Overview of the spatiotemporal distribution of frost
change frequency (fcf): (a) global map of the climatological mean
of fcf for the period 1981–2010; (b) global map of the difference be-
tween climatological means of 2071–2100 and 1981–2010, assum-
ing anthropogenic emissions to follow the shared socioeconomic
pathway SSP370 and building on projections of the Max Planck In-
stitute Earth System Model (MPI-ESM 1-2-HR); (c) an exemplary
high-resolution map of the climatological mean for the western edge
of the Himalayas. For the exact location, see the inset in panel (a).

Potential evaporation was converted from Watts per square
meter to kilograms per square meter per year using a linear
approximation of the temperature dependency of the energy
needed to vaporize water (1Hvap in J kg−1):

1Hvap= 3.148× 106
− 2370× tas, (18)

whereby the 2000–2014 averages of potential evaporation
and tas were used. Finally, climate moisture index was cal-
culated as the difference between potential evaporation and
precipitation.

2.3.3 Summary statistics and visualizations

We matched station measurements with CHELSA-
BIOCLIM+ layers and station-based interpolations at
the different levels of temporal aggregation and calcu-
lated summary statistics. For the various combinations of
variable, origin (CHELSA-BIOCLIM+ or station-based
interpolation), and temporal aggregation (monthly, monthly
climatology, and annual climatology), we matched station-
based measurements with gridded data, and we converted
variables to the same units as the CHELSA-BIOCLIM+
layers. Then, we derived the number of stations for which

Figure 6. Overview of the spatiotemporal distribution of snow
cover days (scd): (a) global map of the climatological mean of scd
for the period 1981–2010; (b) global map of the difference between
climatological means of 2071–2100 and 1981–2010, assuming an-
thropogenic emissions to follow the shared socioeconomic pathway
SSP370 and building on projections of the MPI-ESM 1-2-HR. (c)
An exemplary high-resolution map of the climatological mean for
the western edge of the Himalayas. For the exact location, see the
inset in panel (a).

both measurements and corresponding gridded data existed
and calculated Pearson correlation coefficients (r), mean
absolute error (MAE), root mean squared error (RMSE),
absolute bias, as well as the average across station measure-
ments. Moreover, for annual climatologies we plotted MAE
in space, and we calculated and visualized r for each time
step for validated time-series variables (hurs, clt, sfcWind,
and vpd) and for validated monthly climatologies (hurs, clt,
sfcWind, vpd, pet, and cmi).

In addition to these validation results, we present detailed
visualizations of spatial and temporal patterns for each vari-
able. We show global maps as well as fine-scale patterns
for one of two selected regions. For time-series variables,
we report seasonal and long-term variations for different
biomes, as defined by Schultz (2005), and for projected vari-
ables we show differences between the climatological means
for 1981–2010 and 2071–2100, assuming an SSP370 path-
way and considering the MPI-ESM 1-2-HR model. Finally,
for the Himalayan region, we visually compare the fine-
scale patterns for hurs, sfcWind, rsds, vpd, pet, and cmi be-
tween CHELSA-BIOCLIM+, station-based interpolations,
and WRF outputs.
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Figure 7. Overview of the spatiotemporal distribution of net pri-
mary productivity (npp). (a) Global map of the climatological mean
of npp for the period 1981–2010. (b) Global map of the differ-
ence between climatological means of 2071–2100 and 1981–2010,
assuming anthropogenic emissions to follow the shared socioeco-
nomic pathway SSP370 and building on projections of the MPI-
ESM 1-2-HR. (c) An exemplary high-resolution map of the clima-
tological mean for the northeastern boundary region of the Andes.
For the exact location, see the inset in panel (a).

2.4 Output format and file organization

All downscaled layers are provided as georeferenced tiff
files (GeoTIFF). GeoTIFF is a public domain metadata stan-
dard which allows georeferencing information to be em-
bedded within a TIFF file. Identical to the CHELSA layers
(Karger et al., 2017), maps are projected in World Geode-
tic System 1984 (EPSG 4326) and have a western extent of
−180.0001388888◦, a southern extent of−90.0001388888◦,
an eastern extent of 179.9998611111◦, and a northern ex-
tent of 83.9998611111◦. Their resolution is 0.0083333333◦

(30 arcsec), resulting in raster sizes of 20880× 43200 cells.
All GeoTIFF files are saved as integers with the compres-
sion option “deflate” and an internal scale and offset (see
the Technical Specifications document on the CHELSA web-
site). In order to read offset and scale correctly, the geospatial
data abstraction library (GDAL, https://gdal.org, last access:
4 September 2020) version 2.2 or higher is needed; other-
wise, they may have to be applied manually. All variables
are time averages either representing the periods 1981–2010,
2011–2040, 2041–2070, or 2071–2100 (in the case of clima-
tologies) or individual year–month combinations (in the case
of time series data). Monthly time series range at least from
1980 to 2018, while the annual time series of swb ranges

Figure 8. Overview of the spatiotemporal distribution of growing
◦C d with 5 ◦C baseline temperature (gdd5). (a) Global map of the
climatological mean of gdd5 for the period 1981–2010. (b) Global
map of the difference between climatological means of 2071–2100
and 1981–2010, assuming anthropogenic emissions to follow the
shared socioeconomic pathway SSP370 and building on projections
of the MPI-ESM 1-2-HR. (c) An exemplary high-resolution map of
the climatological mean for the northeastern boundary region of the
Andes. For the exact location, see the inset in panel (a).

from 1981 to 2018. Climate variable and time period as well
as SSP and Earth system model (if applicable) are encoded
in the file names.

