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Abstract. To understand, model, and predict landscape evolution, ecosystem services, and hydrological pro-
cesses, the availability of detailed observation-based soil data is extremely valuable. For the EstSoil-EH
dataset, we synthesized more than 20 eco-hydrological variables on soil, topography, and land use for Esto-
nia (https://doi.org/10.5281/zenodo.3473289, Kmoch et al., 2019a) as numerical and categorical values from
the original Soil Map of Estonia, the Estonian 5 m lidar DEM, Estonian Topographic Database, and EU-
SoilHydroGrids layers.

The Soil Map of Estonia maps more than 750 000 soil units throughout Estonia at a scale of 1 : 10 000 and
forms the basis for EstSoil-EH. It is the most detailed and information-rich dataset for soils in Estonia, with 75 %
of mapped units smaller than 4.0 ha, based on Soviet-era field mapping. For each soil unit, it describes the soil
type (i.e. soil reference group), soil texture, and layer information with a composite text code, which comprises
not only the actual texture class, but also classifiers for rock content, peat soils, distinct compositional layers,
and their depths. To use these as eco-hydrological process properties in modelling applications we translated the
text codes into numbers. The derived parameters include soil layering, soil texture (clay, silt, and sand contents),
coarse fragments, and rock content of the soil layers within the soil profiles. In addition, we aggregated and
predicted physical variables related to water and carbon cycles (bulk density, hydraulic conductivity, organic
carbon content, available water capacity).

The methodology and dataset developed will be an important resource for the Baltic region, but possibly also
for all other regions where detailed field-based soil mapping data are available. Countries like Lithuania and
Latvia have similar historical soil records from the Soviet era that could be turned into value-added datasets such
as the one we developed for Estonia.
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1 Introduction

Soil has remarkable complexity and through its various func-
tions plays a key role in Earth’s ecosystems. It provides mul-
tiple ecosystem services to humans, such as food and clean
water. Recent studies have highlighted the role of properly
functioning soils that can provide their ecosystem services
for the achievement of the United Nations (UN) Sustainable
Development Goals (SDGs) (Keesstra et al., 2018, 2016).
Therefore an accurate quantitative description and prediction
of soil processes and properties is essential in understanding
the impacts of climate and land use changes on ecosystem
services (Van Looy et al., 2017). For this purpose, spatially
accurate maps of soil properties are needed where detailed
soil survey data are available. But unfortunately, these are
either missing for many countries and regions in the world
or exist with insufficiently fine spatial resolution (Nussbaum
et al., 2018). However, for many countries field-based data
on soil properties are still available. Moreover, the recent in-
crease in spatial environmental data created by remote sens-
ing (climatic, terrain variables etc.) can be used for deriving
the desired soil properties at fine resolution. There are sev-
eral useful approaches to combine, or fuse, several datasets
into one and obtain the complete spatial coverage of the soil
properties needed for modelling.

At the global level, two main soil databases are avail-
able. The first was made available by the United Nations
Food and Agricultural Organization (FAO): the Harmonized
World Soil Database (HWSD) v1.2 (Fischer et al., 2008). The
dataset is a 30 arcsec raster database (approx. 100 ha resolu-
tion) with more than 15 000 different soil mapping units. It
combines existing regional and national updates of soil in-
formation from around the world. Another global-level soil
database is SoilGrids250m (Hengl et al., 2017), which pro-
vides harmonized gridded soil data with values for sand, silt,
clay, and rock fractions, as well as organic carbon and car-
bon stocks at several depths with a resolution of approx.
6.5 ha which can be used as inputs for eco-hydrological mod-
els, e.g. SWAT (Abbaspour et al., 2019). SoilGrids250m
has been derived with machine-learning methods using en-
vironmental variables, such as terrain properties, as predic-
tor variables and field-based soil profiles as the training set
(Hengl et al., 2017). This approach takes advantage of the
recent abundance of high-resolution environmental spatial
data mostly obtained from remote sensing (e.g. terrain, cli-
matic variables, soil moisture) and employs these datasets as
explanatory variables to model soil properties at fine spa-
tial resolution (Nussbaum et al., 2018). Analogously, EU-
SoilHydroGrids (Tóth et al., 2017) provides a 3D soil hy-
draulic database for Europe (available in 250 m and 1 km
resolution) based on SoilGrids250m and trained pedotransfer
functions (PTFs). In other words, they use machine-learning
regression as specialized PTFs.

PTFs are predictive functions of certain soil properties,
such as organic carbon content or bulk density, using data

from field-based soil surveys (e.g. sand, silt, and clay con-
tent). However, the potential of available PTFs has not been
fully exploited and integrated into eco-hydrological mod-
elling and ecosystem services provided by soils (Van Looy
et al., 2017). For example, soil organic carbon (SOC) is an
important indicator of soil health and plays a key role in the
global carbon cycle, and therefore it is crucial to adequately
quantify and monitor SOC changes (Vitharana et al., 2017).
However, reliable estimates for SOC have been difficult to
obtain due to a lack of measured soil profile data to train
the model (Eswaran et al., 1993). Very few SOC datasets
are available for many countries or regions. For example, the
Northern Circumpolar Soil Carbon Database (Tarnocai et al.,
2009) was developed to describe the SOC pools in soils of the
northern circumpolar permafrost region. SOC stocks were
also predicted under future climate and land cover change
scenarios using a geostatistical model for predicting cur-
rent and future SOC in Europe (Yigini and Panagos, 2016).
Prévost (2004) described predictions of soil properties from
the SOC content and found that SOC was closely related to
soil bulk density (BD) and porosity. Suuster et al. (2011) em-
phasized the importance of BD as an indicator of soil quality,
site productivity, and soil compaction and proposed a PTF
for the organic horizon in the arable soils in Estonia. Ab-
delbaki (2018) evaluated the predictive accuracy of 48 pub-
lished PTFs for predicting BD using State Soil Geographic
(STATSGO) and Soil Survey Geographic (SSURGO) soil
databases from the United States.

However, these regional datasets are often not detailed
enough for country-level applications nor do they bene-
fit fully from local high-resolution field-based soil data, as
is the case for Estonia. There is no national-scale dataset
of measurements or predictions of SOC or BD for Esto-
nia, and no large-scale high-resolution soil database is cur-
rently available with numerical data for a range of typical
eco-hydrological process-based models or to monitor SOC
changes. However, Estonia has a national highly detailed
digitized soil map (1 : 10 000) with 75 % of mapped units
smaller than 4 ha. It was created based on extensive field
mapping during the Soviet-era and can serve as an excellent
basis for PTFs and robust models to predict soil properties at
any given location (Minasny and Hartemink, 2011).

