Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-2989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2989-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests
3DGeo Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
Jannika Schäfer
Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Lukas Winiwarter
3DGeo Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
Nina Krašovec
3DGeo Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
Fabian E. Fassnacht
Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
Remote Sensing and Geoinformatics, Freie Universität Berlin, Berlin, Germany
Bernhard Höfle
3DGeo Research Group, Institute of Geography, Heidelberg University, Heidelberg, Germany
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
Related authors
William Albert, Hannah Weiser, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 25–32, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, 2025
Selina Schwarz, Fabian Ewald Fassnacht, Lisa Hülsmann, and Nadine Katrin Ruehr
EGUsphere, https://doi.org/10.5194/egusphere-2025-5021, https://doi.org/10.5194/egusphere-2025-5021, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Climate change has increased droughts in recent years, damaging forests worldwide. We used a large data set and statistical analysis of dead trees across Luxembourg to find where forests were most affected and why. We found that conifer trees were more likely to be dead when nearby trees had already died, pointing to damage from bark beetles, while taller forests were also more vulnerable. These findings can help guide forest management and make forests more resilient to a future drier climate.
Jannik S. Meyer, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 583–590, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-583-2025, 2025
William Albert, Hannah Weiser, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 25–32, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, 2025
Markus Brezovsky, Anatol Günthner, Frederik Schulte, Lukas Winiwarter, Boris Jutzi, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 39–45, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-39-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-39-2025, 2025
Anatol Günthner, Markus Brezovsky, Frederik Schulte, Lukas Winiwarter, Gottfried Mandlburger, and Boris Jutzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 107–114, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-107-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-107-2025, 2025
Frederik Schulte, Markus Brezovsky, Anatol Günthner, Boris Jutzi, Gottfried Mandlburger, and Lukas Winiwarter
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 271–278, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-271-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-271-2025, 2025
Michael Grömer, Erica Nocerino, Alessio Calantropio, Fabio Menna, Ansgar Dreier, Lukas Winiwarter, and Gottfried Mandlburger
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-2024, 115–120, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-115-2024, https://doi.org/10.5194/isprs-archives-XLVIII-2-2024-115-2024, 2024
M. Potůčková, J. Albrechtová, K. Anders, L. Červená, J. Dvořák, K. Gryguc, B. Höfle, L. Hunt, Z. Lhotáková, A. Marcinkowska-Ochtyra, A. Mayr, E. Neuwirthová, A. Ochtyra, M. Rutzinger, A. Šedová, A. Šrollerů, and L. Kupková
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 989–996, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, 2023
Lukas Winiwarter, Katharina Anders, Daniel Czerwonka-Schröder, and Bernhard Höfle
Earth Surf. Dynam., 11, 593–613, https://doi.org/10.5194/esurf-11-593-2023, https://doi.org/10.5194/esurf-11-593-2023, 2023
Short summary
Short summary
We present a method to extract surface change information from 4D time series of topographic point clouds recorded with a terrestrial laser scanner. The method uses sensor information to spatially and temporally smooth the data, reducing uncertainties. The Kalman filter used for the temporal smoothing also allows us to interpolate over data gaps or extrapolate into the future. Clustering areas where change histories are similar allows us to identify processes that may have the same causes.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
K. Anders, L. Winiwarter, D. Schröder, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 973–980, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, 2022
V. Zahs, L. Winiwarter, K. Anders, M. Bremer, M. Rutzinger, M. Potůčková, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1109–1116, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, 2022
L. Winiwarter, K. Anders, D. Schröder, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 79–86, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, 2022
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021, https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
Short summary
In this work, we use 3D point clouds to detect topographic changes across the surface of a rock glacier. These changes are presented as the relative contribution of surface change during a 3-week period to the annual surface change. By comparing these different time periods and looking at change in different directions, we provide estimates showing that different directions of surface change are dominant at different times of the year. This demonstrates the benefit of frequent monitoring.