2.5 Software used

For the generation and validation of the climate layers, we re-
lied on three open-source software environments. Most raster
operations, such as averaging or calculating extrema, were
executed with SAGA V.8.1 (Conrad et al., 2015); output Geo-
TIFFs were created with GDAL (https://gdal.org, last ac-
cess: 4 September 2020); validation, visualization, as well
as complex raster operations were implemented in the R
environment (R Development Core Team, 2008). R pack-
ages used, in addition to those indicated above, included sp
(Pebesma and Bivand, 2005), raster (Hijmans, 2019), and
magick (Ooms, 2020).
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Figure 9. Overview of the spatiotemporal distribution of vapor pressure deficit (vpd). (a) Global map of the climatological mean for the
period 1981–2010. (b) Global map of the range (max–min) of monthly vpd means for the period 1981–2010. (c) Seasonal cycle of vpd in
the biomes of the Northern Hemisphere for the period 1981–2010. Polygons indicate the range from the 40th to 60th percentiles, and lines
indicate medians. (d) Temporal change in annual mean vpd by biome. Shown are deviations in percent of the long-term (1980–2018) annual
mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents dry midlatitudes; green (D)
represents temperate midlatitudes; purple (E) represents subtropics with year-round rain; orange (F) represents subtropics with winter rain;
brown (G) represents dry tropics and subtropics; pink (H) represents tropics with summer rain; grey (I) represents tropics with year-round
rain. (e) An exemplary high-resolution map of the climatological mean of vpd for the northeastern boundary region of the Andes. For the
exact location, see the inset in panel (a).

3 Results

3.1 Spatiotemporal patterns

3.1.1 First-order climate layers

Near-surface relative humidity was highest in the polar re-
gions and – to a lesser extent – at the Equator and lowest in
parts of the subtropics, including northern Africa, the Ara-
bian Peninsula, and northwestern Australia (Fig. 2a). The
seasonal variation of hurs was most pronounced in the far
north, for example, in northern Canada, but also along an
east–west belt in subtropical Africa, roughly from the south-
ern tip of the Red Sea to the Atlantic Ocean (Fig. 2b). In
terms of Northern Hemisphere biomes, hurs was lowest in
the dry tropics and subtropics, especially in May and June,
and highest in the polar and subpolar zone, especially in
January and February (Fig. 2c). Over the past 40 years,
annual means of hurs varied in all Northern Hemisphere
biomes, with consistent and clear trends of decreasing hurs
(Fig. 2d). In the northeastern boundary region of the Andes,
hurs tended to be higher at the northern edge of the Andes

and around the eastern mountain tops than in the eastern low-
lands and on the Andean Plateau (Fig. 2e).

Cloud area fraction was highest in the polar regions and
in some equatorial regions, such as Indonesia, and lowest
in parts of the subtropics, including northern and south-
ern Africa and the Arabian Peninsula (Fig. 3a). The sea-
sonal variation of clt was most pronounced in subtropical
and monsoon regions, for example, on the Indian subcon-
tinent (Fig. 3b). In terms of Northern Hemisphere biomes,
clt was lowest in the dry tropics and subtropics, especially
from June to August, and highest in the polar and subpolar
zone, especially in May and October (Fig. 3c). For the past 40
years, substantial variations in annual mean clt are mapped
in most Northern Hemisphere biomes, with more (e.g., tem-
perate midlatitudes) or less (e.g., dry tropics and subtropics)
apparent negative trends (Fig. 3d). In the northeastern bound-
ary region of the Andes clt tended to be higher at the northern
edge of the Andes and around the eastern mountain tops than
in inner alpine valleys and on the Andean Plateau (Fig. 3e).

Near-surface wind speed was comparably high at the high
latitudes, in coastal regions, in deserts, and in mountain sys-
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Figure 10. Overview of the spatiotemporal distribution of rsds. (a) Global map of the climatological mean for the period 1981–2010. (b)
Global map of the range (max–min) of monthly rsds means for the period 1981–2010. (c) Seasonal cycle of rsds in the biomes of the
Northern Hemisphere for the period 1981–2010. Polygons indicate the range from the 40th to 60th percentiles, and lines indicate medians.
(d) Temporal change in annual mean rsds by biome. Shown are deviations in percent of the long-term (1979–2019) annual mean. Red (A)
represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents dry midlatitudes; green (D) represents
temperate midlatitudes; purple (E) represents subtropics with year-round rain; orange (F) represents subtropics with winter rain; brown (G)
represents dry tropics and subtropics; pink (H) represents tropics with summer rain; grey (I) represents tropics with year-round rain. (e) An
exemplary high-resolution map of the climatological mean of rsds for the northeastern boundary region of the Andes. For the exact location,
see the inset in panel (a).

tems and lowest at the Equator (Fig. 4a). In general, seasonal
variations were relatively small, with the notable exceptions
of seasonally variable sfcWind regions in a few, scattered re-
gions such as Greenland and the Horn of Africa (Fig. 4b). In
terms of Northern Hemisphere biomes, sfcWind was lowest
in the tropics, with year-round rain, and highest in the polar
and subpolar zone (Fig. 4c). For the past 40 years, substan-
tial variations in annual mean sfcWind are mapped in North-
ern Hemisphere biomes (Fig. 4d). They show few persistent
changes besides a slight increasing trend in the dry tropics
and subtropics and a slight decreasing trend at the temper-
ate midlatitudes. In the northeastern boundary region of the
Andes, sfcWind tended to be highest on mountain tops, in
the mideastern lowlands around the city of Santa Cruz de la
Sierra, and above the lakes in the northern lowlands of the
Amazon Basin (Fig. 4e).

3.1.2 Second-order climate layers

Frost change frequency was highest along a circumpolar belt
at the temperate to high latitudes of the Northern Hemisphere

(Fig. 5a) as well as in some mountain systems such as the An-
des, while it was zero across most of the subtropics and trop-
ics. Until 2071–2100 fcf is expected to decrease in particular
in global mountain systems and across much of the northern
half of the contiguous United States, central and eastern Eu-
rope, and southwestern Asia, while increasing frost change
frequencies are expected for southeastern Canada, the Baltic
countries, Belarus, Ukraine, Mongolia, and parts of north-
ern and northeastern China, such as the Hengduan Moun-
tains (Fig. 5b), indicating an increase in thawing events in
these areas. In the western Himalayas, fcf was highest at in-
termediate elevations, and it showed a tendency to decrease
towards valley bottoms as well as towards mountain peaks
(Fig. 5c).