The objective of the present study was to develop a nu-
merical soil database, EstSoil-EH, for modelling and for pre-
dicting eco-hydrological processes in Estonia and to provide
a solid basis to estimate ecosystem services. The foundation
of EstSoil-EH is the Soil Map of Estonia, which includes in-
formation about soil type, layering of the soil profile, textures
(clay, silt, and sand content), coarse fragments, and rock con-
tent. We derived numerical values for the key characteristics
for the whole of Estonia. High-resolution environmental data
available nowadays allow improved PTFs and modern ad-
vanced methods (e.g. machine learning, geostatistics) for ex-
trapolation and upscaling to be developed (Gunarathna et al.,
2019; Van Looy et al., 2017). We employed machine learn-
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ing and PTFs to derive and aggregate additional soil vari-
ables related to the water and carbon cycle based on high-
resolution field-survey soil data and other environmental co-
variates (e.g. terrain variables).

2 Materials and methods

2.1 Background on the Soil Map of Estonia

We performed extensive database standardization on the
original Soil Map of Estonia as the working basis and syn-
thesize all further variables based on the standardized dataset
sequentially. Figure 1 illustrates the major working packages
and their inputs and outputs of eco-hydrological parameters.

The base dataset – the original Soil Map of Estonia –
is based on observed data (e.g. texture, soil profile depth,
rockiness, presence of organic layer). Systematic mapping
of Estonian soils to produce a paper-based soil map at scales
of 1 : 5000 and 1 : 10 000 was started in 1954 (Reintam et
al., 2005), with most intensive field surveys in the period
1965–1969, for the main purposes of land evaluation and as-
sessing potential for agricultural use. Generally, field map-
ping was carried out at a scale of 1 : 10 000 but in hilly
or undulating areas with higher soil diversity at a scale of
1 : 5000, which resulted in mapped units with areas as small
as 2500 m2. During 1982–1988 older mapping data were up-
dated and new areas were included with full-area soil qual-
ity assessment (primarily fertility, rockiness, water regime,
texture, erodability). During 1988–1990 soil field surveys
were performed for non-arable lands and ameliorated lands.
Forest soils were mapped during 1976–1989. During these
large-scale field-mapping activities, soil texture was deter-
mined in situ based on organoleptic methods (feel meth-
ods), and for reference profiles laboratory analyses were per-
formed. This enabled calibration between texture defined by
the organoleptic method by each researcher participating in
field survey and texture determined in the laboratory (Esto-
nian Landboard, 2017).

As the result of large-scale soil mapping, 119 soil vari-
eties have been distinguished in the Estonian national clas-
sification system and more than 500 combinations of texture
type description have been collated. About 10 000 profiles
up to 1 m depth (1 profile per 330 ha) have been sampled and
analysed for characterization of mineral soils (Reintam et al.,
2003, 2005). Thus, the texture codes and soil types assigned
to the ca. 750 000 mapped soil units (polygons) are based on
many decades of in situ land surveying practices.

Between 1997 and 2001, the soil map was digitized and
attribute data were inserted into the database, resulting in the
official National Soil Map of Estonia, a GIS vector dataset
containing 750 000 soil units. It is available from the Esto-
nian Land Board in several formats under a permissive open
data license (Estonian Landboard, 2017). A copy with the
original shapefile dataset, the related required documenta-

tion, and checksums has been archived for reference (Esto-
nian Landboard, 2017).

The Estonian soil map contains the following attribute
fields:

– Soil type. A designation of the soil name, the Estonian
analogue to the World Reference Base (WRB) soil ref-
erence groups;

– Texture. A combination of texture classes defined for
fine and coarse fragments, and to which depths the same
texture and coarse fragments are observed (layer).

These attributes are encoded as “string” values, which in-
clude both letters and numbers. The important fields soil type
and texture are not just stored as standardized class values
but are instead a coded description based on abbreviations
that are then combined with numbers for example depths
and indicators for the level of erosion and are grouped to-
gether for different depths within the same attribute field.
These description-based attribute values make it difficult to
derive the foundational numerical values for sand, silt, clay,
and coarse fragments from the codes and to make them more
consistent and usable in calculations and statistical analyses.

2.2 Extraction of texture classes and soil reference
groups and deriving basic physical and textural
values

There are detailed studies on reference soil profiles in Es-
tonia, Latvia, and Lithuania that relate original soil texture,
the so-called Kachinsky texture system (Kachinsky, 1965),
to the USDA soil system (Calhoun et al., 1998) and erosion
modelling case studies where, based on laboratory analyses,
transfer functions from Kachinsky to USDA texture classes
were developed (Laas and Kull, 2003). The relationship be-
tween the Kachinsky and Atterberg systems was provided by
Kask (2001).

The USDA soil taxonomy and WRB soil classification
systems use 12 textural classes, which are defined based on
the sand, silt, and clay fractions (Ditzler et al., 2017). How-
ever, the USDA system defines fine particles as having a di-
ameter ≤ 2 mm, whereas the Soviet-era maps use a diameter
of ≤ 1 mm. The Soviet soil classification also mostly ignores
the silt fractions and focuses on the clay fraction (diameter
≤ 0.001 mm).

The Soil Map of Estonia’s “texture” field encodes the tex-
ture and general soil layer structure for each mapped soil unit
in a structured, rule-based format (based on old Soviet-era
paper maps). The original observations were classified into
the Estonian texture code system based on Kachinsky (1965)
soil particle size standards at the time of observation (not by
us). Regarding uncertainties related to that process – as we
take these as observed data – we achieved 5 % accuracy in
organoleptic determination of clay content for lower-value
classes while possible error increased in cases of heavy tex-
ture classes.
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Figure 1. Flowchart for executed processing steps outlining the work packages, input datasets, and derived eco-hydrological modelling
parameters on soil, topography, and land use.

We developed a computer program that converts the en-
coded texture codes into an intermediate data structure,
which extracts again Estonian texture classes and coarse
fragment classes, into separate layers including depth infor-
mation. Subsequently, we derived all defined numerical tex-
ture values using a lookup table (Table 1) that represents
our best efforts to account for the size difference between
the USDA and Soviet systems and lack of silt data in the
Soviet system. The foundational numerical values for fine-
earth fractions and coarse fragments of the soil are solely de-
rived from the extracted processed Estonian texture classes
as demonstrated in Table 1.

In addition we introduced two more classes beyond
the well-known USDA textures classes, i.e. “PEAT” and
“GRAVELS”. The former states that this soil unit is a peat-
land, where the peat layer thickness is at least 30 cm. For
hydrological modelling reasons we decided to still assign
sand, silt, and clay fractions to these units in order to pro-
vide soil data coverage with as little interruption as possible.
To soil units with the class “PEAT” a high clay content was
assigned in order to represent the low vertical conductivity
at the bottom of these peat bogs. However, for applications
that critically evaluate clay content for soil units, the addi-
tional “PEAT” texture class can be used to apply additional

rules to mask these soil units accordingly. The latter class
“GRAVELS” is intended to demark soil units or discrete lay-
ers therein, where only a coarse fragment type but no fine tex-
tures have been coded in the original texture codes. In these
cases, depending on the type of the coarse fragment the layer
can consist of gravels, large rocks, or massive rock.

