Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-3875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-3875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics
Zhuoxuan Xia
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong SAR, China
Lingcao Huang
CORRESPONDING AUTHOR
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong SAR, China
now at: Earth Science and Observation Center, Cooperative
Institute for Research in Environmental Sciences, University of Colorado
Boulder, Boulder, CO, USA
Chengyan Fan
Key Laboratory of West China's Environments (DOE), College of Earth
and Environmental Sciences, Lanzhou University, Lanzhou, China
Shichao Jia
Key Laboratory of West China's Environments (DOE), College of Earth
and Environmental Sciences, Lanzhou University, Lanzhou, China
Zhanjun Lin
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong SAR, China
Jing Luo
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
Fujun Niu
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
Tingjun Zhang
Key Laboratory of West China's Environments (DOE), College of Earth
and Environmental Sciences, Lanzhou University, Lanzhou, China
deceased
Related authors
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187, https://doi.org/10.5194/egusphere-2025-2187, 2025
Short summary
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187, https://doi.org/10.5194/egusphere-2025-2187, 2025
Short summary
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Xianmin Ke, Wei Wang, Fujun Niu, Zeyong Gao, Wenkang Huang, and Huake Cao
EGUsphere, https://doi.org/10.5194/egusphere-2025-864, https://doi.org/10.5194/egusphere-2025-864, 2025
Short summary
Short summary
Measurements of the permafrost distribution are often limited to seasonally frozen soil or permafrost at a few borehole locations, and the detection of deep permafrost and sublake taliks in the QTP has rarely been attempted. We used ERT, TEM, and ground temperature measurement (GTM) methods to investigate permafrost structure and sublake talik morphologies. We determined the current permafrost structure and found that permafrost below three thermokarst lakes has thawed completely.
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Charles E. Miller, Peter C. Griffith, Elizabeth Hoy, Naiara S. Pinto, Yunling Lou, Scott Hensley, Bruce D. Chapman, Jennifer Baltzer, Kazem Bakian-Dogaheh, W. Robert Bolton, Laura Bourgeau-Chavez, Richard H. Chen, Byung-Hun Choe, Leah K. Clayton, Thomas A. Douglas, Nancy French, Jean E. Holloway, Gang Hong, Lingcao Huang, Go Iwahana, Liza Jenkins, John S. Kimball, Tatiana Loboda, Michelle Mack, Philip Marsh, Roger J. Michaelides, Mahta Moghaddam, Andrew Parsekian, Kevin Schaefer, Paul R. Siqueira, Debjani Singh, Alireza Tabatabaeenejad, Merritt Turetsky, Ridha Touzi, Elizabeth Wig, Cathy J. Wilson, Paul Wilson, Stan D. Wullschleger, Yonghong Yi, Howard A. Zebker, Yu Zhang, Yuhuan Zhao, and Scott J. Goetz
Earth Syst. Sci. Data, 16, 2605–2624, https://doi.org/10.5194/essd-16-2605-2024, https://doi.org/10.5194/essd-16-2605-2024, 2024
Short summary
Short summary
NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) conducted airborne synthetic aperture radar (SAR) surveys of over 120 000 km2 in Alaska and northwestern Canada during 2017, 2018, 2019, and 2022. This paper summarizes those results and provides links to details on ~ 80 individual flight lines. This paper is presented as a guide to enable interested readers to fully explore the ABoVE L- and P-band SAR data.
Xiaoqing Peng, Guangshang Yang, Oliver W. Frauenfeld, Xuanjia Li, Weiwei Tian, Guanqun Chen, Yuan Huang, Gang Wei, Jing Luo, Cuicui Mu, and Fujun Niu
Earth Syst. Sci. Data, 16, 2033–2045, https://doi.org/10.5194/essd-16-2033-2024, https://doi.org/10.5194/essd-16-2033-2024, 2024
Short summary
Short summary
It is important to know about the distribution of thermokarst landscapes. However, most work has been done in the permafrost regions of the Qinghai–Tibetan Plateau, except for the Qilian Mountains in the northeast. Here we used satellite images and field work to investigate and analyze its potential driving factors. We found a total of 1064 hillslope thermokarst (HT) features in this area, and 82 % were initiated in the last 10 years. These findings will be significant for the next predictions.