Cited articles
Applanix Corporation: POSPAC MMS 8,
https://www.applanix.com/downloads/products/specs/POSPac_MMS_8_Infosheet.pdf (last access: 24 June 2022),
2018. a
Arumäe, T. and Lang, M.: Estimation of Canopy Cover in Dense Mixed-Species
Forests Using Airborne Lidar Data, Eur. J. Remote Sens., 51,
132–141, https://doi.org/10.1080/22797254.2017.1411169, 2018. a
ASPRS: LAS Specification Version 1.2,
http://www.asprs.org/a/society/committees/standards/asprs_las_format_v12.pdf
(last access: 27 July 2021), 2008. a
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H.: The Quickhull algorithm for
convex hulls, ACM T. Math. Software, 22, 469–483, 1996. a
Boudon, F.: PlantScan3D, GitHub [code],
https://github.com/fredboudon/plantscan3d (last access: 24 June 2022), 2021. a
Bournez, E., Landes, T., Saudreau, M., Kastendeuch, P., and Najjar, G.: From TLS Point Clouds to 3D Models of Trees: a Comparison of Existing Algorithms for 3D Tree Reconstruction, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W3, 113–120, https://doi.org/10.5194/isprs-archives-XLII-2-W3-113-2017, 2017. a
Bouvier, M., Durrieu, S., Fournier, R. A., and Renaud, J.-P.: Generalizing
Predictive Models of Forest Inventory Attributes Using an Area-Based Approach
with Airborne LiDAR Data, Remote Sens. Environ., 156, 322–334,
https://doi.org/10.1016/j.rse.2014.10.004, 2015. a
Bruggisser, M., Hollaus, M., Otepka, J., and Pfeifer, N.: Influence of ULS
acquisition characteristics on tree stem parameter estimation, ISPRS J. Photogramm., 168, 28–40,
https://doi.org/10.1016/j.isprsjprs.2020.08.002, 2020. a
Calders, K., Lewis, P., Disney, M., Verbesselt, J., and Herold, M.:
Investigating assumptions of crown archetypes for modelling LiDAR returns,
Remote Sens. Environ., 134, 39–49, https://doi.org/10.1016/j.rse.2013.02.018,
2013. a
Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M.,
Culvenor, D., Avitabile, V., Disney, M., Armston, J., and Kaasalainen, M.:
Nondestructive estimates of above-ground biomass using terrestrial laser
scanning, Methods Ecol. Evol., 6, 198–208,
https://doi.org/10.1111/2041-210X.12301, 2015. a
Calders, K., Adams, J., Armston, J., Bartholomeus, H., Bauwens, S., Bentley,
L. P., Chave, J., Danson, F. M., Demol, M., Disney, M., Gaulton, R., Krishna
Moorthy, S. M., Levick, S. R., Saarinen, N., Schaaf, C., Stovall, A.,
Terryn, L., Wilkes, P., and Verbeeck, H.: Terrestrial laser scanning in
forest ecology: Expanding the horizon, Remote Sens. Environ., 251,
112102, https://doi.org/10.1016/j.rse.2020.112102, 2020. a
CloudCompare: CloudCompare, version 2.10.2, GitHub [code], https://github.com/CloudCompare/CloudCompare/releases/tag/v2.10.2, last access: 3 April 2019. a
Computree Group: Computree, http://computree.onf.fr/?page_id=589, last access: 24 June 2022. a
Craig, A.: The Concave Hull of a Set of Points, CodeProject [code],
https://www.codeproject.com/Articles/1201438/The-Concave-Hull-of-a-Set-of-Points
(last access: 1 December 2020), 2017. a
Dassot, M., Colin, A., Santenoise, P., Fournier, M., and Constant, T.:
Terrestrial laser scanning for measuring the solid wood volume, including
branches, of adult standing trees in the forest environment, Comput.