Similar to the Estonian texture classes there exist Estonian
stoniness classes that describe a certain type of coarse frag-
ment within the soil profile. An additional number in con-
nection with this rock type identifier indicates the amount or
volume of these rocks in 1 kg of soil. We used this indicator
number to designate numerical values for the coarse frag-
ments. Table 2 shows how we derived the rock content from
the coarse fragments indicator that we obtained from the soil
map encoding.

A base assumption is that most soils in Estonia were sam-
pled to a depth of 1 m, as this is the case for a default soil
profile. There is only one vertical profile defined per mapped
soil unit. If larger or smaller depth information was encoded
in the original soil texture code, then this would be used for
the overall depth of that soil sample. For each of the layers,
we collated depth from the soil surface to the bottom of each
layer. The data model is relational and each soil unit is repre-
sented as one row, with its polygon geometry, identifier, and
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Table 1. Example of the basic rules for deriving numerical values for texture (sand, silt, and clay contents) from the Estonian texture codes
and assigned new English-language and USDA texture classes. These rules were selected by the authors. The full table is provided as a
supplemental Excel spreadsheet (“texture_rules_lookup.xlsx”)

Estonian texture Estonian English USDA texture Proportion (%) of
code name name code total weight

Sand Silt Clay

l liiv sand S 90 5 5
l1 sõre liiv coarse sand S 95 5 0
l2 sidus liiv fine sand S 90 3 7
sl saviliiv loamy sand LS 82 9 9
sl1 saviliiv loamy sand LS 82 9 9
ls liivsavi loam L 55 30 15
ls1 kerge liivsavi sandy loam SL 65 20 15
ls2 keskmine liivsavi loam L 55 30 15
s savi clay C 25 30 45

all collected parameters as attributes. The maximum num-
ber of distinctly defined layers was four, and layer-dependent
parameter values (at different depths) are only meaningful
where the variable’s number suffix is smaller than or equal to
the number of defined layers.

We compared the encoded Estonian soil type from the
original soil map in order to find the most appropriate soil
type from the main Estonian soil types from the soil refer-
ence list. The soil types and the Estonian soil names were
then related to the FAO WRB soil reference groups (FAO,
2015) after the data have been corrected and standardized for
each map unit in the extended soil dataset based on expert
input (Hiederer et al., 2011). The full table that relates the
Estonian and WRB soil reference groups is provided with
the supplemental materials.

This first and fundamental step concluded with a set of
variables for each mapped soil unit that now include sep-
arate standardized Estonian and USDA texture classes per
soil layer, number, and depths of layers of the mapped soil
unit and numerical values for fine-earth and coarse fragments
fractions per layer, as well as a WRB soil designation group.

2.3 Adding topographic variables as predictor variables

For the subsequent step of SOC prediction via the random
forest machine-learning model, we calculated the mean, me-
dian, and standard deviation of several topographic and envi-
ronmental variables as additional predictor variables. Topo-
graphic variables slope, topographic wetness index (TWI),
terrain ruggedness index (TRI), and slope length–steepness
(LS) factor were all calculated by using SAGA-GIS software
based on a digital elevation model (Conrad et al., 2015). The
lidar-based digital elevation model with resolution 5 m was
obtained from Estonian Land Board.

The TWI is a topo-hydrological factor proposed by Beven
and Kirkby (Beven and Kirkby, 1979) and is often used
to quantify topographic control on hydrological processes

(Michielsen et al., 2016; Uuemaa et al., 2018) which are
also relevant in the soil evolution. TWI represents the spatial
pattern of saturated areas, which directly affect hydrological
processes at the watershed scale (Mokarram et al., 2015).

It is a function of both the slope and the upstream con-
tributing area:

TWI= ln(a/ tanb), (1)

where a is the specific upslope area draining through a cer-
tain point per unit contour length (m2 m−1), and b is the slope
gradient (in degrees).

TRI reflects the soil erosion processes and surface storage
capacity which again is relevant from a soil evolution per-
spective. The TRI expresses the amount of elevation differ-
ence between neighbouring cells, where the differences be-
tween the focal cell and eight neighbouring cells are calcu-
lated:

TRI= Y
[∑(

xij − x00
)2]1/2

, (2)

where xij is the elevation of each neighbour cell to cell (0,0).
Flat areas have a value of zero, while mountain areas with
steep ridges have positive values.

The potential erosion in catchments can be evaluated using
LS as used by the universal soil loss equation (USLE). LS is
the length–slope factor that accounts for the effects of topog-
raphy on erosion and is based on slope and specific catch-
ment area (as substitute for slope length). In SAGA-GIS the
calculation is based on the following (Moore et al., 1991):

LS= (n+ 1)(As/22.13)n(sinβ/0.0896)m, (3)

where n= 0.4 and m= 1.3.
In addition, we calculated the area per mapped soil unit

in square metres and in percentage of area, which is un-
der drainage. The drainage regime considered both under-
ground tile drainage and ditch-based drainage systems. Anal-
ogously, we sorted land use and land cover proportions into
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Table 2. The relationship between the coarse fragment (rock content and shape) indicator from the soil map encoding and the rock content
as a percentage of the total volume. We used the average of each defined range.

Scale of conversion for rock content

“Skeleton” indicator number 1 2 3 4 5 6
Inferred rock content (% of volume) 6 15 25 40 60 85

Figure 2. Distinct soil unit polygons including all sampling locations for the machine-learning training sample.

arable land, forest, grasslands, wetland, urban areas, water,
and “other”, also as area per mapped soil unit in square me-
tres and in percentage of area. The drainage, land use, and
land cover information was derived from the Estonian Topo-
graphic Database (ETAK) and the official register of drainage
systems by the Agricultural Board of Ministry of Rural Af-
fairs of Estonia.

