Articles | Volume 14, issue 11
https://doi.org/10.5194/essd-14-5139-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-5139-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rates and timing of chlorophyll-a increases and related environmental variables in global temperate and cold-temperate lakes
Ecohydrology Research Group, Department of Earth and Environmental
Sciences and Water Institute, University of Waterloo, Waterloo, ON, Canada
Jane Ye
Ecohydrology Research Group, Department of Earth and Environmental
Sciences and Water Institute, University of Waterloo, Waterloo, ON, Canada
Bhaleka D. Persaud
Ecohydrology Research Group, Department of Earth and Environmental
Sciences and Water Institute, University of Waterloo, Waterloo, ON, Canada
Stephanie Slowinski
Ecohydrology Research Group, Department of Earth and Environmental
Sciences and Water Institute, University of Waterloo, Waterloo, ON, Canada
Homa Kheyrollah Pour
ReSEC Research Group, Department of Geography and Environmental
Studies, Wilfrid Laurier University, Waterloo, ON, Canada
Philippe Van Cappellen
Ecohydrology Research Group, Department of Earth and Environmental
Sciences and Water Institute, University of Waterloo, Waterloo, ON, Canada
Related authors
No articles found.
Arash Rafat and Homa Kheyrollah Pour
The Cryosphere, 19, 4335–4353, https://doi.org/10.5194/tc-19-4335-2025, https://doi.org/10.5194/tc-19-4335-2025, 2025
Short summary
Short summary
Climate change in Canada’s Northwest Territories (NWT) is making lake ice less predictable, thereby affecting ice road safety for northern communities. In this study, observations of significant changes in ice formation and growth between October and December of 2021–2023 in a small NWT lake are related to changes in local snowfall and air temperatures. Collected data were used to develop simple models that can be applied to ice road planning, construction, and design under future and current climate change.
Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen
SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025, https://doi.org/10.5194/soil-11-309-2025, 2025
Short summary
Short summary
To investigate how added nutrient nitrogen (N) and phosphorus (P) affect subarctic peatlands, we sampled peat soils from bog and fen type peatlands in the Northwest Territories, Canada, and measured CO2 and CH4 production rates by means of laboratory incubations. Our short-term experiments show that changes in nutrient concentrations in soil water can significantly affect microbial carbon cycling, suggesting the necessity of additional considerations of wildfire and permafrost thaw impacts on peatland carbon storage.
Nathaniel B. Weston, Cynthia Troy, Patrick J. Kearns, Jennifer L. Bowen, William Porubsky, Christelle Hyacinthe, Christof Meile, Philippe Van Cappellen, and Samantha B. Joye
Biogeosciences, 21, 4837–4851, https://doi.org/10.5194/bg-21-4837-2024, https://doi.org/10.5194/bg-21-4837-2024, 2024
Short summary
Short summary
Nitrous oxide (N2O) is a potent greenhouse and ozone-depleting gas produced largely from microbial nitrogen cycling processes, and human activities have resulted in increases in atmospheric N2O. We investigate the role of physical and chemical disturbances to soils and sediments in N2O production. We demonstrate that physicochemical perturbation increases N2O production, microbial community adapts over time, and initial perturbation appears to confer resilience to subsequent disturbance.
Alicia F. Pouw, Homa Kheyrollah Pour, and Alex MacLean
The Cryosphere, 17, 2367–2385, https://doi.org/10.5194/tc-17-2367-2023, https://doi.org/10.5194/tc-17-2367-2023, 2023
Short summary
Short summary
Collecting spatial lake snow depth data is essential for improving lake ice models. Lake ice growth is directly affected by snow on the lake. However, snow on lake ice is highly influenced by wind redistribution, making it important but challenging to measure accurately in a fast and efficient way. This study utilizes ground-penetrating radar on lakes in Canada's sub-arctic to capture spatial lake snow depth and shows success within 10 % error when compared to manual snow depth measurements.