Electron. Agr., 89, 86–93, https://doi.org/10.1016/j.compag.2012.08.005,
2012. a
Disney, M. I., Kalogirou, V., Lewis, P., Prieto-Blanco, A., Hancock, S., and
Pfeifer, M.: Simulating the impact of discrete-return lidar system and
survey characteristics over young conifer and broadleaf forests, Remote
Sens. Environ., 114, 1546–1560, https://doi.org/10.1016/j.rse.2010.02.009,
2010. a, b
Disney, M. I., Boni Vicari, M., Burt, A., Calders, K., Lewis, S. L., Raumonen,
P., and Wilkes, P.: Weighing trees with lasers: advances, challenges and
opportunities, Interface Focus, 8, 20170048, https://doi.org/10.1098/rsfs.2017.0048,
2018. a, b
DJI: MATRICE 600 PRO – User Manual,
https://dl.djicdn.com/downloads/m600 pro/1208EN/Matrice_600_Pro_User_Manual_v1.0_EN_1208.pdf
(last access: 17 May 2021), 2018. a
Du, S., Lindenbergh, R., Ledoux, H., Stoter, J., and Nan, L.: AdTree:
Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees, Remote
Sensing, 11, 2074, https://doi.org/10.3390/rs11182074, 2019. a
Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S.,
Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H.,
Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P. L., Qi,
W., and Silva, C.: The Global Ecosystem Dynamics Investigation:
High-resolution laser ranging of the Earth's forests and topography,
Sci. Remote Sens., 1, 100002, https://doi.org/10.1016/j.srs.2020.100002,
2020. a
Fu, H., Li, H., Dong, Y., Xu, F., and Chen, F.: Segmenting Individual Tree from
TLS Point Clouds Using Improved DBSCAN, Forests, 13, 566, https://doi.org/10.3390/f13040566,
2022. a
Gastellu-Etchegorry, J. P., Martin, E., and Gascon, F.: DART: a 3D model
for simulating satellite images and studying surface radiation budget,
Int. J. Remote Sens., 25, 73–96,
https://doi.org/10.1080/0143116031000115166, 2004. a
Gastellu-Etchegorry, J.-P., Yin, T., Lauret, N., Cajgfinger, T., Gregoire, T.,
Grau, E., Feret, J.-B., Lopes, M., Guilleux, J., Dedieu, G., Malenovský, Z.,
Cook, B. D., Morton, D., Rubio, J., Durrieu, S., Cazanave, G., Martin, E.,
and Ristorcelli, T.: Discrete Anisotropic Radiative Transfer (DART 5) for
Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of
Natural and Urban Landscapes, Remote Sensing, 7, 1667–1701,
https://doi.org/10.3390/rs70201667, 2015. a
Hackenberg, J.: SimpleTree Plugin, version Beta 4.33.06, https://rdinnovation.onf.fr/projects/computree-simpletree-beta-version/files
(last access: 21 May 2019), 2017. a
Hackenberg, J.: SimpleForest: A tree modelling software,
https://simpleforest.org/ (last access: 24 June 2022), 2021. a
Hackenberg, J., Spiecker, H., Calders, K., Disney, M., and Raumonen, P.:
SimpleTree – An Efficient Open Source Tool to Build Tree Models from TLS
Clouds, Forests, 6, 4245–4294, https://doi.org/10.3390/f6114245, 2015. a, b
Höfle, B., Qu, J., Winiwarter, L., Weiser, H., Zahs, V., Schäfer, J., and Fassnacht, F. E.: pytreedb: library for point clouds of tree vegetation objects, GitHub [code], https://github.com/3dgeo-heidelberg/pytreedb, last access: 24 June 2022. a
Holopainen, M., Vastaranta, M., and Hyyppä, J.: Outlook for the Next
Generation's Precision Forestry in Finland, Forests, 5, 1682–1694,
https://doi.org/10.3390/f5071682, 2014. a
Krishna Moorthy, S. M., Calders, K., Vicari, M. B., and Verbeeck, H.: Improved
Supervised Learning-Based Approach for Leaf and Wood Classification From
LiDAR Point Clouds of Forests, IEEE T. Geosci. Remote