Snow cover days increased with latitude, with zero scd oc-
curring across most of the subtropics and tropics, except for
some mountain systems, e.g., the Himalayas (Fig. 6a). Until
2071–2100 scd are expected to decrease in all regions of the
world that currently have snow cover days, except for Green-
land and Antarctica. The strongest declines are expected for
the northeastern contiguous United States and for eastern and
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Figure 11. Overview of the spatiotemporal distribution of growing
season length (gsl). (a) Global map of the climatological mean of
gsl for the period 1981–2010. (b) Global map of the difference be-
tween climatological means of 2071–2100 and 1981–2010, assum-
ing anthropogenic emissions to follow the shared socioeconomic
pathway SSP370 and building on projections of the MPI-ESM 1-
2-HR. (c) An exemplary high-resolution map of the climatological
mean for the western edge of the Himalayas. For the exact location,
see the inset in panel (a).

northern Europe (Fig. 6b). In the western Himalayas, scd was
positively associated with elevation (Fig. 6c).

Potential net primary productivity was highest in the trop-
ics, for example, in the Amazon Basin, and lowest close
to the poles and in arid regions, such as northern Africa
(Fig. 7a). Until 2071–2100 npp is expected to increase across
many of the northern high latitudes, in high mountain sys-
tems, and in the northwest of the Indian subcontinent. De-
creasing npp is expected for the islands and the southern
coast of the Caribbean Sea, for Central America, and for the
coasts of the Mediterranean Sea (Fig. 7b). In the northeastern
boundary region of the Andes, npp was highest in the north-
ern lowlands of the Amazon Basin and lowest on the bottoms
of dry inner alpine valleys (Fig. 7c).

Growing degree days with 5 ◦C baseline temperature
(gdd5) were highest in the tropics and subtropics and de-
creased towards the high latitudes (Fig. 8a). Until 2071–2100
gdd5 is expected to increase in all regions of the world, ex-
cept for Greenland and Antarctica. The strongest increases
are expected for northern Africa and the Arabian Peninsula,
Mexico, and western Australia (Fig. 8b). In the northeastern
boundary region of the Andes, gdd5 was highest in the north-
ern lowlands of the Amazon Basin and in some inner alpine

Figure 12. Overview of the spatiotemporal distribution of grow-
ing season precipitation (gsp). (a) Global map of the climatological
mean of gsp for the period 1981–2010. (b) Global map of the differ-
ence between climatological means of 2071–2100 and 1981–2010,
assuming anthropogenic emissions to follow the shared socioeco-
nomic pathway SSP370 and building on projections of the MPI-
ESM 1-2-HR. (c) An exemplary high-resolution map of the clima-
tological mean for the northeastern boundary region of the Andes.
For the exact location, see the inset in panel (a).

valleys, while they were lowest on high mountain peaks and
the Andean Plateau (Fig. 8c).

The climatological mean of vpd was highest in dry sub-
tropical regions, for example, northern Africa, the Arabian
Peninsula, and central and western Australia. It was low-
est in high mountain systems, such as the Himalayas, and
the polar regions (Fig. 9a). The spatial patterns of seasonal
variation in vpd were similar to those of the climatological
mean (Fig. 9b). In terms of Northern Hemisphere biomes,
vpd was lowest in the polar and subpolar zone, primarily
from November to March, and highest in the dry tropics and
subtropics, especially around June (Fig. 9c). Over the past
40 years annual mean vpd showed clearly increasing trends
in all Northern Hemisphere biomes (Fig. 9d). In the north-
eastern boundary region of the Andes vpd showed a primary
negative association with elevation, with the highest vpd in
the lowlands and in some inner alpine valleys and the lowest
vpd on mountain peaks and on the Andean Plateau (Fig. 9e).

rsds was highest in the subtropics and tropics, for example,
northern Africa and the Arabian Peninsula, and decreased to-
wards higher latitudes (Fig. 10a). The seasonal variation in
rsds showed approximately opposite patterns, with the low-
est seasonal variations in the tropics and the highest vari-
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Figure 13. Overview of the spatiotemporal distribution of grow-
ing season temperature (gst). (a) Global map of the climatological
mean of gst for the period 1981–2010. (b) Global map of the differ-
ence between climatological means of 2071–2100 and 1981–2010,
assuming anthropogenic emissions to follow the shared socioeco-
nomic pathway SSP370 and building on projections of the MPI-
ESM 1-2-HR. (c) An exemplary high-resolution map of the clima-
tological mean for the northeastern boundary region of the Andes.
For the exact location, see the inset in panel (a).

ations in Antarctica and Greenland (Fig. 10b). In terms of
Northern Hemisphere biomes, rsds was lowest in the polar
and subpolar zone, from November to January, and high-
est in the dry tropics and subtropics, especially around June
(Fig. 10c). Over the past 40 years, annual mean rsds showed
variable trends across Northern Hemisphere biomes: in sev-
eral biomes, for example, in the tropics with year-round rain
and in particular in the subtropics with year-round rain, rsds
tended to increase (Fig. 10d), whereas in the polar and subpo-
lar zone rsds tended to decrease. In the northeastern boundary
region of the Andes rsds tended to be highest on the Andean
Plateau and high-elevation mountain peaks and lowest on the
northern edge of the Andes and on the western slopes on the
western edge of the Andes (Fig. 10e).