Gifty Attiah, Homa Kheyrollah Pour, and K. Andrea Scott
Earth Syst. Sci. Data, 15, 1329–1355, https://doi.org/10.5194/essd-15-1329-2023, https://doi.org/10.5194/essd-15-1329-2023, 2023
Short summary
Short summary
Lake surface temperature (LST) is a significant indicator of climate change and influences local weather and climate. This study developed a LST dataset retrieved from Landsat archives for 535 lakes across the North Slave Region, NWT, Canada. The data consist of individual NetCDF files for all observed days for each lake. The North Slave LST dataset will provide communities, scientists, and stakeholders with the changing spatiotemporal trends of LST for the past 38 years (1984–2021).
Cited articles
Adams, H.: hfadams/pci: (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.6972355, 2022.
Adams, H., Ye, J., Slowinski, S., Persaud, B., Kheyrollah Pour, H., and Van
Cappellen, P.: Rates and timing of chlorophyll-a increases and related
environmental variables in global temperate and cold-temperate lakes, Federated Research Data Repository [data set], https://doi.org/10.20383/102.0488, 2021.
Allen, M., Poggiali, D., and Whitaker, K.: Raincloud plots: a multi-platform
tool for robust data visualization [version 2; peer review: 2 approved],
Wellcome Open Res., 4, 63, https://doi.org/10.12688/wellcomeopenres.15191.2,
2021.
Alpert, P. and Kishcha, P.: Quantification of the effect of urbanization on solar dimming, Geophys. Res. Lett., 35, L08801, https://doi.org/10.1029/2007GL033012,
2008.
Álvarez, E., Nogueira, E., and López-Urrutia, Á.: In vivo single-cell fluorescence and size scaling of phytoplankton chlorophyll content, Appl. Environ. Microbiol., 83, e03317-16, https://doi.org/10.1128/AEM.03317-16, 2017.
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E.,
Packman, A. I., Newbold, J. D., and Sabater, F.: Biophysical controls on
organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95–100,
https://doi.org/10.1038/ngeo101, 2008.
Baumert, H. Z. and Petzodt, T.: The role of temperature, cellular quota and
nutrient concentrations for photosynthesis, growth and light-dark
acclimation in phytoplankton, Limnologica, 38, 313–326,
https://doi.org/10.1016/J.LIMNO.2008.06.002, 2008.
Behrenfeld, M. J., O'Malley, R. T., Boss, E. S., Westberry, T. K., Graff, J.
R., Halsey, K. H., Milligan, A. J., Siegel, D. A., and Brown, M. B.:
Revaluating ocean warming impacts on global phytoplankton, Nat. Clim.
Change, 6, 323–330, https://doi.org/10.1038/nclimate2838, 2016.
Carlson, R. E. and Simpson, J.: A coordinator's guide to volunteer lake
monitoring methods, North Am. Lake Manag. Soc., 96, p. 305, 1996.
Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Carpenter, S. R.,
Kitchell, J. F., and Hodgson, J. R.: Cascading trophic interactions and lake
productivity, BioScience, 35, 634–639, https://doi.org/10.2307/1309989, 2016.
Codd, G. A., Morrison, L. F., and Metcalf, J. S.: Cyanobacterial toxins:
Risk management for health protection, Toxicol. Appl. Pharmacol., 203,
264–272, https://doi.org/10.1016/j.taap.2004.02.016, 2005.
Cole, J., J., Prarie, Y. T., Caraco, N. F., McDowel, L. T., Tranvik, L. J.,
Striegel, C. M., Duarte, C. M., Kortelainen, P., Downing, J. A., Middleburg,
J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland
Waters into the Terrestrial Carbon Budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Creed, I. F., Bergström, A. K., Trick, C. G., Grimm, N. B., Hessen, D.
O., Karlsson, J., Kidd, K. A., Kritzberg, E., McKnight, D. M., Freeman, E.
C., Senar, O. E., Andersson, A., Ask, J., Berggren, M., Cherif, M., Giesler,
R., Hotchkiss, E. R., Kortelainen, P., Palta, M. M., Vrede, T., and
Weyhenmeyer, G. A.: Global change-driven effects on dissolved organic matter
composition: Implications for food webs of northern lakes, Glob. Chang.
Biol., 24, 3692–3714, https://doi.org/10.1111/gcb.14129, 2018.