Sens., 58, 3057–3070, https://doi.org/10.1109/TGRS.2019.2947198, 2020. a
Latifi, H., Fassnacht, F. E., Müller, J., Tharani, A., Dech, S., and Heurich,
M.: Forest inventories by LiDAR data: A comparison of single tree
segmentation and metric-based methods for inventories of a heterogeneous
temperate forest, Int. J. Appl. Earth Obs., 42, 162–174, https://doi.org/10.1016/j.jag.2015.06.008, 2015. a
Lewis, P.: Three-dimensional plant modelling for remote sensing simulation
studies using the Botanical Plant Modelling System, Agronomie, 19, 185–210,
https://doi.org/10.1051/agro:19990302, 1999. a
Lewis, P. and Muller, J.-P.: The Advanced Radiometric Ray-Tracer (ARARAT) for plant canopy reflectance simulation, Int. Arch. Photgramm. Rem. Sens., (Commission VII(B7)) 29, 26–34, https://www.isprs.org/proceedings/XXIX/congress/part7/26_XXIX-part7.pdf (last access: 24 June 2022), 1992. a
Liu, G., Wang, J., Dong, P., Chen, Y., and Liu, Z.: Estimating Individual Tree
Height and Diameter at Breast Height (DBH) from Terrestrial Laser Scanning
(TLS) Data at Plot Level, Forests, 9, 398, https://doi.org/10.3390/f9070398, 2018. a
Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J., and Vehmas, M.:
Estimation of timber volume and stem density based on scanning laser
altimetry and expected tree size distribution functions, Remote Sens.
Environ., 90, 319–330, https://doi.org/10.1016/j.rse.2004.01.006, 2004. a
Maltamo, M., Næsset, E., and Vauhkonen, J. (Eds.): Forestry Applications of
Airborne Laser Scanning, Vol. 27, Springer Netherlands, Dordrecht, ISBN 978-94-017-8663-8, 2014. a
Montaghi, A., Corona, P., Dalponte, M., Gianelle, D., Chirici, G., and Olsson,
H.: Airborne laser scanning of forest resources: An overview of research in
Italy as a commentary case study, Int. J. Appl. Earth
Obs., 23, 288–300,
https://doi.org/10.1016/j.jag.2012.10.002, 2013. a
Moreira, A. and Yasmina Santos, M.: Concave hull: A k-nearest neighbours
approach for the computation of the region occupied by a set of points, in:
Proceedings of the Second International Conference on Computer Graphics
Theory and Applications – Volume 2: GRAPP, 61–68, INSTICC, SciTePress,
https://doi.org/10.5220/0002080800610068, 2007. a
Morsdorf, F., Eck, C., Zgraggen, C., Imbach, B., Schneider, F. D., and
Kükenbrink, D.: UAV-based LiDAR acquisition for the derivation of
high-resolution forest and ground information, Leading Edge, 36,
566–570, https://doi.org/10.1190/tle36070566.1, 2017. a
Nan, L., Messal, L., Du, S., and Yang, Z.: AdTree, GitHub [code],
https://github.com/tudelft3d/adtree (last access: 24 June 2022), 2021. a
Næsset, E.: Predicting Forest Stand Characteristics with Airborne Scanning
Laser Using a Practical Two-Stage Procedure and Field Data, Remote Sens.
Environ., 80, 88–99, https://doi.org/10.1016/S0034-4257(01)00290-5, 2002. a
Næsset, E., Gobakken, T., Solberg, S., Gregoire, T. G., Nelson, R.,
Ståhl, G., and Weydahl, D.: Model-Assisted Regional Forest Biomass
Estimation Using LiDAR and InSAR as Auxiliary Data: A Case Study from
a Boreal Forest Area, Remote Sens. Environ., 115, 3599–3614,
https://doi.org/10.1016/j.rse.2011.08.021, 2011. a
Pearse, G. D., Watt, M. S., Dash, J. P., Stone, C., and Caccamo, G.: Comparison
of Models Describing Forest Inventory Attributes Using Standard and
Voxel-Based Lidar Predictors across a Range of Pulse Densities, Int.