3.1.3 Third-order climate layers

Growing season length was highest in the tropics, where it
typically covered the entire year, and lowest in polar areas,
in particular in Greenland and Antarctica, in arid areas, e.g.,
northern Africa, and in high mountain systems such as the
Himalayas, the Rockies, or the high Andes (Fig. 11a). Un-
til 2071–2100 gsl is expected to increase across most of the

temperate to high latitudes of the Northern Hemisphere and
in the greater Himalayan region, but also in parts of northern
Australia and central to eastern Africa, such as Kenya and
Ethiopia. Declining growing season lengths are expected for
Mexico and the southwestern US and across much of tropi-
cal South America, Spain, Morocco, and southern Australia
(Fig. 11b). In the western Himalayas gsl was negatively as-
sociated with elevation (Fig. 11c).

Growing season precipitation was highest in the tropics
and in the monsoon region of southern China and compara-
bly low in desert regions around the globe and at the higher
latitudes, except for some coastal areas such as western North
America (Fig. 12a). Until 2071–2100 gsp is expected to in-
crease along the coasts of western and eastern North Amer-
ica, across most of Eurasia, in Oceania, and in northern Aus-
tralia. Decreases are expected in particular in central and
tropical America and in the Mediterranean region, in west-
ern Africa, and in southern Australia (Fig. 12b). In the north-
eastern boundary region of the Andes, gsp was highest in the
northern lowlands of the Amazon Basin and in particular at
the northern edge of the Andes, while it was lowest on the
Andean Plateau (Fig. 12c).

Growing season temperature was highest in the tropics
and subtropics and decreased towards the high latitudes
(Fig. 13a). Until 2071–2100 gst is expected to increase in
almost all regions of the world with growing seasons, with
the steepest increases, for example, in Mauritania. Decreas-
ing growing season temperatures are expected, for example,
from southern Sweden and over southern Ukraine to Kaza-
khstan (Fig. 13b). In the northeastern boundary region of the
Andes, gst was highest in the lowlands and in some inner
alpine valleys, while it was lowest on high-elevation moun-
tain peaks and on the Andean Plateau (Fig. 13c).

Potential evapotranspiration was highest in the subtropics,
such as northern Africa, and decreased towards higher lati-
tudes and – to a lesser extent – towards the tropics (Fig. 14a).
The seasonal variation of pet was also highest in the sub-
tropics, but its minimum was in the tropics, and in the po-
lar region it was intermediate (Fig. 14b). In terms of North-
ern Hemisphere biomes, pet was lowest in the polar and
subpolar zone, from December to February, and highest in
the dry tropics and subtropics, especially from May to July
(Fig. 14c). For the past 40 years, an increasing trend of an-
nual mean pet is mapped in all Northern Hemisphere biomes
(Fig. 14d). In the northeastern boundary region of the Andes
pet showed a negative association with elevation, with the
lowest pet on high-elevation mountain peaks and on the An-
dean Plateau and the highest values in some inner alpine val-
leys and in the mideastern lowlands around the city of Santa
Cruz. However, pet was also relatively low in the lowlands at
the northern edge of the Andes, where clt and hurs were high
and sfcWind and rsds were low (Fig. 14e).

Earth Syst. Sci. Data, 14, 5573–5603, 2022 https://doi.org/10.5194/essd-14-5573-2022



P. Brun et al.: Global climate-related predictors at kilometer resolution 5591

Figure 14. Overview of the spatiotemporal distribution of potential evapotranspiration (pet). (a) Global map of the climatological mean for
the period 1981–2010. (b) Global map of the range (max–min) of monthly pet means for the period 1981–2010. (c) Seasonal cycle of pet in
the biomes of the Northern Hemisphere for the period 1981–2010. Polygons indicate the range from the 40th to 60th percentiles, and lines
indicate medians. (d) Temporal change in annual mean pet by biome. Shown are deviations in percent of the long-term (1980–2018) annual
mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents dry midlatitudes; green (D)
represents temperate midlatitudes; purple (E) represents subtropics with year-round rain; orange (F) represents subtropics with winter rain;
brown (G) represents dry tropics and subtropics; pink (H) represents tropics with summer rain; grey (I) represents tropics with year-round
rain. (e) An exemplary high-resolution map of the climatological mean of pet for the northeastern boundary region of the Andes. For the
exact location, see the inset in panel (a).

3.1.4 Fourth-order climate layers

Climate moisture index was highest in parts of the tropics and
in some mountain systems, especially in those located close
to the coasts, and lowest in northern Africa and the Arabian
Peninsula (Fig. 15a). The seasonal variation in cmi was high-
est in the tropics and subtropics and in some coastal moun-
tain systems such as the Pacific Northwest of North Amer-
ica, while in high-latitude lowlands, variation was compara-
bly low (Fig. 15b). In terms of Northern Hemisphere biomes,
cmi was lowest in the dry tropics and subtropics, from May
to July, and highest in the tropics with year-round rain, es-
pecially in May and June (Fig. 15c). For the past 40 years,
substantial variations in annual mean cmi were observed in
Northern Hemisphere biomes, without clear temporal trends
(Fig. 15d). However, cmi showed a tendency to decrease in
the dry tropics and subtropics. In the northeastern boundary
region of the Andes cmi was mostly negative, in particular in
inner alpine valleys, although at the northern edge of the An-
des and in the lowlands of the Amazon Basin cmi was mostly
positive (Fig. 15e).

3.1.5 Fifth-order climate layers

Site water balance was typically neutral to positive in the
tropics and at temperate to high latitudes, while it was mostly
negative elsewhere, most distinctly so in northern Africa and
the Arabian Peninsula (Fig. 16a). For the past 40 years,
substantial variations in annual mean swb are mapped in
Northern Hemisphere biomes, mostly without clear tempo-
ral trends (Fig. 16b). However, swb did show a tendency to
decrease in the dry tropics and subtropics. In the northeastern
boundary region of the Andes and the surrounding lowlands,
swb was mostly negative, in particular in inner alpine valleys,
while it was slightly positive close to the northern edge of the
Andes (Fig. 16c).

