Articles | Volume 13, issue 1
https://doi.org/10.5194/essd-13-83-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-83-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
EstSoil-EH: a high-resolution eco-hydrological modelling parameters dataset for Estonia
Department of Geography, Institute of Ecology and Earth Sciences,
University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Arno Kanal
Department of Geography, Institute of Ecology and Earth Sciences,
University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
deceased, 7 May 2019
Alar Astover
Chair of Soil Science, Institute of Agricultural and Environmental
Sciences, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 5, Tartu,
51014, Estonia
Department of Geography, Institute of Ecology and Earth Sciences,
University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Holger Virro
Department of Geography, Institute of Ecology and Earth Sciences,
University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Aveliina Helm
Department of Botany, Institute of Ecology and Earth Sciences,
University of Tartu, Lai 40, Tartu, 51005, Estonia
Meelis Pärtel
Department of Botany, Institute of Ecology and Earth Sciences,
University of Tartu, Lai 40, Tartu, 51005, Estonia
Ivika Ostonen
Department of Geography, Institute of Ecology and Earth Sciences,
University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Evelyn Uuemaa
Department of Geography, Institute of Ecology and Earth Sciences,
University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
Related authors
Alexander Kmoch, Kevin Sahr, Wai Tik Chan, and Evelyn Uuemaa
AGILE GIScience Ser., 6, 32, https://doi.org/10.5194/agile-giss-6-32-2025, https://doi.org/10.5194/agile-giss-6-32-2025, 2025
Alexander Kmoch, Benoit Bovy, Justus Magin, Ryan Abernathey, Alejandro Coca-Castro, Peter Strobl, Anne Fouilloux, Daniel Loos, Evelyn Uuemaa, Wai Tik Chan, Jean-Marc Delouis, and Tina Odaka
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 75–80, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, 2024
Nikita Murin, Alexander Kmoch, and Evelyn Uuemaa
AGILE GIScience Ser., 4, 34, https://doi.org/10.5194/agile-giss-4-34-2023, https://doi.org/10.5194/agile-giss-4-34-2023, 2023
Tahmin Sitab, Oleksandr Karasov, and Alexander Kmoch
AGILE GIScience Ser., 4, 43, https://doi.org/10.5194/agile-giss-4-43-2023, https://doi.org/10.5194/agile-giss-4-43-2023, 2023
Evelyn Uuemaa and Alexander Kmoch
AGILE GIScience Ser., 3, 65, https://doi.org/10.5194/agile-giss-3-65-2022, https://doi.org/10.5194/agile-giss-3-65-2022, 2022
Holger Virro, Alexander Kmoch, Marko Vainu, and Evelyn Uuemaa
AGILE GIScience Ser., 3, 66, https://doi.org/10.5194/agile-giss-3-66-2022, https://doi.org/10.5194/agile-giss-3-66-2022, 2022
Alexander Kmoch, Oleksandr Matsibora, Ivan Vasilyev, and Evelyn Uuemaa
AGILE GIScience Ser., 3, 41, https://doi.org/10.5194/agile-giss-3-41-2022, https://doi.org/10.5194/agile-giss-3-41-2022, 2022
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
Arta Bārdule, Raija Laiho, Jyrki Jauhiainen, Kaido Soosaar, Andis Lazdiņš, Kęstutis Armolaitis, Aldis Butlers, Dovilė Čiuldienė, Andreas Haberl, Ain Kull, Milda Muraškienė, Ivika Ostonen, Gristin Rohula-Okunev, Muhammad Kamil-Sardar, Thomas Schindler, Hanna Vahter, Egidijus Vigricas, and Ieva Līcīte
Biogeosciences, 22, 4241–4259, https://doi.org/10.5194/bg-22-4241-2025, https://doi.org/10.5194/bg-22-4241-2025, 2025
Short summary
Short summary
Estimates of CO2 fluxes from drained nutrient-rich organic soils in croplands and grasslands in the hemiboreal region of Europe revealed that annual net CO2 fluxes were lower than the latest (2014) IPCC (Intergovernmental Panel on Climate Change ) emission factors provided for the whole temperate zone, including the hemiboreal region. The contribution of CO2 fluxes from shallow highly decomposed organic soils, former peatlands that no longer meet the IPCC criterion for organic soils, to total emissions can be high and should not be underestimated.