Danielson, J. and Gesch, D.: Global Multi-resolution terrain elevation data
2010 (GMTED2010), U.S. Geol. Surv. open-file Rep., 26, 2011–1073, 2010.
Deng, J., Paerl, H. W., Qin, B., Zhang, Y., Zhu, G., Jeppesen, E., Cai, Y.,
and Xu, H.: Climatically-modulated decline in wind speed may strongly affect
eutrophication in shallow lakes, Sci. Total Environ., 645, 1361–1370,
https://doi.org/10.1016/j.scitotenv.2018.07.208, 2018.
Dorset Environmental Science Centre: Lakeshore Capacity Assessment Handbook:
Protecting Water Quality in Inland Lakes on Ontario's Precambrian Shield
Appendix C, Dorset Environmental Science Centre Technical Bulletins,
Toronto, Ontario, Canada, Technical Bulletin No. DESC-4, 2010.
Downing, J. A., Prarie, Y. T., Cole, J., J., Duarte, C. M., Tranvik, L. J.,
Striegl, R. G., McDowell, W. H., Kortelainen, P., Caraco, N. F., Melack, J.,
M., and Middelburg, J. J.: The global abundance and size distribution of
lakes, ponds and impoundments, Limnol. Oceanogr., 51, 2388–2397,
https://doi.org/10.1016/B978-012370626-3.00025-9, 2006.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C. J., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Dutton, E. G., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Lanconelli, C., Long, C., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline surface radiation data (1992–2017), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.880000, 2018.
Geider, R. J.: Light and Temperature Dependence of the Carbon to Chlorophyll
a Ratio in Microalgae and Cyanobacteria: Implications for Physiology and
Growth of Phytoplankton, New Phytol., 106,
1–34, https://www.jstor.org/stable/2434683 (last access: August 2021), 1987.
Germán, A., Tauro, C., Scavuzzo, M. C., and Ferral, A.: Detection of
algal blooms in a eutrophic reservoir based on chlorophyll-a time series
data from MODIS, Int. Geosci. Remote Sens. Symp., 2017-July, 4008–4011,
https://doi.org/10.1109/IGARSS.2017.8127879, 2017.
Gleick, P.: Water and conflict, Int. Secur., 18, 112,
https://doi.org/10.1016/S0262-4079(13)60875-1, 1993.
Hallegraeff, G. M., Anderson, D. M., Belin, C., Bottein, M.-Y. D., Bresnan,
E., Chinain, M., Enevoldsen, H., Iwataki, M., Karlson, B., McKenzie, C. H.,
Sunesen, I., Pitcher, G. C., Provoost, P., Richardson, A., Schweibold, L.,
Tester, P. A., Trainer, V. L., Yñiguez, A. T., and Zingone, A.:
Perceived global increase in algal blooms is attributable to intensified
monitoring and emerging bloom impacts, Commun. Earth Environ., 2, 117,
https://doi.org/10.1038/s43247-021-00178-8, 2021.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.:
Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020.
Henderson-Seller, B. and Markland, H. R.: Decaying Lakes – The Origins and
Control of Cultural Eutrophication, edited by: Menzel, R. G., John Wiley & Sons, Inc., New York, NY, https://doi.org/10.2134/jeq1989.00472425001800010030x, 1987.
Ho, J. C., Michalak, A. M., and Pahlevan, N.: Widespread global increase in
intense lake phytoplankton blooms since the 1980s, Nature, 574, 667–670,
https://doi.org/10.1038/s41586-019-1648-7, 2019.
Huisman, J. and Hulot, F. D.: Population Dynamics of Harmful Cyanobacteria,
Harmful Cyanobacteria, 3, 143–176,
https://doi.org/10.1007/1-4020-3022-3_7, 2005.
Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M. S., and Claustre, H.: Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean, Biogeosciences, 4, 853–868, https://doi.org/10.5194/bg-4-853-2007, 2007.