2.4 Predicting soil organic carbon (SOC) and bulk
density (BD)

The main information retrievable from the Soil Map of Es-
tonia is only the soil type and the soil texture. However, soil
hydraulic properties and SOC data are needed for many dif-
ferent applications in soil hydrology, ecology, and ecosys-
tem services modelling. Pedotransfer functions (PTFs) have
proven to be useful to indirectly estimate these parameters
from more easily obtainable soil data (Van Looy et al., 2017).
Therefore, several soil parameters like soil organic carbon,
bulk density, and saturated hydraulic conductivity must be
derived via PTFs and other data assimilation methods. To
apply PTFs and other data-assimilation methods, third-party

datasets can be used as secondary sources. In the previous
steps we have prepared a wide set of input variables, includ-
ing the numerical fractions for the textural properties, stan-
dardized classes for soil type and soil textures, and additional
topographic variables, which we can apply as predictor vari-
ables to model the value distribution for SOC and BD. We
develop these two extended soil physical input parameters as
organic carbon content in percentage of soil weight and dry
bulk density in cubic megagrams per cubic metre (Mg m−3)
or grams per cubic centimetre (g cm−3).

In order to map the spatial distribution of SOC in Estonia
a random forest (RF) model was used to predict SOC based
on parameters derived from the soil map. RF was preferred
to more advanced machine-learning algorithms (e.g. neural
networks) because it has been shown to be relatively resilient
towards data noise (Breiman, 2001; Caruana and Niculescu-
Mizil, 2006). In addition, feature importance can be extracted
from the model to determine the most influential predictor
variables.

For training, we used measurements of soil organic matter
(SOM) or SOC from forest areas (samples sizes: n= 100),
four datasets of samples from Estonian open and overgrown
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grasslands and alvars (a type of calcareous grassland on a
limestone plain with thin or no soil; n: 94, 137, 146, 69),
peatlands (n= 175) and arable soil transects (n= 8964) re-
sulting in 3373 distinct point locations (Kriiska et al., 2019;
Noreika et al., 2019; Suuster et al., 2011). Where neces-
sary, the SOM values were translated into SOC via SOC =
SOM/1.724. Many samples from peatlands and arable fields
were often sampled within the same mapped soil unit. For
these soil units (polygons) the respective soil measurement
data were averaged and joined to the respective soil units to
reduce the bias of the prediction. After joining the sample
size was reduced to the 397 distinct training samples for ma-
chine learning (Fig. 2).

These data were then randomly split into training (60 %)
and test (40 %) sets, and the model was evaluated by pre-
dicting SOC based on the predictor variables of the test set.
Finally, the model was applied to soil map polygons with-
out available SOC measurements to predict SOC content in
Estonian soils.

Subsequently, we calculated soil bulk density based on
predicted soil organic carbon for each layer in each mapped
soil unit polygon, with the following PTF (Adams, 1973;
Kauer et al., 2019), which has been successfully applied in
Estonia:

BD= 1/(0.03476×SOM+ 0.6098), (4)

where SOM = SOC ×1.724
The conversion factor of 1.724 is a widely used universal

value. However, we acknowledge that the real value varies
slightly between soils.

2.5 Assimilation of additional hydrological variables

In order for this dataset to be more useful in eco-hydrological
modelling we developed and added two additional hydro-
logical variables. Saturated hydraulic conductivity (Ksat) is
a quantitative measure of water movement through a sat-
urated soil. In addition to the ability of transmitting water
along a hydraulic gradient we also add available water capac-
ity (AWC) as a variable. AWC describes the soil’s ability to
hold water and quantifies how much of that water is available
for plants to grow. We develop two variables: saturated hy-
draulic conductivity (mm/h) and available water capacity of
the soil layer (mm H2O per millimetre of soil). We calculated
Ksat using the improved Rosetta3 software, which relates soil
texture to a hydraulic gradient and implements a pedotransfer
model with improved estimates of hydraulic parameter distri-
butions (Zhang and Schaap, 2017). It is based on an artificial
neural network (ANN) for the estimation of water retention
parameters, saturated hydraulic conductivity, and their uncer-
tainties. For each standardized texture class, we used the nu-
merical fine-earth fractions for sand, silt, and clay as inputs
for the Rosetta3 software and calculated Ksat for each layer
in each mapped soil unit polygon. Table 5 demonstrates the
predicted values for several texture classes.

In order to calculate available water capacity, we summa-
rized the field capacity (FC, at−330 cm matric potential) and
wilting point (WP, at −15 848 cm matric potential) variables
of the seven soil depths of the EU-SoilHydroGrids 250 m res-
olution raster datasets (Tóth et al., 2017) for each mapped
soil unit for the provided depths of 0, 5, 15, 30, 60, 100, and
200 cm. The available water capacity is then calculated for
each of the seven depths: AWC = FC −WP (Dipak and Ab-
hijit, 2005). The resulting seven AWC raster layers are then
averaged into the respective depth ranges for each of the dis-
crete layers of the Estonian mapped soil units.

3 Results

In this study, we developed the EstSoil-EH database, which
includes standardized soil type and soil texture data from the
official Soil Map of Estonia, related to the World Reference
Base and FAO soil classes and USDA texture descriptions.
Figure 3 shows a map of the classified topsoil texture classes
derived from the original Estonian texture codes. In addition,
it shows the peat soils that cover up to 20 % of Estonia and
are an important soil type in such northern countries.

We synthesized additional information usable in an eco-
hydrological modelling context for each of the soil units.
These values include the number of discretized soil layers
– up to a maximum of four separate vertical distinct soil lay-
ers where described in the original texture codes – the depth
of each layer, and the maximum depth of the sampled profile
for each mapped soil unit. Based on the layer information
and the texture classes we defined the percent fractions per
volume of sand, silt, clay, and coarse fragments per layer.
We also added topographical, land use, and land cover infor-
mation and used these as predictors for SOC. Subsequently,
predicted SOC, BD, hydraulic conductivity, and assimilated
AWC values were added. Table 3 contains the full list of vari-
ables and parameters per mapped soil unit contained in the
EstSoil-EH dataset.

3.1 Validation of soil type and texture classes extraction
and standardization

For the main soil types, we achieved 97.7 % agreement be-
tween the software’s result and the manual classification.
The manual verification of the validation revealed several re-
labelling issues from the error lookup table. A visual assess-
ment by two soil sciences senior research staff members as-
serted that the level of similarity of the soil types that were
selected by the automated process was closely related. How-
ever, the mismatches (1943 records, equivalent to 2.3 % of
the total records) indicated that the soil experts tended to in-
terpret “errors” based on personal knowledge that may not
be reproducible in a strictly automated fashion. For exam-
ple, some landforms (e.g. eroded material filling low slopes
or collapsed cliffs) were originally classified as exceptions to
the general classification rule based on the local knowledge
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Figure 3. EstSoil-EH dataset: USDA topsoil textures derived from the original Estonian texture codes by the software developed in the
present study, including additional classes “PEAT” and “GRAVELS”. Lower image is a zoom-in to a small region to visualize the high level
of detail.

of the landscape. When standardizing these expert interpre-
tations with the same more general soil type, we reduced the
number of mismatched soil type identifiers to 0. We consider
the high accuracy (97.7 %) to be a very good result for a man-
ual approach.