Alexander Kmoch, Kevin Sahr, Wai Tik Chan, and Evelyn Uuemaa
AGILE GIScience Ser., 6, 32, https://doi.org/10.5194/agile-giss-6-32-2025, https://doi.org/10.5194/agile-giss-6-32-2025, 2025
Laura Kuusemets, Ülo Mander, Jordi Escuer-Gatius, Alar Astover, Karin Kauer, Kaido Soosaar, and Mikk Espenberg
SOIL, 11, 1–15, https://doi.org/10.5194/soil-11-1-2025, https://doi.org/10.5194/soil-11-1-2025, 2025
Short summary
Short summary
We investigated relationships between mineral nitrogen (N) fertilisation rates and additional manure amendment with different crop types through an analysis of soil environmental characteristics and microbiomes, soil N2O and N2 emissions as well as biomass production. The results show that wheat grew well at a fertilisation rate of 80 kg N ha−1, and newly introduced sorghum showed good potential for cultivation in temperate climates.
Evelyn Uuemaa, Marco Ciolli, and Marco Minghini
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 1–2, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-1-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-1-2024, 2024
Alexander Kmoch, Benoit Bovy, Justus Magin, Ryan Abernathey, Alejandro Coca-Castro, Peter Strobl, Anne Fouilloux, Daniel Loos, Evelyn Uuemaa, Wai Tik Chan, Jean-Marc Delouis, and Tina Odaka
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 75–80, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, 2024
Nikita Murin, Alexander Kmoch, and Evelyn Uuemaa
AGILE GIScience Ser., 4, 34, https://doi.org/10.5194/agile-giss-4-34-2023, https://doi.org/10.5194/agile-giss-4-34-2023, 2023
Tahmin Sitab, Oleksandr Karasov, and Alexander Kmoch
AGILE GIScience Ser., 4, 43, https://doi.org/10.5194/agile-giss-4-43-2023, https://doi.org/10.5194/agile-giss-4-43-2023, 2023
Niel Verbrigghe, Niki I. W. Leblans, Bjarni D. Sigurdsson, Sara Vicca, Chao Fang, Lucia Fuchslueger, Jennifer L. Soong, James T. Weedon, Christopher Poeplau, Cristina Ariza-Carricondo, Michael Bahn, Bertrand Guenet, Per Gundersen, Gunnhildur E. Gunnarsdóttir, Thomas Kätterer, Zhanfeng Liu, Marja Maljanen, Sara Marañón-Jiménez, Kathiravan Meeran, Edda S. Oddsdóttir, Ivika Ostonen, Josep Peñuelas, Andreas Richter, Jordi Sardans, Páll Sigurðsson, Margaret S. Torn, Peter M. Van Bodegom, Erik Verbruggen, Tom W. N. Walker, Håkan Wallander, and Ivan A. Janssens
Biogeosciences, 19, 3381–3393, https://doi.org/10.5194/bg-19-3381-2022, https://doi.org/10.5194/bg-19-3381-2022, 2022
Short summary
Short summary
In subarctic grassland on a geothermal warming gradient, we found large reductions in topsoil carbon stocks, with carbon stocks linearly declining with warming intensity. Most importantly, however, we observed that soil carbon stocks stabilised within 5 years of warming and remained unaffected by warming thereafter, even after > 50 years of warming. Moreover, in contrast to the large topsoil carbon losses, subsoil carbon stocks remained unaffected after > 50 years of soil warming.
Evelyn Uuemaa and Alexander Kmoch
AGILE GIScience Ser., 3, 65, https://doi.org/10.5194/agile-giss-3-65-2022, https://doi.org/10.5194/agile-giss-3-65-2022, 2022
Holger Virro, Alexander Kmoch, Marko Vainu, and Evelyn Uuemaa
AGILE GIScience Ser., 3, 66, https://doi.org/10.5194/agile-giss-3-66-2022, https://doi.org/10.5194/agile-giss-3-66-2022, 2022
Alexander Kmoch, Oleksandr Matsibora, Ivan Vasilyev, and Evelyn Uuemaa
AGILE GIScience Ser., 3, 41, https://doi.org/10.5194/agile-giss-3-41-2022, https://doi.org/10.5194/agile-giss-3-41-2022, 2022
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
Cited articles
Abbaspour, K. C., Vaghefi, S. A., Yang, H. and Srinivasan, R.: Global soil,
landuse, evapotranspiration, historical and future weather databases for
SWAT Applications, Sci. Data, 6, 263, https://doi.org/10.1038/s41597-019-0282-4,
2019.
Abdelbaki, A. M.: Evaluation of pedotransfer functions for predicting soil
bulk density for U.S. soils, Ain Shams Eng. J., 9, 1611–1619,
https://doi.org/10.1016/j.asej.2016.12.002, 2018.
Adams, W. A.: The Effect of Organic Matter on the bulk and true Densities of
some Uncultivated Podzolic Soils, J. Soil Sci., 24, 10–17,
https://doi.org/10.1111/j.1365-2389.1973.tb00737.x, 1973.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology, Hydrol. Sci. B., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.