Inomura, K., Deutsch, C., Wilson, S. T., Masuda, T., Lawrenz, E., Bučinská, L., Sobotka, R., Gauglitz, J. M., Saito, M. A., Prášil, O., and Follows, M. J.: Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii, Msphere, 4, e00531-19, https://doi.org/10.1128/mSphere.00531-19, 2019.
Jeppesen, E., Søndergaard, M., and Jensen, J. P.: Climatic warming and
regime shifts in lake food webs – Some comments, Limnol. Oceanogr., 48,
1346–1349, https://doi.org/10.4319/lo.2003.48.3.1346, 2003.
Jeppesen, E., Canfield, D. E., Bachmann, R. W., Søndergaard, M., Havens,
K. E., Johansson, L. S., Lauridsen, T. L., Sh, T., Rutter, R. P., Warren,
G., Ji, G., and Hoyer, M. V.: Toward predicting climate change effects on
lakes: a comparison of 1656 shallow lakes from Florida and Denmark reveals
substantial differences in nutrient dynamics, metabolism, trophic structure,
and top-down control, Inl. Waters, 10, 197–211,
https://doi.org/10.1080/20442041.2020.1711681, 2020.
Jonsson, P. R., Pavia, H., and Toth, G.: Formation of harmful algal blooms
cannot be explained by allelopathic interactions, Proc. Natl. Acad. Sci. U.
S. A., 106, 11177–11182, https://doi.org/10.1073/pnas.0900964106, 2009.
Kirillin, G., Leppäranta, M., Terzhevik, A., Granin, N., Bernhardt, J.,
Engelhardt, C., Efremova, T., Golosov, S., Palshin, N., Sherstyankin, P.,
Zdorovennova, G., and Zdorovennov, R.: Physics of seasonally ice-covered
lakes: A review, Aquat. Sci., 74, 659–682,
https://doi.org/10.1007/s00027-012-0279-y, 2012.
Lauerwald, R., Regnier, P., Figueiredo, V., Enrich-Prast, A., Bastviken, D.,
Lehner, B., Maavara, T., and Raymond, P.: Natural Lakes Are a Minor Global
Source of N2O to the Atmosphere, Global Biogeochem. Cycles, 33, 1564–1581,
https://doi.org/10.1029/2019GB006261, 2019.
Lewis, K. M., Arntsen, A. E., Coupel, P., Lowry, K. E., Dijken, G. L. Van,
Selz, V., Arrigo, K. R., Matsuoka, A., and Mills, M. M.: Photoacclimation of
Arctic Ocean phytoplankton to shifting light and nutrient limitation, Limnology and Oceanography, 64, 1–18,
https://doi.org/10.1002/lno.11039, 2018.
Lewis, W.: Global primary production of lakes: 19th Baldi Memorial Lecture,
Inl. Waters, 1, 1–28, https://doi.org/10.5268/iw-1.1.384, 2011.
Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand,
M., Beames, P., Burchard-Levine, V., Maxwell, S., Moidu, H., Tan, F., and
Thieme, M.: Global hydro-environmental sub-basin and river reach
characteristics at high spatial resolution, Sci. Data, 6, 1–15,
https://doi.org/10.1038/s41597-019-0300-6, 2019.
Lyngsgaard, M. M., Markager, S., Richardson, K., Møller, E. F., and
Jakobsen, H. H.: How Well Does Chlorophyll Explain the Seasonal Variation in
Phytoplankton Activity?, Estuaries and Coasts, 40, 1263–1275,
https://doi.org/10.1007/s12237-017-0215-4, 2017.
Markelov, I., Couture, R. M., Fischer, R., Haande, S., and Van Cappellen,
P.: Coupling Water Column and Sediment Biogeochemical Dynamics: Modeling
Internal Phosphorus Loading, Climate Change Responses, and Mitigation
Measures in Lake Vansjø, Norway, J. Geophys. Res.-Biogeo., 124,
3847–3866, https://doi.org/10.1029/2019JG005254, 2019.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.:
Estimating the volume and age of water stored in global lakes using a
geo-statistical approach, Nat. Commun., 7, 13603,
https://doi.org/10.1038/ncomms13603, 2016.