J. Appl. Earth Obs., 78, 341–351,
https://doi.org/10.1016/j.jag.2018.10.008, 2019. a, b, c
Pfeifer, N., Mandlburger, G., Otepka, J., and Karel, W.: OPALS – A framework
for Airborne Laser Scanning data analysis, Comput. Environ. Urban, 45, 125–136, https://doi.org/10.1016/j.compenvurbsys.2013.11.002, 2014. a, b, c
Pfennigbauer, M. and Ullrich, A.: Improving quality of laser scanning data
acquisition through calibrated amplitude and pulse deviation measurement,
in: Laser Radar Technology and Applications XV, edited by: Turner, M. D. and
Kamerman, G. W., Vol. 7684, 463–472, International Society for Optics
and Photonics, SPIE, https://doi.org/10.1117/12.849641, 2010. a, b, c
Raumonen, P.: TreeQSM: Reconstruction of quantitative structure models of
trees from point cloud data, Zenodo [code], https://doi.org/10.5281/zenodo.844625, 2020. a
Raumonen, P., Kaasalainen, M., Åkerblom, M., Kaasalainen, S., Kaartinen, H.,
Vastaranta, M., Holopainen, M., Disney, M., and Lewis, P.: Fast Automatic
Precision Tree Models from Terrestrial Laser Scanner Data, Remote Sens., 5,
491–520, https://doi.org/10.3390/rs5020491, 2013. a, b
RIEGL Laser Measurement Systems: Data Processing Software RiPROCESS for
RIEGL Scan Data,
http://www.riegl.com/uploads/tx_pxpriegldownloads/RiProcess_Datasheet_2020-08-20_01.pdf
(last access: 23 March 2021), 2020a. a
RIEGL Laser Measurement Systems: Operating & Processing Software RiSCAN PRO for RIEGL 3D Laser Scanners, http://www.riegl.com/uploads/tx_pxpriegldownloads/RiSCAN-PRO_DataSheet_2020-10-07.pdf (last access: 4 July 2022),
2020b. a
Roberts, O., Bunting, P., Hardy, A., and McInerney, D.: Sensitivity Analysis
of the DART Model for Forest Mensuration with Airborne Laser Scanning,
Remote Sens., 12, 247, https://doi.org/10.3390/rs12020247, 2020. a
Roussel, J.-R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R., Meador,
A. S., Bourdon, J.-F., de Boissieu, F., and Achim, A.: lidR: An R package
for analysis of Airborne Laser Scanning (ALS) data, Remote Sens.
Environ., 251, 112061, https://doi.org/10.1016/j.rse.2020.112061, 2020. a
Rusu, R. B. and Cousins, S.: 3D is here: Point Cloud Library (PCL), in: IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China, https://doi.org/10.1109/ICRA.2011.5980567,
2011. a
Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz, M.: Towards 3D
Point cloud based object maps for household environments, Robot.