For the validation of textures, we used several steps. First,
given the high agreement between the software-generated
codes and the human-generated codes, we accepted the soft-
ware’s texture codes for use in our subsequent evaluations.
Next, we compared the extracted main texture for each layer
with the manually coded value:

– 77 870 of 83 364 records (93.4 %) showed identical
parsing of the full texture code.

– 71 635 of the records (85.9 %) showed identical inter-
pretation of the first layer’s texture type (10 312 records
were differently coded, and 1417 produced “no value”
errors, in which either the source or validation dataset
contained no value, preventing a comparison with the
other dataset’s value).

– 65 000 of the records (78.0 %) showed identical inter-
pretation of the second layer’s texture (with 2325 dif-
ferently coded textures, and 16 038 “no value” errors,

of which 15 461 occurred in the new automatically pro-
cessed dataset, and only 577 occurred in the validation
dataset).

– 82 507 of the records (99.0 %) showed identical inter-
pretation of the third layer’s texture (with most errors
caused by a non-existent third layer, 334 differently
coded, and 523 with a “no value” error).

For sand, silt, and clay fractions we could obtain laboratory
analysis only for 84 forest soil samples. We calculated the
root mean squared error (RMSE) and chose the normalized
median absolute deviation (nMAD) as an additional measure
of dispersion of error for non-Gaussian distributed data:

– RMSE for sand: 13.1 %;

– nMAD for sand: 9.68 %;

– RMSE for silt: 10.7 %;

– nMAD for silt: 7.0 %;

– RMSE for clay: 6.5 %;

– nMAD for clay: 3.9 %.
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Table 3. Description of variables and parameters available in the EstSoil-EH dataset.

Name of variable Data type Description
per mapped soil unit

est_soiltype string Estonian soil type
wrb_code string FAO WRB soil reference group (first and second level)
wrb_main string FAO WRB main soil reference group (first level)
est_txcode string reconstructed error-free interpretation of Estonian texture encoding description
nlayers number number of recognized layers/horizons
zmx float64 depth in millimetres: max depth of the sample-analysed soil profile in the mapped soil unit
z1-4 float64 depth of each layer in millimetres (referring to bottom number) if nlayers indicates defined
est_txt1-4 string Estonian texture class per layer number
lxtype1-4 string USDA texture class
est_crs1-4 string Estonian coarse fragment type
sand1-4 int64 percentage mass of sand in fine-earth fraction
silt1-4 int64 percentage mass of silt in fine-earth fraction
clay1-4 int64 percentage mass of clay in fine-earth fraction
rock1-4 int64 volumetric content in percentage
soc1-4 float64 soil organic carbon content percentage of soil weight
bd1-4 float64 bulk density (g/cm3)
k1-4 float64 saturated hydraulic conductivity (mm/hr)
awc1-4 float64 mm H2O per millimetre of soil
slp_mean float64 mean slope (degrees), from DEM (also median and SD)
twi_mean float64 mean terrain wetness index (also median and SD)
ls_mean float64 LS factor (also median and SD)
tri_mean float64 terrain roughness index (also median and SD)
area_drain float64 area (m2) per unit under a (e.g. tile) drainage regimen
drain_pct float64 percentage of the area of the soil unit under drainage
area_arable float64 area (m2) of LULC arable (six additional LULC types)
arable_pct float64 percentage of area that is LULC arable (six additional LULC types)
geometry geometry polygon, EPSG:3301 Estonian National Grid

Our manual assessment of the mismatches indicated the
same problem that occurred with the soil types. The expert
assessments aimed to keep as much information as possible
available in their decoded classification, and this did not al-
ways agree with the automated processing rules. In addition,
to derive the grammar rules, we added a few simplifying el-
ements, such as omitting some rarely used additional infor-
mation in the soil texture descriptions. For example, the Es-
tonian rules allow specification of several soil parts, but as
a horizontal distribution within the same mapped soil unit
rather than as vertical layers. This is understandably com-
plex, making it difficult to classify this variable soil as a sin-
gle soil unit. Consequently, it is inevitable that some of these
descriptions will not agree with the software’s classification.

3.2 SOC prediction and validation of a random forest
model

We also calculated several extended soil properties, i.e. SOC
content and BD. The RF regression model was implemented
with the RandomForestRegressor function from the Scikit-
learn Python library (Pedregosa et al., 2011). The model was
evaluated by predicting SOC based on the predictor variables

of the test set for the 60 : 40 split. Figure 4 illustrates the
cross-validation scatterplots of observed vs. predicted SOC
values for the test–validation sample splits. The following
characteristics are reported for the chosen RF model:

– coefficient of determination (R2) score: 0.69;

– score of the training dataset with out-of-bag estimate
(oob score): 0.58;

– Pearson’s r correlation coefficient, training: 0.90, vali-
dation: 0.83.

The top six RF features of importance are as follows:

– clay content (CLAY1): 0.65;

– terrain roughness index, standard deviation (tri_stdev):
0.04;

– sand content (SAND1): 0.03;

– LS factor, median (ls_median): 0.028;

– area under drainage in percent (drain_prct): 0.027;

– coarse fragments rock content (ROCK1): 0.024.
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Figure 4. Random forest model cross-validation scatterplot of observed vs. predicted SOC values for the test–validation sample splits:
(a) training subsample and (b) validation subsample.

Figure 5 shows the predicted values of SOC for the top
layer. On visual inspection the spatial distribution for the
SOC content matches comparatively well with known agri-
cultural areas, where low carbon content prevails, as well as
with the peat land areas, which have a very high carbon con-
tent.

For further description and guidance on errors in the pre-
dictions for SOC and BD we calculated the RMSE and
nMAD as an additional measure of dispersion of error for
non-Gaussian distributed data. BD-observed data were only
available for arable lands and forest soil samples and should
be treated accordingly.

– RMSE for SOC predictions: 2.95 %;

– nMAD for SOC: 1.44 %;

– RMSE for the subsequent BD predictions with PTF:
0.33 g/cm3;

– nMAD for BD: 0.15 g/cm3.

However, due to the small number and distribution of input
samples over four distinct land cover types, namely arable
lands, wetlands, forests, and open or grass lands, we evalu-
ated the error distribution for each land form in Table 4. The
prediction error characteristics differ, with the smallest er-
rors for arable lands, then wetlands and the largest for open
grasslands and forest.

3.3 Hydrological variable results

Based on the variables derived in previous steps, we could
calculate saturated hydraulic conductivity (Ksat) based on the
sand, silt, and clay content. Rosetta3 reports the standard de-
viation for its internal prediction process, which draws many
samples for the same input of sand, silt, and clay content and
then provides the mean as the predicted value for K . The
summary of the predicted Ksat values and the standard devi-
ation are summarized in Table 5. For peat areas and wetlands

the predicted values also correspond with ranges reported in
the literature for the sand–silt–clay ratios provided (Gafni et
al., 2011).