Meyer, M. F., Labou, S. G., Cramer, A. N., Brousil, M. R., and Luff, B. T.:
The global lake area, climate, and population dataset, Sci. Data 2020, 71, 1–12, https://doi.org/10.1038/s41597-020-0517-4, 2020.
O'Beirne, M. D., Werne, J. P., Hecky, R. E., Johnson, T. C., Katsev, S., and
Reavie, E. D.: Anthropogenic climate change has altered primary productivity
in Lake Superior, Nat. Commun., 8, 15713,
https://doi.org/10.1038/ncomms15713, 2017.
O'Connell, D. W., Ansems, N., Kukkadapu, R. K., Jaisi, D., Orihel, D. M.,
Cade-Menun, B. J., Hu, Y., Wiklund, J., Hall, R. I., Chessell, H., Behrends,
T., and Van Cappellen, P.: Changes in Sedimentary Phosphorus Burial
Following Artificial Eutrophication of Lake 227, Experimental Lakes Area,
Ontario, Canada, J. Geophys. Res.-Biogeo., 125, e2020JG005713,
https://doi.org/10.1029/2020JG005713, 2020.
Python Software Foundation: Python Language, https://www.python.org/ (last access: August 2021), 2021.
QGIS.org: QGIS Geographic Information System, https://qgis.org/en/site/ (last access: August 2021), 2021.
Reback, J., McKinney, W. jbrockmendel, Van den Bossche, J., Augspurger, T.,
Cloud, P., Gfyoung, Sinhrks, Klein, A., Roeschke, M., Hawkins, S., Tratner,
J., She, C., Ayd, W., Petersen, T., Garcia, M., Schendel, J., and Hayden,
A.: pandas-dev/pandas: Pandas 1.0.3 (v1.0.3), https://pandas.pydata.org/docs/ (last access: August 2021), 2020.
Riederer, C.: Dplython, GitHub [code], https://github.com/dodger487/dplython/releases/tag/0.0.7 (last access: August 2021), 2015.
Rigosi, A., Carey, C. C., Ibelings, B. W., and Brookes, J. D.: The
interaction between climate warming and eutrophication to promote
cyanobacteria is dependent on trophic state and varies among taxa, Limnol.
Oceanogr., 59, 99–114, https://doi.org/10.4319/lo.2014.59.1.0099, 2014.
Roche, D. G., Granados, M., Austin, C. C., Wilson, S., and Mitchell, G. M.:
Open government data and environmental science: a federal Canadian
perspective, FACETS, 5, 942–962, https://doi.org/10.1139/facets-2020-0008, 2020.
Rouse, W. R., Douglas, M. S., Hecky, R. E., Hershey, A. E., King, G. W.,
Lesack, L., Marsh, P., McDonald, M., Nicholson, B. J., Roulet, N. T., and
Smol, J. P.: Effects of climate change on the freshwaters of arctic and
subarctic North America, Hydrol. Process., 11, 873–902, 1997.
Rousseaux, C. S. and Gregg, W. W.: Interannual variation in phytoplankton
primary production at a global scale, Remote Sens., 6, 1–19,
https://doi.org/10.3390/rs6010001, 2013.
Schindler, D. W.: A Hypothesis to Explain Differences and Similarities Among
Lakes in the Experimental Lakes Area, Northwestern Ontario, J. Fish. Res.
Board Canada, 28, 295–301, https://doi.org/10.1139/f71-039, 1971.
Schwarz, M., Folini, D., Hakuba, M. Z., and Wild, M.: From Point to Area:
Worldwide Assessment of the Representativeness of Monthly Surface Solar
Radiation Records, J. Geophys. Res. Atmos., 123, 13857–13874,
https://doi.org/10.1029/2018JD029169, 2018.
Shuvo, A., O'Reilly, C. M., Blagrave, K., Ewins, C., Filazzola, A., Gray,
D., Mahdiyan, O., Moslenko, L., Quinlan, R., and Sharma, S.: Total
phosphorus and climate are equally important predictors of water quality in
lakes, Aquat. Sci., 831, 1–11,
https://doi.org/10.1007/S00027-021-00776-W, 2021.