3.2 Validation and comparisons

3.2.1 Station data

CHELSA-BIOCLIM+ layers showed a good fit with the sta-
tion measurements, especially in the case of gdd5, vpd, hurs,
fcf, and cmi (Table 2). Pearson correlation coefficients (r)
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Figure 15. Overview of the spatiotemporal distribution of climate moisture index (cmi). (a) Global map of the climatological mean for the
period 1981–2010. (b) Global map of the range (max–min) of monthly cmi means for the period 1981–2010. (c) Seasonal cycle of cmi in
the biomes of the Northern Hemisphere for the period 1981–2010. Polygons indicate the range from the 40th to 60th percentiles, and lines
indicate medians. (d) Temporal change in annual mean cmi by biome. Shown are deviations in percent of the long-term (1980–2018) annual
mean. Red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents dry midlatitudes; green (D)
represents temperate midlatitudes; purple (E) represents subtropics with winter rain; orange (F) represents subtropics with year-round rain;
brown (G) represents dry tropics and subtropics; pink (H) represents tropics with summer rain; grey (I) represents tropics with year-round
rain. (e) An exemplary high-resolution map of the climatological mean of cmi for the northeastern boundary region of the Andes. For the
exact location, see the inset in panel (a).

were high (r>0.85), across all temporal aggregations evalu-
ated, for scd, gdd5, vpd, and cmi, and at least reasonably high
(r>0.80) for hurs and fcf. For sfcWind, correlations were
lowest, yet still acceptable, with r ≥ 0.74. For most eval-
uated variables, r was similar when evaluated for monthly
and annual climatologies, with the highest differences found
for pet (r equalled 0.79 and 0.87 for annual and monthly
climatologies, respectively). When estimated from monthly
match-ups, r was generally lower. Over the evaluated sta-
tions, biases for annual climatologies ranged between ±2 %
and 25 % of the station means, except for clt (on average
18 % too low, in absolute terms) and in particular scd (on
average 38 d too high). MAE and RMSE were rather low for
variables with comparably high r and low bias, such as hurs
(MAE of 10.81 % for annual climatologies), and compara-
bly high especially for variables with high bias, such as scd
(MAE of 42.78 d).

Compared to station-based interpolations, CHELSA-
BIOCLIM+ variables showed similar or higher performance
for hurs, vpd, pet, and cmi and somewhat lower perfor-
mance for sfcWind (Table 2). For annual climatologies of

sfcWind, CHELSA-BIOCLIM+ grids showed lower corre-
lation (r equalled 0.77 compared to 0.84 for station-based
interpolations) and higher error (MAE equalled 0.72 com-
pared to 0.53 for station-based interpolations). For hurs,
vpd, pet, and cmi, on the other hand, MAE estimates
for CHELSA-BIOCLIM+ layers were lower (−17.72 %,
−338.17 Pa, −11.86 kg m−2 mt−1, and −8.73 kg m−2 mt−1,
respectively), and r was similar or higher (+0.24, +0.06,
+0.13, and−0.01, respectively) compared to the correspond-
ing metrics for station-based interpolations.

Mean absolute error of CHELSA-BIOCLIM+ variables
showed variable distributions in space. For hurs, MAE was
high in Europe and Southeast Asia and comparably low
in western North America and temperate to boreal Asia
(Fig. 17a). For fcf, MAE was particularly high for an area
extending from southeastern Europe eastwards into cen-
tral Asia, while it was low for the subtropics and tropics
(Fig. 17d). For gdd5, elevated MAE was mainly found in the
subtropics and tropics, especially in northern Mexico and at
the northern edge of the Andes (Fig. 17f). For clt, sfcWind,
pet, and cmi, the patterns were roughly uniform, although
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Table 2. Validation results for the nine evaluated variables. r represents the Pearson correlation coefficient; MAE stands for mean absolute
error; RMSE stands for root mean squared error; mean indicates the averages of station measurements; bias represents the average difference
between gridded estimates and station measurements. Units are as reported in the methods.

Variable Aggregation Origin Validation data r MAE RMSE Mean Bias Stations

hurs Climat. mean1 This study GSOD 0.90 10.81 11.84 69.62 −10.00 4412
hurs Climat. month This study GSOD 0.88 11.45 12.71 69.68 −10.03 5702
hurs Monthly This study GSOD 0.84 11.91 13.45 69.72 −10.03 17 316
hurs Climat.1 mean Station-based2 GSOD 0.66 28.53 30.44 69.11 28.51 4143
clt Climat.1 mean This study HadISD 0.87 18.07 19.21 55.76 −18.03 5095
clt Climat.1 month This study HadISD 0.86 18.12 19.70 55.87 −17.94 5989
clt Monthly This study HadISD 0.79 18.01 20.66 55.09 −17.00 8323
sfcWind Climat.1 mean This study GSOD 0.77 0.72 0.94 3.38 0.05 4482
sfcWind Climat.1 month This study GSOD 0.78 0.76 1.00 3.37 0.06 5782
sfcWind Monthly This study GSOD 0.74 0.87 1.17 3.33 0.14 17385
sfcWind Climat.1 mean Station-based2 GSOD 0.84 0.53 0.74 3.28 −0.01 4223
fcf Climat.1 mean This study GSOD 0.82 19.76 27.26 50.99 −4.59 4101
scd Climat.1 mean This study GSOD 0.91 42.78 62.01 50.69 38.09 2283
gdd5 Climat.1 mean This study GSOD 0.99 159.14 239.16 3358.40 −67.00 4085
vpd Climat.1 mean This study GSOD 0.91 177.01 219.18 582.36 135.59 4143
vpd Climat.1 month This study GSOD 0.93 194.56 255.94 599.04 194.56 5702
vpd Monthly This study GSOD 0.92 205.82 278.16 598.43 134.80 17316
vpd Climat.1 mean Station-based2 GSOD 0.85 515.18 579.60 595.40 −515.04 4143
pet Climat.1 mean This study FAOCLIM 0.79 19.84 24.12 120.77 6.18 4247
pet Climat.1 month This study FAOCLIM 0.87 21.70 27.03 120.77 6.18 4206
pet Climat.1 mean Station-based2 FAOCLIM 0.66 31.70 37.04 121.16 20.30 4050
cmi Climat.1 mean This sutdy FAOCLIM 0.88 27.35 40.50 −27.78 −2.94 4207
cmi Climat.1 month This study FAOCLIM 0.91 34.24 55.07 −21.78 −2.94 4166
cmi Climat.1 mean Station-based2 FAOCLIM 0.89 36.08 45.71 −23.74 −21.01 4011