Available water capacity was calculated solely by aggre-
gating EU-SoilHydroGrids data for field capacity and wilt-
ing point (Tóth et al., 2017). We compiled all parameters
into a dataset that can now be easily used with SWAT or
other eco-hydrological and land-use-change models. As we
are not changing the general geometry or underlying spatial
data model of the original soil map, all parameters are only
added to the existing mapped soil units, and thus all original
soil polygons remain discernible.

4 Code and data availability

The described “EstSoil-EH” dataset including all sup-
plemental tables and figures is deposited on Zen-
odo, https://doi.org/10.5281/zenodo.3473289 (Kmoch
et al., 2019a). Supplemental software and codes
that were used, e.g. the texture-code parsing scripts,
the machine learning model, and the parameter
calculation Jupyter notebooks, are maintained on
GitHub (https://github.com/LandscapeGeoinformatics/
EstSoil-EH_sw_supplement/releases, last access: 10 Jan-
uary 2020) and were also deposited on Zenodo,
https://doi.org/10.5281/zenodo.3473209 (Kmoch et al.,
2019b). The original National Soil Map of Estonia
(https://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/
Mullastiku-kaart-p33.html, last access: 10 January 2020)
was archived for reference on the DataCite- and OpenAire-
enabled repository of the University of Tartu, DataDOI,
https://doi.org/10.15155/re-72 (Estonian Landboard, 2017).

5 Discussion and future work

For EstSoil-EH, we derived numerical values for the follow-
ing data in all of the mapped soil units in soil map: soil type
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Table 4. Statistical description of SOC prediction error per land form.

Land form Count Min Mean Median Max SD nMAD RMSE

Wetland 150 −5.22 1.74 1.71 8.09 2.73 2.15 3.23
Arable 6675 −21.2 −1.54 −1 6.82 1.78 1.12 2.35
Forest 1299 −24.56 −2.08 −1.52 25.65 4.46 2.79 4.92
Grassland 74 −8.47 1.06 0.52 11.78 4.28 3.21 4.38

Figure 5. Predicted soil organic carbon (SOC) of the top soil layer.

(i.e. soil reference group), texture class, soil profiles (e.g. lay-
ers, depths), texture (clay, silt, sand components, and coarse
fragments), rock content, and physical variables related to the
water and carbon cycle (organic carbon content, bulk density,
hydraulic conductivity, available water capacity). Before our
analysis, a large amount of the information from the high-
resolution Soil Map of Estonian was not readily usable be-
yond the field or farm scale because of the need to manu-
ally interpret the specialized soil types and the complexity
of the rules that describe the texture or other characteris-
tics of the soil units. We provide an extended ready-to-use
dataset containing additional parameters. We also describe
the development of a reproducible method for deriving these
numerical values from a national survey-based soil map to
support modelling and prediction of eco-hydrological pro-
cesses and ecosystem services. Thus, our presented dataset
holds the potential to further improve our understanding of
eco-hydrological processes in the landscape through the use

of advanced statistical (e.g. machine learning) and process-
based models. The information derived is much more spa-
tially related to the landforms and land use observed there
than any other dataset covering soil information for Esto-
nia. Furthermore, the textures and SOC and BD values are
directly derived from reliable observed data samples from
Estonia. This is unique in the case of Estonian soil datasets
and does not hold true for many other reported soil datasets
that cover the area of Estonia. However, the complexity of
the Estonian texture rules and the reliance on human judge-
ment creates high uncertainty in some cases, even for human
interpretation. For example, it is not possible to retrospec-
tively redefine minor differences in boundaries between dif-
ferent classes between texture systems, but we consider natu-
ral variation of texture within the soil mapping unit at a scale
of 1 : 10 000 more significant than that of different texture
systems.
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Table 5. Predicted K sat values in mm/h and reported standard de-
viation from Rosetta3.

Texture class Sand Silt Clay k_sat k_sat_std

GRAVELS 100 0 0 645.68 1.29
S (coarse sand) 95 5 0 362.25 1.19
S (sand) 90 5 5 133.21 1.13
S (fine sand) 90 3 7 113.71 1.17
LS (Estonian “sl1-3” classes) 82 9 9 37.54 1.15
LS (Estonian “tsl1” class) 80 14 6 40.2 1.18
SL 65 20 15 11.02 1.18
L (Estonian “ls2” class) 55 30 15 9.04 1.21
CL 50 15 35 3.67 1.3
L (Estonian “tls1” class) 40 45 15 8.16 1.37
SiL 35 50 15 8.89 1.35
SiCL 30 40 30 3.97 1.34
PEAT (Estonian “t1” class) 25 25 50 5.09 1.53
HUMUS 25 25 50 5.09 1.53
HC 25 30 45 4.29 1.43
C 25 30 45 4.29 1.43
PEAT (Estonian “t2” class) 20 20 60 7.24 1.81
PEAT (Estonian “t3” class) 15 15 70 9.2 2.45

Our reproducible workflow and the open-access availabil-
ity and transparency of measurement data can provide a re-
liable building block for advancing the study of soil and hy-
drological processes in Estonia into temporal aspects. In par-
ticular, properties such as SOC and BD will vary extensively
depending on the land use and land cover. In combination
with developments that also capture the dynamics of land use
change and adaptations under climate change, the evolution
of the soils in Estonia could more readily be investigated.

One challenge in SOC modelling was that the number of
field-based samples that were used for training the random
forest model was relatively small for the whole country. Even
though the samples covered four main land cover types (agri-
cultural, forests, wetlands, grasslands), there was still signifi-
cant spatial heterogeneity that might not have been captured.
Moreover, in addition to field-based validation data, we used
lower-resolution modelled datasets, e.g. SoilGrids and EU-
SoilHydroGrids, for a comparative validation. These datasets
are not necessarily more accurate than the results of our clas-
sification. Although we accounted for this problem by pro-
viding additional comparisons, the scale mismatch between
continuous raster datasets and polygon-based data inevitably
introduced errors and trade-offs into the comparison. One so-
lution to these problems would be to perform supplemental
field sampling to ground-truth the source data and confirm
the accuracy of our model’s classification based on the field
data.

