Articles | Volume 13, issue 11
Earth Syst. Sci. Data, 13, 5389–5401, 2021
https://doi.org/10.5194/essd-13-5389-2021
Earth Syst. Sci. Data, 13, 5389–5401, 2021
https://doi.org/10.5194/essd-13-5389-2021

Data description paper 19 Nov 2021

Data description paper | 19 Nov 2021

Multi-resolution dataset for photovoltaic panel segmentation from satellite and aerial imagery

Hou Jiang et al.

Related authors

Surface global and diffuse solar radiation over China acquired from geostationary Multi-functional Transport Satellite data
Hou Jiang, Ning Lu, Jun Qin, and Ling Yao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-209,https://doi.org/10.5194/essd-2019-209, 2019
Revised manuscript not accepted
Short summary

Related subject area

Antroposphere – Energy and Emissions
Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation
Margarita Choulga, Greet Janssens-Maenhout, Ingrid Super, Efisio Solazzo, Anna Agusti-Panareda, Gianpaolo Balsamo, Nicolas Bousserez, Monica Crippa, Hugo Denier van der Gon, Richard Engelen, Diego Guizzardi, Jeroen Kuenen, Joe McNorton, Gabriel Oreggioni, and Antoon Visschedijk
Earth Syst. Sci. Data, 13, 5311–5335, https://doi.org/10.5194/essd-13-5311-2021,https://doi.org/10.5194/essd-13-5311-2021, 2021
Short summary
A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019
Jan C. Minx, William F. Lamb, Robbie M. Andrew, Josep G. Canadell, Monica Crippa, Niklas Döbbeling, Piers M. Forster, Diego Guizzardi, Jos Olivier, Glen P. Peters, Julia Pongratz, Andy Reisinger, Matthew Rigby, Marielle Saunois, Steven J. Smith, Efisio Solazzo, and Hanqin Tian
Earth Syst. Sci. Data, 13, 5213–5252, https://doi.org/10.5194/essd-13-5213-2021,https://doi.org/10.5194/essd-13-5213-2021, 2021
Short summary
High-resolution seasonal and decadal inventory of anthropogenic gas-phase and particle emissions for Argentina
S. Enrique Puliafito, Tomás R. Bolaño-Ortiz, Rafael P. Fernandez, Lucas L. Berná, Romina M. Pascual-Flores, Josefina Urquiza, Ana I. López-Noreña, and María F. Tames
Earth Syst. Sci. Data, 13, 5027–5069, https://doi.org/10.5194/essd-13-5027-2021,https://doi.org/10.5194/essd-13-5027-2021, 2021
Short summary
African anthropogenic emissions inventory for gases and particles from 1990 to 2015
Sekou Keita, Catherine Liousse, Eric-Michel Assamoi, Thierno Doumbia, Evelyne Touré N'Datchoh, Sylvain Gnamien, Nellie Elguindi, Claire Granier, and Véronique Yoboué
Earth Syst. Sci. Data, 13, 3691–3705, https://doi.org/10.5194/essd-13-3691-2021,https://doi.org/10.5194/essd-13-3691-2021, 2021
Short summary
Global Covenant of Mayors, a dataset of greenhouse gas emissions for 6200 cities in Europe and the Southern Mediterranean countries
Albana Kona, Fabio Monforti-Ferrario, Paolo Bertoldi, Marta Giulia Baldi, Georgia Kakoulaki, Nadja Vetters, Christian Thiel, Giulia Melica, Eleonora Lo Vullo, Alessandra Sgobbi, Christofer Ahlgren, and Brieuc Posnic
Earth Syst. Sci. Data, 13, 3551–3564, https://doi.org/10.5194/essd-13-3551-2021,https://doi.org/10.5194/essd-13-3551-2021, 2021
Short summary

Cited articles

Ball, J. E., Anderson, D. T., and Chan, C. S.: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community, J. Appl. Remote Sens., 11, 042609, https://doi.org/10.1117/1.JRS.11.042609, 2017. 
Bódis, K., Kougias, I., Jäger-Waldau, A., Taylor, N., and Szabó, S.: A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union, Renew. Sust. Energ. Rev., 114, 109309, https://doi.org/10.1016/j.rser.2019.109309, 2019. 
Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.: Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, in: Computer Vision – ECCV 2018, edited by: Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., Springer, Cham, Germany, 833–851, https://doi.org/10.1007/978-3-030-01234-2_49, 2018. 
Chu, S. and Majumdar, A.: Opportunities and challenges for a sustainable energy future, Nature, 488, 294–303, https://doi.org/10.1038/nature11475, 2012. 
Golovko, V., Bezobrazov, S., Kroshchanka, A., Sachenko, A., Komar, M., and Karachka, A.: Convolutional neural network based solar photovoltaic panel detection in satellite photos, 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017, 14–19, https://doi.org/10.1109/IDAACS.2017.8094501, 2017. 
Download
Short summary
A multi-resolution (0.8, 0.3, and 0.1 m) photovoltaic (PV) dataset is established using satellite and aerial images. The dataset contains 3716 samples of PVs installed on various land and rooftop types. The dataset can support multi-scale PV segmentation (e.g., concentrated PVs, distributed ground PVs, and fine-grained rooftop PVs) and cross applications between different resolutions (e.g., from satellite to aerial samples and vice versa), as well as other research related to PVs.