1 Climatology for the period 1981–2010. 2 Derived from WorldClim v2.0 and the Global Aridity Index and Potential Evapotranspiration Database version 3 (Fick and
Hijmans, 2017; Zomer et al., 2022).

some regions showed a somewhat elevated error, for exam-
ple, Niger for clt or Mongolia for pet and cmi (Fig. 17b, c, h,
i). For scd and vpd, which had a comparably high bias (Ta-
ble 2), MAE showed a latitudinal pattern that was roughly
proportional to the primary pattern of the variable (Fig. 17e,
g).

Pearson correlation coefficients between station measure-
ments and evaluated CHELSA-BIOCLIM+ variables varied
with season and between years. Seasonal variations were par-
ticularly pronounced for hurs, where r was below 0.8 for
January and December and above 0.9 from April to October
(Fig. 18a). For sfcWind and pet, a clear seasonal signal in r
also existed, but the highest correlations (r>0.8 and r>0.9,
respectively) were found from November to February and the
lowest correlations in July, for sfcWind (r = 0.72), and Au-
gust, for pet (r = 0.78). For vpd and cmi, on the other hand,
seasonal variations were comparably small. Interannual vari-
ations in Pearson correlation coefficients were pronounced
for clt and sfcWind, while they were relatively small for vpd
and hurs (Fig. 18b). Apart from the seasonal variations, r for
clt and sfcWind remained relatively stable between 1980 and
1995 (average 1980–1995 r was 0.74 and 0.82 for sfcWind

and clt, respectively). Between 1995 and the early 2000s, r
declined for both variables before it started increasing again
until about 2010. After that, r for both variables declined a
second time until the end of the time series (average 2010-
to-time series end r equalled 0.72 and 0.76 for sfcWind and
clt, respectively).

3.2.2 Gridded data

In the Himalayan region, the spatial patterns of CHELSA-
BIOCLIM+ variables were generally similar to those of the
corresponding layers from station-based interpolations and
weather research and forecasting simulations, although some
exceptions existed. The spatial patterns of hurs were com-
parably variable among products, with the highest corre-
lation between CHELSA-BIOCLIM+ and WRF (r = 0.68,
Fig. 19a–c). For sfcWind, the large-scale patterns were
quite similar, especially between CHELSA-BIOCLIM+ and
WRF, but the fine-scale structures were resolved in higher de-
tail in the CHELSA-BIOCLIM+ layers, explaining why the
correlation between station-based interpolations and WRF
was highest for wind speed (Fig. 19d–f). For vapor pres-
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Figure 16. Overview of the spatiotemporal distribution of site wa-
ter balance (swb): (a) global map of the climatological mean of
swb for the period 1981–2010; (b) temporal change in annual mean
swb by biome. Shown are deviations in percent of the long-term
(1980–2018) annual mean. Red (A) represents the polar and subpo-
lar zone; yellow (B) represents the boreal zone; blue (C) represents
dry midlatitudes; green (D) represents temperate midlatitudes; pur-
ple (E) represents subtropics with winter rain; orange (F) represents
subtropics with year-round rain; brown (G) represents dry tropics
and subtropics; pink (H) represents tropics with summer rain; grey
(I) represents tropics with year-round rain. (c) An exemplary high-
resolution map of the climatological mean of swb for the northeast-
ern boundary region of the Andes. For the exact location, see the
inset in panel (a).

sure deficit, the patterns between all the products were very
similar (Fig. 19g–i). In the case of rsds, the CHELSA-
BIOCLIM+ layer showed the most pronounced fine-scale
patterns, and its large-scale patterns were similar to those
in the WRF layer (r = 0.73 between CHELSA-BIOCLIM+
and WRF). The patterns of WorldClim’s solar radiation, on
the other hand, were strikingly different compared to the for-
mer two products (r<0 for both comparisons, Fig. 19j–l).
For pet, large-scale patterns between the three products were
generally similar, although absolute values were somewhat
lower for CHELSA-BIOCLIM+ and more fine-scale struc-
tures were visible (Fig. 19m–o). In the case of cmi the pat-
terns were generally similar (Fig. 19m–o). Along the south-
ern edge of the Himalayas, the large-scale patterns between
CHELSA-BIOCLIM+ and WRF were somewhat more sim-
ilar than those between CHELSA-BIOCLIM+ and station-
based interpolations.

Figure 17. Spatial distribution of validation errors: global maps of
mean absolute errors between 1981–2010 climatological means of
nine CHELSA-BIOCLIM+ variables and corresponding averages
of station estimates. Note that for pet (h) and cmi (i), station data
are representative for the period 1961–1990, and thus time periods
only partially overlap.