From the point of the end-user, the first layer is not a de-
fault 30 cm deep top soil layer. A direct interpretation of the
derived discrete layer information as soil horizons should not
be generalized but checked on case-per-case basis. All physi-
cal, chemical, and hydraulic properties are based on the anal-
ysis of the original texture code per mapped soil unit and the
resulting discrete layers per unit. This is an important usage

constraint, for example in the sense of biological activity, as
the 30 cm soil layer is the most active, but for each soil unit
it needs to be checked which layers extend into which actual
depths. Also, the SOC content and BD are not modelled in a
vertical continuum but per discrete value per unit and layer.
However, fertile soils like Luvisols contain a lot of SOC, also
in deeper layers. But such additional expert knowledge is en-
coded neither in the original Soil Map of Estonia nor in the
processing algorithms that derived the extended parameters
for this newly generated dataset. However, such additional
knowledge, as well as more appropriate models for peatland
areas, could be included as additional rules in a subsequent
improvement of this dataset.

Kõlli et al. (2009) published estimates of the SOC stocks
for forests, arable lands, and grasslands and for all of Es-
tonia. Nevertheless, they constrained their finding by noting
that their estimates were calculated based on the mean SOC
stock for each soil type and the corresponding area in which
the soil type was distributed. Putku (2016) used the large-
scale Soil Map of Estonia at the polygon level for SOC stock
modelling for mineral soils in arable land of Tartu county.
Carbon content calculations in Estonia have historically been
predominantly made for soils in agricultural areas. Existing
literature and our results in summary are in line with SOC
distribution per soil type in mineral soils in arable lands (Su-
uster et al., 2011).

The original purpose of this dataset was to derive values
for hydrological modelling purposes and at the same time
to stay as close to the original data as possible. From that
perspective peat soil units are currently modelled with as-
sumptions to have a similar behaviour to clay hydrologically.
Therefore, the spatial distribution of clay percentage in par-
ticular, but also the concurrent physical fractions of sand and
silt do not make scientific sense for these areas where peat is
prevalent. In order to make the dataset as useful as possible
and to identify peatland areas, we introduced the additional
class “PEAT” into the USDA classification. While sand, silt,
clay, and rock content are directly derived values from the
original texture codes, SOC and Ksat are modelled via statis-
tical machine-learning algorithms, which include additional
uncertainty. This should be considered when evaluating BD,
which is calculated using SOC as an input variable. In addi-
tion, it would be possible to use BD as an additional predictor
for Rosetta3. However, we decided that this would introduce
too much uncertainty as BD in EstSoil-EH is based on a PTF
function of SOC, which in turn was also predicted via statis-
tical modelling.

The only variable which we did not model based on the
dependence of already modelled parameters was AWC. Here
we summarized the EU-SoilHydroGrids 250 m (Tóth et al.,
2017) raster datasets for FC and WP as inputs for an external
data integration. This is not ideal and can be considered a
trade-off between introducing too much uncertainty and an
external unrelated data source.
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In the future, we foresee step-wise improvement of our
software by developing better PTFs to estimate parame-
ters and to better integrate the presence of peat soils and
other specific landscapes and environments in Estonia. Fur-
thermore, statistical machine-learning, neural-network, and
deep-learning methods could be tested in order to improve
soil classifications and express more complex relationships
between soil types and textures. Currently, one specificity
of the newly created EstSoil-EH dataset is its discrete na-
ture, as we are only adding derived numerical variables to
the existing mapped soil units (polygons). We do not predict
a continuous surface in this study; thus, comparisons with
continuous surface parameters predictions such as in Soil-
Grids (Hengl et al., 2017) or EU-SoilHydroGrids (Tóth et
al., 2017) are not directly possible. However, the workflow
could also potentially be extended for creating a continuous
surface. With appropriate modification (e.g. to use the soil
characteristic codes more consistently for a different coun-
try), our methodology could also be applied in other coun-
tries such as Lithuania or Latvia that share similar historical
land- and soil-surveying practices.
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Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara,
M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars,
J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and Kempen, B.:
SoilGrids250m: Global gridded soil information based on ma-
chine learning, edited by: Bond-Lamberty, B., PLoS One, 12,
e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.

Hiederer, R., Michéli, E., and Durrant, T.: Evaluation of the BioSoil
DemonstrationProject, Ispra, European Commission Joint Re-
search Centre Institute for Environment and Sustainability, 2011.

Kachinsky, N.: Fizika potchv, Soil physics, Vol. 1, Moscow Univer-
sity Press, Moscow, 1965 (in Russian).

Kask, R.: On the English Equivalents of the Estonian Terms for the
Textural Classes of Estonian Soils, J. Agr. Sci., 14, 93–96, 2001.

Kauer, K., Astover, A., Viiralt, R., Raave, H., and Kätterer, T.:
Evolution of soil organic carbon in a carbonaceous glacial till
as an effect of crop and fertility management over 50 years
in a field experiment, Agr. Ecosyst. Environ., 283, 106562,
https://doi.org/10.1016/j.agee.2019.06.001, 2019.

Keesstra, S., Mol, G., de Leeuw, J., Okx, J., Molenaar, C., de Cleen,
M., and Visser, S.: Soil-related sustainable development goals:
Four concepts to make land degradation neutrality and restora-
tion work, Land, 7, 133, https://doi.org/10.3390/land7040133,
2018.

Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith,
P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky,
Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S.,
Mol, G., Jansen, B., and Fresco, L. O.: The significance
of soils and soil science towards realization of the United
Nations Sustainable Development Goals, SOIL, 2, 111–128,
https://doi.org/10.5194/soil-2-111-2016, 2016.

Kmoch, A., Kanal, A., Astover, A., Kull, A., Virro, H.,
Helm, A., Pärtel, M., Ostonen, I., and Uuemaa, E.: EstSoil-
EH: An eco-hydrological modelling parameters dataset de-
rived from the Soil Map of Estonia (data deposit), Zenodo,
https://doi.org/10.5281/zenodo.3473289, 2019a.

Kmoch, A., Virro, H., and Uuemaa, E.: EstSoil-EH software supple-
ment, Zenodo, https://doi.org/10.5281/zenodo.3473210, 2019b.

Kõlli, R., Ellermäe, O., Köster, T., Lemetti, I., Asi, E., and Kauer,
K.: Stocks of organic carbon in Estonian soils, Est. J. Earth Sci.,
58, 95–108, https://doi.org/10.3176/earth.2009.2.01, 2009.

Kriiska, K., Frey, J., Asi, E., Kabral, N., Uri, V., Aosaar, J., Varik,
M., Napa, Ü., Apuhtin, V., Timmusk, T., and Ostonen, I.: Vari-
ation in annual carbon fluxes affecting the SOC pool in hemi-
boreal coniferous forests in Estonia, Forest Ecol. Manag., 433,
419–430, https://doi.org/10.1016/j.foreco.2018.11.026, 2019.

Laas, A. and Kull, A.: Sustainable Planning and Development,
edited by: Beriatos, A. G. K. E., Brebbia, C. A., and Coccossis,
H., Boston, Wessex Institute of Techonology Press, Southamp-
ton, 2003.