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022, https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary
Short summary
Permafrost has been warming and thawing globally; this is especially true in boundary regions. We focus on the changes and variability in permafrost distribution and thermal dynamics in the northern limit of permafrost on the Qinghai–Tibet Plateau (QTP) by applying a new permafrost model. Unlike previous papers on this topic, our findings highlight a slow, decaying process in the response of permafrost in the QTP to a warming climate, especially regarding areal extent.
Cuicui Mu, Xiaoqing Peng, Ran Du, Hebin Liu, Haodong Jin, Benben Liang, Mei Mu, Wen Sun, Chenyan Fan, Xiaodong Wu, Oliver W. Frauenfeld, and Tingjun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-347, https://doi.org/10.5194/essd-2022-347, 2022
Revised manuscript not accepted
Short summary
Short summary
Permafrost warming lead to greenhouse gases release to the atmosphere, resulting in a positive feedback to climate change. But, there are some uncertainties for lacks of observations. Here, we summarized a long-term observations on the meteorological, permafrost, and carbon to publish. This datasets include 5 meteorological stations, 21 boreholes 12 active layer sites, and 10 soil organic carbon contents. These are important to study the response of frozen ground to climate change.
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022, https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary
Short summary
Thermal regimes of seasonally ice-covered lakes in an arid region like Central Asia are not well constrained despite the unique climate. We observed annual and seasonal dynamics of thermal stratification and energetics in a shallow arid-region lake. Strong penetrated solar radiation and high water-to-ice heat flux are the predominant components in water heat balance. The under-ice stratification and convection are jointly governed by the radiative penetration and salt rejection during freezing.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Xu Chen, Cuicui Mu, Lin Jia, Zhilong Li, Chengyan Fan, Mei Mu, Xiaoqing Peng, and Xiaodong Wu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-378, https://doi.org/10.5194/essd-2020-378, 2021
Revised manuscript not accepted
Short summary
Short summary
Thermokarst lakes have attracted significant attention because of their ability to regulate carbon cycle. Now, the distribution of thermokarst lakes on QTP remains largely unknown, hindering our understanding of the response of permafrost's carbon feedback to climate change. Here, based on the GEE platform, we examined the modern distribution (2018) of thermokarst lakes on the QTP using Sentinel-2A data. Results show that the total thermokarst lake area on the QTP is 1730.34 m2 km2.
Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang
The Cryosphere, 14, 3811–3827, https://doi.org/10.5194/tc-14-3811-2020, https://doi.org/10.5194/tc-14-3811-2020, 2020
Short summary
Short summary
Snowmelt plays a key role in mass and energy balance in polar regions. In this study, we report on the spatial and temporal variations in the surface snowmelt over the Antarctic sea ice and ice sheet (pan-Antarctic region) based on AMSR-E and AMSR2. Melt detection on sea ice is improved by excluding the effect of open water. The decline in surface snowmelt on the Antarctic ice sheet was very likely linked with the enhanced summer Southern Annular Mode.
Cited articles
Abolt, C. J. and Young, M. H.: High-resolution mapping of spatial
heterogeneity in ice wedge polygon geomorphology near Prudhoe Bay, Alaska,
Sci. Data 7, 87, https://doi.org/10.1038/s41597-020-0423-9,
2020.
Ballantyne, C. K.: Periglacial Geomorphology, 1st edn., Wiley Blackwell, Chichester,
132–134, ISBN 978-1-405-10006-9, 2018.
Balser, A. W., Jones, J. B., and Gens, R.: Timing of retrogressive thaw
slump initiation in the Noatak Basin, northwest Alaska, USA, J. Geophys.
Res.-Earth, 119, 1106–1120, https://https://doi.org/10.1002/2013JF002889, 2014.
Cao, B., Zhang, T., Wu, Q., Sheng, Y., Zhao, L., and Zou, D.: Permafrost
zonation index map and statistics over the Qinghai-Tibet Plateau based on
field evidence, Permafrost Periglac., 30, 178–194,
https://doi.org/10.1002/ppp.2006, 2019
Cheng G. D.: Permafrost studies in the Qinghai–Tibet Plateau for road
construction, J. Cold Reg. Eng., 19, 19–29,
https://doi.org/10.1061/(ASCE)0887-381X(2005)19:1(19), 2005.