Auton. Syst., 56, 927–941, https://doi.org/10.1016/j.robot.2008.08.005, 2008. a
Scion: Forest Science, Brochure,
https://www.scionresearch.com/__data/assets/pdf_file/0003/51645/Forest_Science_Brochure.pdf
(last access: 25 April 2022), 2021. a
Sinoquet, H., Le Roux, X., Adam, B., Ameglio, T., and Daudet, F. A.: RATP: a
model for simulating the spatial distribution of radiation absorption,
transpiration and photosynthesis within canopies: application to an isolated
tree crown, Plant Cell Environ., 24, 395–406,
https://doi.org/10.1046/j.1365-3040.2001.00694.x, 2001. a
Smith, A. M. S., Falkowski, M. J., Hudak, A. T., Evans, J. S., Robinson, A. P.,
and Steele, C. M.: A Cross-Comparison of Field, Spectral, and Lidar Estimates
of Forest Canopy Cover, Can. J. Remote Sens., 35, 447–459,
https://doi.org/10.5589/m09-038, 2009. a
Vicari, M. B.: TLSeparation, GitHub [code], https://github.com/TLSeparation (last access: 24 June 2022),
2021. a
Vicari, M. B., Disney, M., Wilkes, P., Burt, A., Calders, K., and Woodgate, W.:
Leaf and wood classification framework for terrestrial LiDAR point clouds,
Methods Ecol. Evol., 10, 680–694,
https://doi.org/10.1111/2041-210X.13144, 2019. a
Vincent, G., Antin, C., Laurans, M., Heurtebize, J., Durrieu, S., Lavalley, C.,
and Dauzat, J.: Mapping plant area index of tropical evergreen forest by
airborne laser scanning. A cross-validation study using LAI2200 optical
sensor, Remote Sens. Environ., 198, 254–266,
https://doi.org/10.1016/j.rse.2017.05.034, 2017. a
Wallace, L., Musk, R., and Lucieer, A.: An Assessment of the Repeatability of
Automatic Forest Inventory Metrics Derived From UAV-Borne Laser Scanning
Data, IEEE T. Geosci. Remote Sens., 52, 7160–7169,
https://doi.org/10.1109/TGRS.2014.2308208, 2014. a
Wang, D.: LeWoS, Zenodo [code], https://doi.org/10.5281/zenodo.3516856, 2020. a
Wang, D., Momo Takoudjou, S., and Casella, E.: LeWoS: A universal leaf-wood
classification method to facilitate the 3D modelling of large tropical trees
using terrestrial LiDAR, Methods Ecol. Evol., 11, 376–389,
https://doi.org/10.1111/2041-210X.13342, 2020. a
Wang, Y., Lehtomäki, M., Liang, X., Pyörälä, J., Kukko, A., Jaakkola, A.,
Liu, J., Feng, Z., Chen, R., and Hyyppä, J.: Is field-measured tree height
as reliable as believed – A comparison study of tree height estimates from
field measurement, airborne laser scanning and terrestrial laser scanning in
a boreal forest, ISPRS J. Photogramm., 147,
132–145, https://doi.org/10.1016/j.isprsjprs.2018.11.008, 2019. a
Weiser, H.: 3dgeo-heidelberg/syssifoss: Version 1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.6759913, 2022. a
Weiser, H., Winiwarter, L., Anders, K., Fassnacht, F. E., and Höfle, B.:
Opaque voxel-based tree models for virtual laser scanning in forestry
applications, Remote Sens. Environ., 265, 112641,
https://doi.org/10.1016/j.rse.2021.112641, 2021. a, b, c
Weiser, H., Schäfer, J., Winiwarter, L., Krašovec, N., Seitz,
C., Schimka, M., Anders, K., Baete, D., Braz, A. S., Brand, J.,
Debroize, D., Kuss, P., Martin, L. L., Mayer, A., Schrempp, T.,
Schwarz, L.-M., Ulrich, V., Fassnacht, F. E., and Höfle, B.:
Terrestrial, UAV-borne, and airborne laser scanning point clouds of central
European forest plots, Germany, with extracted individual trees and manual
forest inventory measurements, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.942856,
2022a. a, b
Weiser, H., Schäfer, J., Winiwarter, L., Krašovec, N., Seitz,
C., Schimka, M., Anders, K., Baete, D., Braz, A. S., Brand, J.,