Michielsen, A., Kalantari, Z., Lyon, S. W., and Liljegren, E.: Pre-
dicting and communicating flood risk of transport infrastructure

based on watershed characteristics, J. Environ. Manage., 182,
505–518, https://doi.org/10.1016/j.jenvman.2016.07.051, 2016.

Minasny, B. and Hartemink, A. E.: Predicting soil prop-
erties in the tropics, Earth-Sci. Rev., 106, 52–62,
https://doi.org/10.1016/j.earscirev.2011.01.005, 2011.

Mokarram, M., Roshan, G. and Negahban, S.: Landform classifi-
cation using topography position index (case study: salt dome
of Korsia-Darab plain, Iran), Model. Earth Syst. Environ., 1, 40,
https://doi.org/10.1007/s40808-015-0055-9, 2015.

Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital ter-
rain modelling: A review of hydrological, geomorphologi-
cal, and biological applications, Hydrol. Process., 5, 3–30,
https://doi.org/10.1002/hyp.3360050103, 1991.

Noreika, N., Helm, A., Öpik, M., Jairus, T., Vasar, M., Reier, Ü.,
Kook, E., Riibak, K., Kasari, L., Tullus, H., Tullus, T., Lutter, R.,
Oja, E., Saag, A., Randlane, T., and Pärtel, M.: Forest biomass,
soil and biodiversity relationships originate from biogeographic
affinity and direct ecological effects, Oikos, 128, 1653–1665,
https://doi.org/10.1111/oik.06693, 2019.

Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A.,
Greiner, L., Schaepman, M. E., and Papritz, A.: Evaluation of
digital soil mapping approaches with large sets of environmental
covariates, SOIL, 4, 1–22, https://doi.org/10.5194/soil-4-1-2018,
2018.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, É.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Prévost, M.: Predicting Soil Properties from Organic
Matter Content following Mechanical Site Prepara-
tion of Forest Soils, Soil Sci. Soc. Am. J., 68, 943,
https://doi.org/10.2136/sssaj2004.9430, 2004.

Putku, E.: Prediction models of soil organic carbon and bulk density
of arable mineral soils, Doctoral Thesis, Estonian University of
Life Sciences, 2016.

Reintam, L., Kull, A., Palang, H. and Rooma, I.: Large-Scale Soil
Maps and a Supplementary Database for Land Use Planning in
Estonia, J. Plant Nutr. Soil Sc., 166, 225–231, 2003.

Reintam, L., Rooma, I., Kull, A., and Kõlli, R.: Soil information
and its application in Estonia, Research report, European Soil
Bureau, 9, 121–132, 2005.

Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kõlli, R.,
and Astover, A.: Soil bulk density pedotransfer functions of
the humus horizon in arable soils, Geoderma, 163, 74–82,
https://doi.org/10.1016/j.geoderma.2011.04.005, 2011.

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhi-
tova, G., and Zimov, S.: Soil organic carbon pools in the north-
ern circumpolar permafrost region, Global Biogeochem. Cy., 23,
GB2023, https://doi.org/10.1029/2008GB003327, 2009.

Tóth, B., Weynants, M., Pásztor, L., and Hengl, T.: 3D soil hy-
draulic database of Europe at 250 m resolution, Hydrol. Process.,
31, 2662–2666, https://doi.org/10.1002/hyp.11203, 2017.

Uuemaa, E., Hughes, A. O., and Tanner, C. C.: Identifying fea-
sible locations for wetland creation or restoration in catch-
ments by suitability modelling using light detection and rang-
ing (LiDAR) Digital Elevation Model (DEM), Water, 10, 464,
https://doi.org/10.3390/w10040464, 2018.

Earth Syst. Sci. Data, 13, 83–97, 2021 https://doi.org/10.5194/essd-13-83-2021

https://doi.org/10.3390/w11091940
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.agee.2019.06.001
https://doi.org/10.3390/land7040133
https://doi.org/10.5194/soil-2-111-2016
https://doi.org/10.5281/zenodo.3473289
https://doi.org/10.5281/zenodo.3473210
https://doi.org/10.3176/earth.2009.2.01
https://doi.org/10.1016/j.foreco.2018.11.026
https://doi.org/10.1016/j.jenvman.2016.07.051
https://doi.org/10.1016/j.earscirev.2011.01.005
https://doi.org/10.1007/s40808-015-0055-9
https://doi.org/10.1002/hyp.3360050103
https://doi.org/10.1111/oik.06693
https://doi.org/10.5194/soil-4-1-2018
https://doi.org/10.2136/sssaj2004.9430
https://doi.org/10.1016/j.geoderma.2011.04.005
https://doi.org/10.1029/2008GB003327
https://doi.org/10.1002/hyp.11203
https://doi.org/10.3390/w10040464


A. Kmoch et al.: EstSoil-EH 97

Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B.,
Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y. A., Padar-
ian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght, J.,
van der Ploeg, M. J., Weihermüller, L., Zacharias, S., Zhang,
Y., and Vereecken, H.: Pedotransfer Functions in Earth System
Science: Challenges and Perspectives, Rev. Geophys., 55, 1199–
1256, https://doi.org/10.1002/2017RG000581, 2017.

Vitharana, U. W. A., Mishra, U., Jastrow, J. D., Matamala, R., and
Fan, Z.: Observational needs for estimating Alaskan soil car-
bon stocks under current and future climate, J. Geophys. Res.-
Biogeo., 122, 415–429, https://doi.org/10.1002/2016JG003421,
2017.

Yigini, Y. and Panagos, P.: Assessment of soil organic car-
bon stocks under future climate and land cover changes
in Europe, Sci. Total Environ., 557–558, 838–850,
https://doi.org/10.1016/J.SCITOTENV.2016.03.085, 2016.

Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic param-
eter distributions and summary statistics (Rosetta3), J. Hydrol.,
547, 39–53, https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.

https://doi.org/10.5194/essd-13-83-2021 Earth Syst. Sci. Data, 13, 83–97, 2021

https://doi.org/10.1002/2017RG000581
https://doi.org/10.1002/2016JG003421
https://doi.org/10.1016/J.SCITOTENV.2016.03.085
https://doi.org/10.1016/j.jhydrol.2017.01.004

	Abstract
	Introduction
	Materials and methods
	Background on the Soil Map of Estonia
	Extraction of texture classes and soil reference groups and deriving basic physical and textural values
	Adding topographic variables as predictor variables
	Predicting soil organic carbon (SOC) and bulk density (BD)
	Assimilation of additional hydrological variables

	Results
	Validation of soil type and texture classes extraction and standardization
	SOC prediction and validation of a random forest model
	Hydrological variable results

	Code and data availability
	Discussion and future work
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