Esri Inc.: Wayback imagery, Esri Inc. [data set],
https://livingatlas.arcgis.com/wayback/ (last access: 17 August 2022), 2018.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev.
Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Food and Agriculture Organization of the United Nations (FAO): Dataset of soil texture on the Qinghai-Tibet Plateau (2010), National Tibetan Plateau Data Center [data set], https://data.tpdc.ac.cn/en/data/183574cd-cc69-440e-afa1-eb82ce3032e0/ (last access: 17 August 2022), 2019.
French, H. M.: The periglacial environment, 4th edn., Wiley, UK, 70, 66–192, https://doi.org/10.1002/9781119132820, 2017.
Gilbert, G. L., Kanevskiy, M., and Murton, J. B.: Recent Advances
(2008–2015) in the Study of Ground Ice and Cryostratigraphy, Permafrost
Periglac., 27, 377–389, https://doi.org/10.1002/ppp.1912, 2016.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary–scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M.:
Impacts of permafrost degradation on infrastructure, Nat. Rev. Earth Environ.,
3, 24–38, https://doi.org/10.1038/s43017-021-00247-8, 2022.
Huang, L., Liu, L., Jiang, L., and Zhang, T.: Automatic Mapping of
Thermokarst Landforms from Remote Sensing Images Using Deep Learning: A Case
Study in the Northeastern Tibetan Plateau, Remote Sensing, 10, 2067,
https://doi.org/10.3390/rs10122067, 2018.
Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to
map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from
CubeSat images, Remote Sens. Environ., 237, 111534, https://doi.org/10.1016/j.rse.2019.111534, 2020.
Huang, L., Liu, L., Luo, J., Lin, Z., and Niu, F.: Automatically quantifying
evolution of retrogressive thaw slumps in Beiluhe (Tibetan Plateau) from
multi-temporal CubeSat images, Int. J. Appl. Earth Obs. Geoinf., 102,
102399, https://doi.org/10.1016/j.jag.2021.102399, 2021.
Jin, H., Yu, Q., Wang, S., and Lyu, L.: Changes in permafrost environments
along the Qinghai–Tibet engineering corridor induced by anthropogenic
activities and climate warming, Cold Reg. Sci. Technol., 53,
317–333, https://doi.org/10.1016/j.coldregions.2007.07.005,
2008.
Jorgenson, M. T.: Thermokarst terrains, in: Treatise on Geomorphology, vol. 8, Glacial and Periglacial
Geomorphology, edited
by: Shroder, J. F. (ed.-in-chief), Giardino, R., and Harbor, J. (vol.
eds.), Academic Press, San Diego, 313–324, 2013.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research,
Permafrost Periglac., 24, 108–119, https://doi.org/10.1002/ppp.1779, 2013.
Kumar, L., Skidmore, A. K., and Knowles, E.: Modelling topographic variation
in solar radiation in a GIS environment, Int. J.
Geogr. Inf. Sci., 11, 475–497, https://doi.org/10.1080/136588197242266, 1997.
Lewkowicz, A. G. and Way, R. G.: Extremes of summer climate trigger
thousands of thermokarst landslides in a High Arctic environment, Nat.
Commun., 10, 1329, https://doi.org/10.1038/s41467-019-09314-7, 2019.
Li, X., Che, T., Li, X., Wang, L., Duan, A., Shangguan, D.,
Pan, X., Fang, M., and Bao, Q.: CASEarth Poles: Big Data for the Three Poles,
B. Am. Meteorol. Soc., 101, E1475–E1491,
https://doi.org/10.1175/BAMS-D-19-0280.1, 2020.
Lin, Z. J., Gao, Z. Y., Niu, F. J., Luo, J., Yin, G. A., Liu, M. H., and
Fan, X. W.: High spatial density ground thermal measurements in a warming
permafrost region, Beiluhe Basin, Qinghai-Tibet Plateau, Geomorphology, 340,
1–14, https://doi.org/10.1016/j.geomorph.2019.04.032, 2019.