Sommer, U., Gliwicz, Z. M., Lampert, W., and Duncan, A.: The PEG-model of
seasonal succession of planktonic events in fresh waters, Arch.
Hydrobiol., 106, 433–471, 1986.
Sterner, R. W., Elser, J. J., Fee, E. J., Guildford, S. J., and Chrzanowski,
T. H.: The light: Nutrient ratio in lakes: The balance of energy and
materials affects ecosystem structure and process, Am. Nat., 150, 663–684,
1997.
Taylor, A. H., Geider, R. J., and Gilbert, F. J.: Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modelling study, Mar. Ecol.-Prog. Ser., 152, 51–66, 1997.
Tett, P.: The ecophysiology of exceptional blooms, Rapp. Proces-verbaux des
Reun. Cons. Int. pour l'Exploration la Mer, 3, 47–60, 1987.
Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R.
G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll, L. B.,
Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I., Leech, D. M., Leigh
McCallister, S., McKnight, D. M., Melack, J. M., Overholt, E., Porter, J.
A., Prairie, Y., Renwick, W. H., Roland, F., Sherman, B. S., Schindler, D.
W., Sobek, S., Tremblay, A., Vanni, M. J., Verschoor, A. M., Von
Wachenfeldt, E., and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators
of carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314,
https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.
United States Environmental Protection Agengy: 2012 National Lakes
Assessment. Field Operations Manual, Washington DC, USA, EPA 841-B-11-003,
https://www.epa.gov/national-aquatic-resource-surveys/national-lakes-assessment-2012-field-operations-manual (last access: August 2021), 2012.
Verpoorter, C., Kutser, T., Seekell, D., and Tranvik, L.: A global inventory
of lakes based on high-resolution satellite imagery, Geophys. Res. Lett.,
41, 6396–6402, https://doi.org/10.1002/2014GL060641, 2014.
Watson, S. B., Miller, C., Arhonditsis, G., Boyer, G. L., Carmichael, W.,
Charlton, M. N., Confesor, R., Depew, D. C., Höök, T. O., Ludsin, S.
A., Matisoff, G., McElmurry, S. P., Murray, M. W., Peter Richards, R., Rao,
Y. R., Steffen, M. M., and Wilhelm, S. W.: The re-eutrophication of Lake
Erie: Harmful algal blooms and hypoxia, Harmful Algae, 56, 44–66,
https://doi.org/10.1016/j.hal.2016.04.010, 2016.
Wetzel, R. G.: Limnology: Lake and River Ecosystems, third edition, Academic
press, eBook ISBN 9780080574394, 2001.
Williamson, C. E., Saros, J. E., Vincent, W. F., and Smol, J. P.: Lakes and
reservoirs as sentinels, integrators, and regulators of climate change,
Limnol. Oceanogr., 54, 2273–2282,
https://doi.org/10.4319/LO.2009.54.6_PART_2.2273, 2009.
Wohland, J., Brayshaw, D., Bloomfield, H., and Wild, M.: European
multidecadal solar variability badly captured in all centennial reanalyses
except CERA20C, Environ. Res. Lett., 15, 104021,
https://doi.org/10.1088/1748-9326/ABA7E6, 2020.
Woolway, R. I. and Merchant, C. J.: Worldwide alteration of lake mixing
regimes in response to climate change, Nat. Geosci., 12, 271–276,
https://doi.org/10.1038/s41561-019-0322-x, 2019.
Zohary, T., Padisák, J., and Naselli-Flores, L.: Phytoplankton in the
physical environment: beyond nutrients, at the end, there is some light,
Hydrobiol., 6391, 261–269, https://doi.org/10.1007/S10750-009-0032-2, 2009.
Short summary
Climate warming and land-use changes are altering the environmental factors that control the algal
productivityin lakes. To predict how environmental factors like nutrient concentrations, ice cover, and water temperature will continue to influence lake productivity in this changing climate, we created a dataset of chlorophyll-a concentrations (a compound found in algae), associated water quality parameters, and solar radiation that can be used to for a wide range of research questions.
Climate warming and land-use changes are altering the environmental factors that control the...
Altmetrics
Final-revised paper
Preprint