4 Data availability

The CHELSA-BIOCLIM+ dataset consists of 4006 single-
layer GeoTIFF files, representing averages, extrema, and
ranges of the 15 climate-related variables for differ-
ent time points (1979 to 2100) and periods (monthly
to 30-year averages). The GeoTIFF files are stored on
a S3 cloud server that can be accessed over EnviDat
(https://doi.org/10.16904/envidat.332; Brun et al., 2022) by
clicking on the “CHELSA-BIOCLIM+” box in the “Data
and resources” tab and at https://chelsa-climate.org/ (last ac-
cess: 12 December 2022) by clicking on “Version 2.1” under
“Downloads”. This file browser contains the four folders “an-
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Figure 18. Seasonal and interannual distribution of correspondence: (a) Pearson correlation coefficients between CHELSA-BIOCLIM+
variables and corresponding averages of station measurements for hurs, clt, sfcWind, vpd, pet, and cmi for each 1981–2010 climatolog-
ical month. Note that for pet (purple) and cmi (yellow), station data are representative for the period 1961–1990, and thus time periods
only partially overlap. (b) Pearson correlation coefficients between CHELSA-BIOCLIM+ variables and corresponding averages of station
measurements for hurs, clt, sfcWind, and vpd for each month in the time series. The same colors are used as in panel (a).

nual”, “daily”, “monthly”, and “climatologies”, within which
the CHELSA-BIOCLIM+ data are organized in the follow-
ing way.

The folder “annual” contains the subfolder “swb”, which
contains annual layers of swb.

The folder “daily” contains no data of the CHELSA-
BIOCLIM+ dataset.

The folder “monthly” contains (among folders from other
datasets) the subfolders “clt”, “cmi”, “hurs”, “pet”, “rsds”,
“sfcWind”, and “vpd”, which contain monthly layers for clt,
cmi, hurs, pet, rsds, sfcWind, and vpd, respectively.

The folder “climatologies” contains four subfolders,
“1981–2010”, “2011–2040”, “2041–2070”, and “2071–
2100”, which represent the different time periods for which
climatologies are representative.

In the subfolder “1981–2010” the sub-subfolders “clt”,
“cmi”, “hurs”, “pet”, “rsds”, “sfcWind”, and “vpd” contain
1981–2010 averages of clt, cmi, hurs, pet, rsds, sfcWind,
and vpd, respectively, for each month. The sub-subfolder
“bio” contains (among files from other datasets) climatolog-
ical means, maxima, minima, and annual ranges for clt, cmi,
hurs, pet, rsds, sfcWind, and vpd and climatological means
for fcf, gdd (with 0, 5, and 10 ◦C baseline temperature, i.e.,
“gdd0”, “gdd5”, “gdd10”, respectively), gsl, gsp, gst, npp,
scd, and swb.

The subfolders “2010–2040”, “2041–2070”, and “2071–
2100” each contain one sub-subfolder per Earth system
model considered (i.e., the sub-subfolders “GFDL-ESM4”,
“IPSL-CM6A-LR”, “MPI-ESM1-2-HR”, “MRI-ESM2-0”,
and “UKESM1-0-LL”). Each of these combinations be-
tween period and Earth system model contains three sub-
sub-subfolders representing the three SSPs (i.e., the sub-sub-
subfolders “ssp126”, “ssp370”, and “ssp585”); each of these
combinations between period, Earth system model, and SSP
contains a sub-sub-sub-subfolder “bio” that contains (among
files from other datasets) climatological means for fcf, gdd

(with 0, 5, and 10 ◦C baseline temperature), gsl, gsp, gst, npp,
and scd.

More information on naming and settings of the GeoTIFF
files (grid structure, unit, scale and offset parameters) can
be found in the subsection “2.4 Output format and file or-
ganization” and in the Technical Documentation PDF that
can be found at https://doi.org/10.16904/envidat.332 in the
“CHELSA-BIOCLIM+ Technical Documentation” box in
the “Data and resources” tab. Monthly and annual layers of
the time-series variables will occasionally be added to the
CHELSA-BIOCLIM+ dataset to extend the time period cov-
ered to the most recent years.

5 Discussion

Climate data at high spatiotemporal resolution for current
conditions and for the decades ahead of us are crucial for fill-
ing the gaps in our understanding of climate-change impacts
on the Earth system. Here, we provide a dataset of biologi-
cally meaningful, essential climate, and environmental vari-
ables, combining state-of-the-art input data with a mechanis-
tic downscaling methodology. The provided gridded layers
offer unprecedented spatiotemporal resolution and high vali-
dation accuracy. Characterizing bioclimate comprehensively
beyond temperature and precipitation makes our dataset par-
ticularly relevant for studying biological processes (Bojin-
ski et al., 2014; Woodward, 1987; Neilson, 1995). The open-
access dataset CHELSA-BIOCLIM+will stimulate research
on climate-change impact on physical and ecological pro-
cesses.

Comprehensive information on climate beyond tempera-
ture and precipitation enables better characterization of vari-
ous Earth system processes, and biological processes in par-
ticular, where the balance between water supply and energy
demand is central (Woodward, 1987). Our time-series vari-
ables related to water availability (hurs, vpd, pet, cmi) and
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Figure 19. Spatial patterns in a data-poor region – a comparison with existing products. CHELSA-BIOCLIM+ variables are compared
with equivalents from station-based interpolation and form a weather research and forecasting (WRF) model for hurs (a–c), sfcWind (d-f),
vpd (g–i), rsds (j–l), pet (m–o), and cmi (p–r) in the Himalayan region (see the inset map in the top right). On the left, for each variable
pairwise Pearson correlation coefficients are shown for the mapped area, between CHELSA-BIOCLIM+ (CB+), the WRF model, and
station-based interpolations (S–B). Station-based interpolations are derived from WorldClim v2.0 and the Global Aridity Index and Potential
Evapotranspiration Database version 3 (Fick and Hijmans, 2017; Zomer et al., 2022); the WRF simulation considered was the High Asia
Refined analysis v1 (Maussion et al., 2011, 2014).

incoming solar energy (clt, rsds) matched particularly well
with validation data. Moreover, they showed low error in
comparison to estimates derived from station-based interpo-
lations. They can thus provide valuable inputs to a variety
of downstream analyses such as analyzing the distribution
of leaf area (Grier and Running, 1977; Iio et al., 2014), pri-
mary productivity (Gholz, 1982; Aguilos et al., 2021), or
plant functional type-based biomes (Neilson, 1995; Schultz,
2005). For swb, suitable data for direct validation are scarce.
However, given that only an additional estimate of soil water

bucket size went into the calculation of this variable, we can
expect that its performance will be comparable to the input
variables it was computed from. rsds was not validated here,
but Karger et al. (2022) demonstrated that, on a daily basis,
global rsds estimates matched very well with in situ mea-
surements (r = 0.89). Moreover, in the Himalayan region,
the spatial pattern of rsds matched well with dynamically
downscaled WRF outputs (Fig. 19). A key strength of the
CHELSA-BIOCLIM+ product therefore lies in the provision
of accurate, high-resolution, global time series of climate-
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related variables describing the true availability of water and
solar energy.