Lin, Z. J., Gao, Z. Y., Fan, X. W., Niu, F. J., Luo, J., Yin, G. A., and Liu, M.
H.: Factors controlling near surface ground-ice characteristics in a region
of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau, Geoderma, 376,
114540, https://doi.org/10.1016/j.geoderma.2020.114540, 2020.
Liu, X. and Chen, B.: Climatic warming in the Tibetan Plateau during recent
decades, Int. J. Climatol., 20, 1729–1742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000.
Luo, J., Niu, F., Lin, Z., Liu, M., and Yin, G.: Recent acceleration of thaw
slumping in permafrost terrain of Qinghai-Tibet Plateau: An example from the
Beiluhe Region, Geomorphology, 341, 79–85, https://doi.org/10.1016/j.geomorph.2019.05.020, 2019.
McRoberts, E. and Morgenstern, N.: Stability of slopes in frozen soil,
Mackenzie Valley, NWT, Can. Geotech. J., 11, 554–573, 1974.
Mu, C., Abbott, B. W., Norris, A. J., Mu, M., Fan, C., Chen, X., Jia, L., Yang, R.,
Zhang, T., Wang, K., Peng, X., Wu, Q., Guggenberger, G., and Wu, X.: The status
and stability of permafrost carbon on the Tibetan Plateau, Earth-Sci.
Rev., 211, 103433, https://doi.org/10.1016/j.earscirev.2020.103433, 2020.
Nitze, I., Heidler, K., Barth, S., and Grosse, G.: Developing and Testing a
Deep Learning Approach for Mapping Retrogressive Thaw Slumps, Remote Sens.,
13, 4294, https://doi.org/10.3390/rs13214294, 2021.
Niu, F., Cheng, G., Ni, W., and Jin, D.: Engineering–related slope failure
in permafrost regions of the Qinghai-Tibet Plateau, Cold Reg. Sci.
Technol., 42, 215–225, https://doi.org/10.1016/j.coldregions.2005.02.002, 2005.
Niu, F., Luo, J., Lin, Z., Ma, W., and Lu, J.: Development and thermal regime of
a thaw slump in the Qinghai-Tibet plateau, Cold Reg. Sci. Technol., 83,
131–138, https://doi.org/10.1016/j.coldregions.2012.07.007,
2012.
Niu, F., Luo, J., Lin, Z., Fang, J., and Liu, M.: Thaw-induced slope failures and
stability analyses in permafrost regions of the Qinghai-Tibet Plateau,
China, Landslides, 13, 55–65, https://doi.org/10.1007/s10346-014-0545-2, 2016.
Pan, X., Guo, X., Li, X., Niu, X., Yang, X.,
Feng, M., Che, T., Jin, R., Ran, Y., Guo, J., Hu, X., and Wu, A.:
National Tibetan Plateau Data Center: Promoting Earth System Science on the
Third Pole, B. Am. Meteorol. Soc., 102, E2062–E2078,
https://doi.org/10.1175/BAMS-D-21-0004.1, 2012.
Planet Team: Planet Application Program Interface: In Space for Life on
Earth, San Francisco, CA. https://api.planet.com (last access: 17 August 2022), 2017.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, 2022.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L.:
ImageNet large scale visual recognition challenge, Int. J.
Comput. Vision, 115, 211–252, https://doi.org/10.1007/s11263-015-0816-y, 2015.
Tong, B., Li, S., Bo, J., and Qiu, G.: Permafrost map along at the 1:600 000
in the Tibet Highway (1983), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Geocry.tpdc.270621, 2011.
Turetsky, M. R., Abbott, B. W., Jones, M. C., Walter Anthony, K., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw, Nat.
Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0,
2020.
Van Everdingen, R. O.: Multi-Language Glossary of Permafrost and Related Ground-ice Terms, https://globalcryospherewatch.org/reference/glossary_docs/Glossary_of_Permafrost_and_Ground-Ice_IPA_2005.pdf (last access: 17 August 2022), 1998.
Wang, B. L. and French, H. M.: Climate controls and high-altitude permafrost,
Qinghai-Xizang (Tibet) plateau, China, Permafrost Periglac.,
5, 87–100, https://doi.org/10.1002/ppp.3430050203, 1994.
