Articles | Volume 13, issue 1
https://doi.org/10.5194/essd-13-83-2021
https://doi.org/10.5194/essd-13-83-2021
Data description paper
 | 
20 Jan 2021
Data description paper |  | 20 Jan 2021

EstSoil-EH: a high-resolution eco-hydrological modelling parameters dataset for Estonia

Alexander Kmoch, Arno Kanal, Alar Astover, Ain Kull, Holger Virro, Aveliina Helm, Meelis Pärtel, Ivika Ostonen, and Evelyn Uuemaa

Related authors

XDGGS: A community-developed Xarray package to support planetary DGGS data cube computations
Alexander Kmoch, Benoit Bovy, Justus Magin, Ryan Abernathey, Alejandro Coca-Castro, Peter Strobl, Anne Fouilloux, Daniel Loos, Evelyn Uuemaa, Wai Tik Chan, Jean-Marc Delouis, and Tina Odaka
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W12-2024, 75–80, https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024,https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-75-2024, 2024
Detection of small-scale landscape elements with remote sensing
Nikita Murin, Alexander Kmoch, and Evelyn Uuemaa
AGILE GIScience Ser., 4, 34, https://doi.org/10.5194/agile-giss-4-34-2023,https://doi.org/10.5194/agile-giss-4-34-2023, 2023
Exploring Estonian Forests and Urban Green Spaces: A Cultural Ecosystem Services Mapping Approach Using Flickr Photographs
Tahmin Sitab, Oleksandr Karasov, and Alexander Kmoch
AGILE GIScience Ser., 4, 43, https://doi.org/10.5194/agile-giss-4-43-2023,https://doi.org/10.5194/agile-giss-4-43-2023, 2023
Teaching geoinformatics: challenges and opportunities
Evelyn Uuemaa and Alexander Kmoch
AGILE GIScience Ser., 3, 65, https://doi.org/10.5194/agile-giss-3-65-2022,https://doi.org/10.5194/agile-giss-3-65-2022, 2022
ML-based water quality modeling at national level in a data-scarce region
Holger Virro, Alexander Kmoch, Marko Vainu, and Evelyn Uuemaa
AGILE GIScience Ser., 3, 66, https://doi.org/10.5194/agile-giss-3-66-2022,https://doi.org/10.5194/agile-giss-3-66-2022, 2022

Related subject area

Pedology
An integrated dataset of ground hydrothermal regimes and soil nutrients monitored in some previously burned areas in hemiboreal forests in Northeast China during 2016–2022
Xiaoying Li, Huijun Jin, Qi Feng, Qingbai Wu, Hongwei Wang, Ruixia He, Dongliang Luo, Xiaoli Chang, Raul-David Şerban, and Tao Zhan
Earth Syst. Sci. Data, 16, 5009–5026, https://doi.org/10.5194/essd-16-5009-2024,https://doi.org/10.5194/essd-16-5009-2024, 2024
Short summary
Providing quality-assessed and standardised soil data to support global mapping and modelling (WoSIS snapshot 2023)
Niels H. Batjes, Luis Calisto, and Luis M. de Sousa
Earth Syst. Sci. Data, 16, 4735–4765, https://doi.org/10.5194/essd-16-4735-2024,https://doi.org/10.5194/essd-16-4735-2024, 2024
Short summary
A China dataset of soil properties for land surface modeling (version 2)
Gaosong Shi, Wenye Sun, Wei Shangguan, Zhongwang Wei, Hua Yuan, Ye Zhang, Hongbin Liang, Lu Li, Xiaolin Sun, Danxi Li, Feini Huang, Qingliang Li, and Yongjiu Dai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-299,https://doi.org/10.5194/essd-2024-299, 2024
Revised manuscript accepted for ESSD
Short summary
BIS-4D: mapping soil properties and their uncertainties at 25 m resolution in the Netherlands
Anatol Helfenstein, Vera L. Mulder, Mirjam J. D. Hack-ten Broeke, Maarten van Doorn, Kees Teuling, Dennis J. J. Walvoort, and Gerard B. M. Heuvelink
Earth Syst. Sci. Data, 16, 2941–2970, https://doi.org/10.5194/essd-16-2941-2024,https://doi.org/10.5194/essd-16-2941-2024, 2024
Short summary
European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions
Songchao Chen, Zhongxing Chen, Xianglin Zhang, Zhongkui Luo, Calogero Schillaci, Dominique Arrouays, Anne Christine Richer-de-Forges, and Zhou Shi
Earth Syst. Sci. Data, 16, 2367–2383, https://doi.org/10.5194/essd-16-2367-2024,https://doi.org/10.5194/essd-16-2367-2024, 2024
Short summary

Cited articles

Abbaspour, K. C., Vaghefi, S. A., Yang, H. and Srinivasan, R.: Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT Applications, Sci. Data, 6, 263, https://doi.org/10.1038/s41597-019-0282-4, 2019. 
Abdelbaki, A. M.: Evaluation of pedotransfer functions for predicting soil bulk density for U.S. soils, Ain Shams Eng. J., 9, 1611–1619, https://doi.org/10.1016/j.asej.2016.12.002, 2018. 
Adams, W. A.: The Effect of Organic Matter on the bulk and true Densities of some Uncultivated Podzolic Soils, J. Soil Sci., 24, 10–17, https://doi.org/10.1111/j.1365-2389.1973.tb00737.x, 1973. 
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
The Soil Map of Estonia is the most detailed and information-rich dataset for soils in Estonia. But its information is not immediately usable for analyses or modelling. We derived parameters including soil layering, soil texture (clay, silt, and sand content), coarse fragments, and rock content and aggregated and predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic carbon content, available water capacity).
Altmetrics
Final-revised paper
Preprint