Calhoun, T. E., Ellermäe, O., Kõlli, R., Lemetti, I., Penu, P., and
Smith, C. W.: Benchmark Soils of Estonia Researched thru Baltic – American
Collaboration, Problems of Estonian Soil Classification, Trans. Est. Agric.
Univ., 198, 76–114, 1998.
Caruana, R. and Niculescu-Mizil, A.: An Empirical Comparison of Supervised
Learning Algorithms, in: Proceedings of the 23rd International Conference on
Machine Learning, 161–168, ACM, New York, NY, USA, 25–29 June 2006.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Dipak, S. and Abhijit, H.: Physical and Chemical Methods in Soil Analysis,
New Age International Ltd., New Delhi, 2005.
Ditzler, C., Scheffe, K., and Monger, H. C.: Soil survey manual. USDA
Handbook 18, Soil Science Division, Government Printing Office, Washington,
D.C., 2017.
Estonian Landboard: Soilmap of Estonia – Mullastiku kaart, National Soilmap of Estonia, Dataset deposit,
https://doi.org/10.15155/re-72, 2017.
Eswaran, H., Van Den Berg, E., and Reich, P.: Organic Carbon in Soils of the
World, Soil Sci. Soc. Am. J., 57, 192,
https://doi.org/10.2136/sssaj1993.03615995005700010034x, 1993.
FAO: World reference base for soil resources, 2014 International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106. FAO, Rome Italy,available at: http://www.fao.org/3/i3794en/I3794en.pdf (last access: 1 January 2021), 2015.
Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst,
L., and Wiberg, D.: Global Agro-ecological Zones Assessment for Agriculture
(GAEZ 2008), in: IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008.
Gafni, A., Malterer, T., Verry, E., Nichols, D., Boelter, D., and
Päivänen, J.: Physical Properties of Organic Soils, in Peatland
Biogeochemistry and Watershed Hydrology at the Marcell Experimental Forest,
edited by: Kolka, R., Sebestyen, S., Verry, E. S., and Brooks, K., 135–176,
CRC Press, Boca Raton, FL, 2011.
Gunarathna, M. H. J. P., Sakai, K., Nakandakari, T., Momii, K., and Kumari,
M. K. N.: Machine learning approaches to develop pedotransfer functions for
tropical Sri Lankan soils, Water, 11, 1940 https://doi.org/10.3390/w11091940, 2019.
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, edited by: Bond-Lamberty, B., PLoS One, 12, e0169748,
https://doi.org/10.1371/journal.pone.0169748, 2017.
Hiederer, R., Michéli, E., and Durrant, T.: Evaluation of the BioSoil
DemonstrationProject, Ispra, European Commission Joint Research Centre Institute for Environment and Sustainability, 2011.
Kachinsky, N.: Fizika potchv, Soil physics, Vol. 1, Moscow
University Press, Moscow, 1965 (in Russian).
Kask, R.: On the English Equivalents of the Estonian Terms for the Textural
Classes of Estonian Soils, J. Agr. Sci., 14, 93–96, 2001.
Kauer, K., Astover, A., Viiralt, R., Raave, H., and Kätterer, T.:
Evolution of soil organic carbon in a carbonaceous glacial till as an effect
of crop and fertility management over 50 years in a field experiment, Agr.
Ecosyst. Environ., 283, 106562, https://doi.org/10.1016/j.agee.2019.06.001, 2019.
Keesstra, S., Mol, G., de Leeuw, J., Okx, J., Molenaar, C., de Cleen, M., and
Visser, S.: Soil-related sustainable development goals: Four concepts to
make land degradation neutrality and restoration work, Land, 7, 133,
https://doi.org/10.3390/land7040133, 2018.
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., and Fresco, L. O.: The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, SOIL, 2, 111–128, https://doi.org/10.5194/soil-2-111-2016, 2016.
Kmoch, A., Kanal, A., Astover, A., Kull, A., Virro, H., Helm, A.,
Pärtel, M., Ostonen, I., and Uuemaa, E.: EstSoil-EH: An eco-hydrological
modelling parameters dataset derived from the Soil Map of Estonia (data
deposit), Zenodo, https://doi.org/10.5281/zenodo.3473289, 2019a.
Kmoch, A., Virro, H., and Uuemaa, E.: EstSoil-EH software supplement, Zenodo,
https://doi.org/10.5281/zenodo.3473210, 2019b.
Kõlli, R., Ellermäe, O., Köster, T., Lemetti, I., Asi, E., and
Kauer, K.: Stocks of organic carbon in Estonian soils, Est. J. Earth Sci.,
58, 95–108, https://doi.org/10.3176/earth.2009.2.01, 2009.