Wang, Z., Wang, Q., Zhao, L., Wu, X., Yue, G., Zou, D., Nan, Z., Liu, G.,
Pang, Q., Fang, H., Wu, T., Shi, J., Jiao, K., Zhao, Y., and Zhang, L.:
Mapping the vegetation distribution of the permafrost zone on the
Qinghai-Tibet Plateau, J. Mountain Sci., 13, 1035–1046,
https://doi.org/10.1007/s11629-015-3485-y, 2016.
Wu, Q. and Zhang, T.: Recent permafrost warming on the Qinghai-Tibetan
Plateau, J. Geophys. Res., 113, D13108, https://doi.org/10.1029/2007JD009539, 2008.
Wu, Q. and Zhang, T.: Changes in active layer thickness over the
Qinghai-Tibetan Plateau from 1995 to 2007, J. Geophys. Res.-Atmos., 115,
D09107, https://doi.org/10.1029/2009JD012974, 2010.
Wu, Q., Zhang T., and Liu, Y.: Permafrost temperatures and thickness on the
Qinghai-Tibet Plateau, Global Planet. Change, 72, 32–38, https://doi.org/10.1016/j.gloplacha.2010.03.001, 2010.
Wu, Q., Zhang, T., and Liu, Y.: Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010, The Cryosphere, 6, 607–612, https://doi.org/10.5194/tc-6-607-2012, 2012.
Xia, Z., Huang, L., and Liu, L.: An Updated Inventory of
Retrogressive Thaw Slumps Along the Vulnerable Qinghai-Tibet Engineering
Corridor, Zenodo [data set], https://doi.org/10.5281/zenodo.6397029, 2021a.
Xia, Z., Huang, L., Liu, L.: An inventory of retrogressive thaw slumps along the vulnerable Qinghai-Tibet engineering corridor (2019), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Cryos.tpdc.272672, 2021b.
Yang, M., Nelson, F. E., Shiklomanov, N. I., Guo, D., and Wan, G.:
Permafrost degradation and its environmental effects on the Tibetan Plateau:
A review of recent research, Earth-Sci. Rev., 103, 31–44,
https://doi.org/10.1016/j.earscirev.2010.07.002, 2010.
Yin, G., Niu, F., Lin, Z., Luo, J., and Liu, M.: Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China, Sci. Total Environ., 581–582, 472–485, https://doi.org/10.1016/j.scitotenv.2016.12.155, 2017.
Zhang, T., Barry, R. G., Knowles, K., Heginbottom, J. A., and Brown, J.:
Statistics and characteristics of permafrost and ground-ice distribution in
the Northern Hemisphere, Polar Geogr., 31, 47–68, https://doi.org/10.1080/10889370802175895, 2008.
Zhang, W., Witharana, C., Liljedahl, A., and Kanevskiy, M.: Deep Convolutional
Neural Networks for Automated Characterization of Arctic Ice-Wedge Polygons
in Very High Spatial Resolution Aerial Imagery, Remote Sensing, 10, 1487,
https://doi.org/10.3390/rs10091487, 2018.
Zhao, L., Zou, D., Hu, G., Wu, T., Du, E., Liu, G., Xiao, Y., Li, R., Pang, Q., Qiao, Y., Wu, X., Sun, Z., Xing, Z., Sheng, Y., Zhao, Y., Shi, J., Xie, C., Wang, L., Wang, C., and Cheng, G.: A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China, Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, 2021.
Zhou, Y. W., Guo, D., Qui, G., Cheng, G., and Li, S.: Geocryology in China, 1st edn.,
Science Press, Beijing, 53–62, ISBN 7-03-008285-0/P.1911, 2000 (in Chinese).
Zou, D., Zhao, L., Sheng, Y., Chen, J., Hu, G., Wu, T., Wu, J., Xie, C., Wu, X., Pang, Q., Wang, W., Du, E., Li, W., Liu, G., Li, J., Qin, Y., Qiao, Y., Wang, Z., Shi, J., and Cheng, G.: A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, 2017.
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are...
Special issue
Altmetrics
Final-revised paper
Preprint