Combining input data from reanalysis with mechanistic
downscaling approaches allows for robust estimates, in par-
ticular in remote areas. So far, climate data used in macroe-
cological analyses have often relied on station-based interpo-
lations (Bobrowski et al., 2021). While such data may be ac-
curate in regions that have a dense network of field stations,
such as Europe and North America (Hijmans et al., 2005),
they are much less reliable in remote areas and/or in com-
plex terrain (Karger et al., 2017). The CHELSA approach, on
the other hand, uses gridded reanalysis data that account for
physical mesoscale atmospheric processes and physical con-
sistency (Hersbach et al., 2020) and further considers major
orographic effects such as the shading of terrain or wind ex-
posure (e.g., for hurs, clt, and pet; see the methods). Given
the lack of field stations in remote areas, the extent of these
improvements is likely not fully mirrored in the validation re-
sults, although our comparison among different products in
the Himalayan region highlights that CHELSA-BIOCLIM+
layers generally compare well to alternative products. More-
over, CHELSA-based estimates of temperature and precipi-
tation, which fully or partially underlie most variables pre-
sented here, have repeatedly been shown to be better suited
than station-based interpolations for ecological modeling in
the remote Himalayas (Datta et al., 2020; Suwal et al., 2018).
It may therefore be expected that the CHELSA-BIOCLIM+
product will be particularly advantageous in remote areas.

Generating a comprehensive global set of high-resolution
climate-related variables requires making generalizing as-
sumptions that can compromise the accuracy of some esti-
mates. Specifically, our projected variables providing current
and future estimates are sensitive to bias, since simple mod-
els were preferred for making robust projections (Levins,
1966). As highlighted by the validation, our estimates of scd
overestimated station-based measurements by about 1 month
in regions with snow. These differences may arise from gen-
erating estimates of daily tas, tasmin, tasmax, and pr from
monthly averages by means of spline interpolation, which
results in a more gradual seasonal evolution of temperature
and precipitation than observed in natural weather patterns.
Moreover, for the computation of scd, contributing factors
such as solar radiation were ignored. Similarly, the model to
generate estimates for gsl, gsp, and gst only contained a sim-
plistic implementation of soil water processes (Paulsen and
Körner, 2014), and the Miami model to generate estimates
for npp ignored soil conditions and solar radiation entirely.
However, the approaches used to generate projected variables
were not primarily selected for their accuracy but for their
generalism (Levins, 1966) to be applicable under current and
projected future conditions and to avoid overfitting. Despite
significant advances during the past years (Kawamiya et al.,
2020), Earth system models are still not capable of fully re-
solving mesoscale weather processes, and thus they are pri-
marily suited to studying long-term changes in climate rather

than possible weather patterns (Held et al., 2019; Yukimoto
et al., 2019; Gutjahr et al., 2019; Boucher et al., 2020). Rela-
tive to our time-series variables, our projected variables may
therefore not offer the same high accuracy for the recent past,
but they approximate climate-change impact on fundamental
biological and ecological quantities, such as potential net pri-
mary productivity, and make them directly comparable for a
variety of possible future conditions, building on the most ac-
curate global prognoses that are currently available (Eyring
et al., 2016).

The validation also revealed inaccuracies for the time-
series variable sfcWind. Although in the remote Himalaya re-
gion the sfcWind grids of CHELSA-BIOCLIM+ compared
well to dynamically downscaled sfcWind from WRF, the cor-
respondence to station measurements was weaker than for
gridded data from station-based interpolations. Moreover, the
monthly Pearson correlation coefficients between grids and
station measurements declined somewhat for recent years. A
reason for the higher correlation of the station-based interpo-
lations might be that the station measurements we used here
for validation largely overlap with their input data (Fick and
Hijmans, 2017), and thus they are expected to perform well
in our validation. Downscaling wind fields from ERA5, on
the other hand, is challenging, as wind inherently contains a
high variance that can be reconstructed to a limited degree
even with the most sophisticated downscaling approaches
(Pryor and Hahmann, 2019). Perhaps even more importantly,
wind fields from reanalysis by themselves are of limited
accuracy. Global meteorological stations indicate that wind
speed has been declining from the 1980s until around 2010
and has recovered afterwards. In reanalysis products, how-
ever, this striking pattern is hardly reproduced (Zeng et al.,
2019). We will keep updating and improving the CHELSA
family of climate data products, and this is especially true
for sfcWind should better input data become available.

In conclusion, CHELSA-BIOCLIM+ is a comprehensive
spatial and temporal dataset of 15 climate-related variables
including both, time series for the past 40 years and future
projections building on several SSPs and Earth system mod-
els. Besides the climatological statistics provided, these data
may be used to compute additional summaries, for exam-
ple, interannual variabilities of cmi, which are important fac-
tors determining ecosystem structure in the dry midlatitudes,
subtropics and tropics (Schultz, 2005). Moreover, the down-
scaling pipeline developed here opens new perspectives to
develop near-real-time risk assessments when regularly up-
dated and combined with machine learning and increasingly
available global phenomenological datasets. The higher tem-
poral resolution and the more proximal variables included in
the CHELSA-BIOCLIM+ product will allow for a more de-
tailed characterization of climate-related conditions and, in
turn, a deeper understanding of their impact on key environ-
mental processes.
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