Kriiska, K., Frey, J., Asi, E., Kabral, N., Uri, V., Aosaar, J., Varik, M.,
Napa, Ü., Apuhtin, V., Timmusk, T., and Ostonen, I.: Variation in annual
carbon fluxes affecting the SOC pool in hemiboreal coniferous forests in
Estonia, Forest Ecol. Manag., 433, 419–430,
https://doi.org/10.1016/j.foreco.2018.11.026, 2019.
Laas, A. and Kull, A.: Sustainable Planning and Development, edited by: Beriatos, A. G.
K. E., Brebbia, C. A., and Coccossis, H., Boston, Wessex Institute of
Techonology Press, Southampton, 2003.
Michielsen, A., Kalantari, Z., Lyon, S. W., and Liljegren, E.: Predicting and
communicating flood risk of transport infrastructure based on watershed
characteristics, J. Environ. Manage., 182, 505–518, https://doi.org/10.1016/j.jenvman.2016.07.051,
2016.
Minasny, B. and Hartemink, A. E.: Predicting soil properties in the tropics,
Earth-Sci. Rev., 106, 52–62, https://doi.org/10.1016/j.earscirev.2011.01.005,
2011.
Mokarram, M., Roshan, G. and Negahban, S.: Landform classification using
topography position index (case study: salt dome of Korsia-Darab plain,
Iran), Model. Earth Syst. Environ., 1, 40, https://doi.org/10.1007/s40808-015-0055-9, 2015.
Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital terrain modelling: A
review of hydrological, geomorphological, and biological applications,
Hydrol. Process., 5, 3–30, https://doi.org/10.1002/hyp.3360050103, 1991.
Noreika, N., Helm, A., Öpik, M., Jairus, T., Vasar, M., Reier, Ü.,
Kook, E., Riibak, K., Kasari, L., Tullus, H., Tullus, T., Lutter, R., Oja,
E., Saag, A., Randlane, T., and Pärtel, M.: Forest biomass, soil and
biodiversity relationships originate from biogeographic affinity and direct
ecological effects, Oikos, 128, 1653–1665, https://doi.org/10.1111/oik.06693, 2019.
Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M. E., and Papritz, A.: Evaluation of digital soil mapping approaches with large sets of environmental covariates, SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018, 2018.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.:
Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12,
2825–2830, 2011.
Prévost, M.: Predicting Soil Properties from Organic Matter Content
following Mechanical Site Preparation of Forest Soils, Soil Sci. Soc. Am.
J., 68, 943, https://doi.org/10.2136/sssaj2004.9430, 2004.
Putku, E.: Prediction models of soil organic carbon and bulk density of
arable mineral soils, Doctoral Thesis, Estonian University of Life
Sciences, 2016.
Reintam, L., Kull, A., Palang, H. and Rooma, I.: Large-Scale Soil Maps and a
Supplementary Database for Land Use Planning in Estonia, J. Plant Nutr. Soil
Sc., 166, 225–231, 2003.
Reintam, L., Rooma, I., Kull, A., and Kõlli, R.: Soil information and its
application in Estonia, Research report, European Soil Bureau, 9,
121–132, 2005.
Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kõlli, R., and Astover,
A.: Soil bulk density pedotransfer functions of the humus horizon in arable
soils, Geoderma, 163, 74–82, https://doi.org/10.1016/j.geoderma.2011.04.005,
2011.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008GB003327, 2009.
Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hydraulic
database of Europe at 250 m resolution, Hydrol. Process., 31, 2662–2666,
https://doi.org/10.1002/hyp.11203, 2017.
Uuemaa, E., Hughes, A. O., and Tanner, C. C.: Identifying feasible locations
for wetland creation or restoration in catchments by suitability modelling
using light detection and ranging (LiDAR) Digital Elevation Model (DEM), Water,
10, 464, https://doi.org/10.3390/w10040464, 2018.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U.,
Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G.,
Tóth, B., Verhoef, A., Vanderborght, J., van der Ploeg, M. J.,
Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H.:
Pedotransfer Functions in Earth System Science: Challenges and Perspectives,
Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Vitharana, U. W. A., Mishra, U., Jastrow, J. D., Matamala, R., and Fan, Z.:
Observational needs for estimating Alaskan soil carbon stocks under current
and future climate, J. Geophys. Res.-Biogeo., 122, 415–429,
https://doi.org/10.1002/2016JG003421, 2017.
Yigini, Y. and Panagos, P.: Assessment of soil organic carbon stocks under
future climate and land cover changes in Europe, Sci. Total Environ.,
557–558, 838–850, https://doi.org/10.1016/J.SCITOTENV.2016.03.085, 2016.
Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic parameter
distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53,
https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Short summary
The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We derived parameters including soil layering, soil texture (clay, silt, and sand content), coarse fragments, and rock content and aggregated and predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic carbon content, available water capacity).
The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia....
Altmetrics
Final-revised paper
Preprint