Debroize, D., Kuss, P., Martin, L. L., Mayer, A., Schrempp, T.,
Schwarz, L.-M., Ulrich, V., Fassnacht, F. E., and Höfle, B.:
Terrestrial, UAV-borne, and airborne laser scanning point clouds of central
European forest plots, Germany, with extracted individual trees and manual
forest inventory measurements – Metadata Documentation,
https://download.pangaea.de/reference/109167/attachments/SYSSIFOSS_2019-2020_meta_4.pdf (last access: 24 June 2022),
2022b. a, b, c, d, e, f, g
White, J. C., Tompalski, P., Vastaranta, M., Wulder, M. A., Saarinen, N.,
Stepper, C., and Coops, N. C.: A model development and application guide for
generating an enhanced forest inventory using airborne laser scanning data
and an area-based approach, CWFC Information Report FI-X-018, Natural
Resources Canada, Victoria, BC, Canada,
https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/38945.pdf (last access: 24 June 2022), 2017. a
Widlowski, J.-L., Lavergne, T., Pinty, B., Verstraete, M., and Gobron, N.:
Rayspread: A Virtual Laboratory for Rapid BRF Simulations Over 3-D Plant
Canopies, in: Computational Methods in Transport, edited by: Graziani, F.,
211–231, Springer, Berlin, Heidelberg, 211–231, https://doi.org/10.1007/3-540-28125-8_10, 2006. a
Widlowski, J.-L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger,
C., Brennan, J., Busetto, L., Chelle, M., Ceccherini, G., Colombo, R.,
Côté, J.-F., Eenmäe, A., Essery, R., Gastellu-Etchegorry, J.-P., Gobron,
N., Grau, E., Haverd, V., Homolová, L., Huang, H., Hunt, L., Kobayashi, H.,
Koetz, B., Kuusk, A., Kuusk, J., Lang, M., Lewis, P. E., Lovell, J. L.,
Malenovský, Z., Meroni, M., Morsdorf, F., Mõttus, M., Ni-Meister, W.,
Pinty, B., Rautiainen, M., Schlerf, M., Somers, B., Stuckens, J., Verstraete,
M. M., Yang, W., Zhao, F., and Zenone, T.: The fourth phase of the radiative
transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and
conformity testing, Remote Sens. Environ., 169, 418–437,
https://doi.org/10.1016/j.rse.2015.08.016, 2015.
a
Winiwarter, L., Pena, A. M. E., Weiser, H., Anders, K., Sanches, J. M., Searle,
M., and Höfle, B.: 3dgeo-heidelberg/helios, Zenodo [code], https://doi.org/10.5281/zenodo.4452870,
2021. a
Winiwarter, L., Esmorís Pena, A. M., Weiser, H., Anders, K., Martínez
Sánchez, J., Searle, M., and Höfle, B.: Virtual laser scanning with
HELIOS++: A novel take on ray tracing-based simulation of topographic
full-waveform 3D laser scanning, Remote Sens. Environ., 269, 112772,
https://doi.org/10.1016/j.rse.2021.112772, 2022. a, b
Yun, T., An, F., Li, W., Sun, Y., Cao, L., and Xue, L.: A Novel Approach for
Retrieving Tree Leaf Area from Ground-Based LiDAR, Remote Sens., 8, 942,
https://doi.org/10.3390/rs8110942, 2016. a
Zhou, J., Wei, H., Zhou, G., and Song, L.: Separating Leaf and Wood Points in
Terrestrial Laser Scanning Data Using Multiple Optimal Scales, Sensors, 19, 1852,
https://doi.org/10.3390/s19081852, 2019. a
Short summary
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest structure and individual tree properties. We conducted airborne, UAV-borne and terrestrial laser scanning in German mixed forests, resulting in overlapping point clouds with different characteristics. From these, we generated a comprehensive database of individual tree point clouds and corresponding tree metrics. Our dataset may serve as a benchmark dataset for algorithms in forestry research.
3D point clouds, acquired by laser scanning, allow us to retrieve information about forest...
Altmetrics
Final-revised paper
Preprint