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Abstract. In the context of global carbon emission reduction, solar photovoltaic (PV) technology is expe-
riencing rapid development. Accurate localized PV information, including location and size, is the basis for
PV regulation and potential assessment of the energy sector. Automatic information extraction based on deep
learning requires high-quality labeled samples that should be collected at multiple spatial resolutions and un-
der different backgrounds due to the diversity and variable scale of PVs. We established a PV dataset using
satellite and aerial images with spatial resolutions of 0.8, 0.3, and 0.1 m, which focus on concentrated PVs,
distributed ground PVs, and fine-grained rooftop PVs, respectively. The dataset contains 3716 samples of PVs
installed on shrub land, grassland, cropland, saline–alkali land, and water surfaces, as well as flat concrete, steel
tile, and brick roofs. The dataset is used to examine the model performance of different deep networks on PV
segmentation. On average, an intersection over union (IoU) greater than 85 % is achieved. In addition, our ex-
periments show that direct cross application between samples with different resolutions is not feasible and that
fine-tuning of the pre-trained deep networks using target samples is necessary. The dataset can support more
work on PV technology for greater value, such as developing a PV detection algorithm, simulating PV con-
version efficiency, and estimating regional PV potential. The dataset is available from Zenodo on the following
website: https://doi.org/10.5281/zenodo.5171712 (Jiang et al., 2021).

1 Introduction

Fossil fuels used by our society have caused unprecedented
levels of carbon dioxide (CO2) with widespread climate im-
pacts that threaten human survival and development (Chu
and Majumdar, 2012; Shin et al., 2021). Therefore, govern-
ments around the world intensively made commitments to
reduce greenhouse gas emissions and formulated schedules
for carbon peak and neutrality. For example, the US govern-
ment announced the goal of achieving carbon neutrality by
2050, and the Chinese government promised to achieve car-

bon peak by 2030 and carbon neutrality by 2060. To achieve
this, a variety of techniques have been developed to gener-
ate electricity from renewable energy sources (Moutinho and
Robaina, 2016), of which solar energy has attracted increas-
ing attention because of its endless availability and environ-
mental friendliness (Kabir et al., 2018).

The photovoltaic (PV) market has experienced rapid
growth over the past two decades owing to the reduced
cost of PV modules and support programs from govern-
ments (La Monaca and Ryan, 2017; Yan et al., 2019). Be-
tween 2000 and 2020, worldwide installed capacity increased
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from 4 W to 714 GW, consistently exceeding expectations
(IRENA, 2021). Utility-scale PV plants usually need a large
ground installation area and thus face the land use competi-
tion with other human activities (Majumdar and Pasqualetti,
2019; Sacchelli et al., 2016). Adverse impacts regarding the
availability of land resources and land erosion are encoun-
tered in PV-installed regions (Hernandez et al., 2015; Rabaia
et al., 2021), which encourages regular monitoring of PV
plants during their working lifetime. Distributed solar PVs
are installed on marginal agricultural lands (Martins et al.,
2007), building rooftops (Bódis et al., 2019), water surfaces
(Liu et al., 2019), and other unused lands to minimize po-
tential ecological and environmental impacts. In contrast to
utility-scale PVs, distributed PVs generate power in isola-
tion; hence, it is necessary to adopt grid-connected technol-
ogy to integrate them into electrical networks for achieving
the greatest benefits (Zambrano-Asanza et al., 2021). To help
with PV integration and monitoring, there are strong inter-
ests among governments and utility decision-makers in ob-
taining localized information of existing PVs, such as the lo-
cation, size, capacity, and power output (Rico Espinosa et
al., 2020; Yao and Hu, 2017). Traditional methods, such as
in situ survey and bottom-up reporting, are generally time-
consuming and incomplete. In addition, the obtained results
lack the desired geospatial precision and may be outdated
due to the rapid growth of PVs. Therefore, frequent data col-
lection is necessary, and an efficient data acquisition method
is required.

With the advance of spatiotemporal resolution of onboard
sensors, satellite and aerial photography can provide up-to-
date images of specific ground targets, making them an ideal
source for obtaining accurate PV information (Perez et al.,
2001; Peters et al., 2018; Wang et al., 2018). PV panels can
be detected and segmented from satellite or aerial images by
designing representative features (e.g., color, spectrum, ge-
ometry, and texture). However, these features vary with dif-
ferent atmospheric conditions, light circumstances, satellite
sensors, observation scales, and surroundings, leading to the
defects of the generalization ability in extended applications
(Ji et al., 2019, 2020; Wang et al., 2018). Deep learning has
been favored in recent years in view of its success in ob-
ject detection and image classification. Several convolutional
neural networks (CNNs) have been proposed to localize solar
PVs from satellite imagery and estimate their sizes (Golovko
et al., 2017; House et al., 2018; Liang et al., 2020; Malof et
al., 2015). For example, Yu et al. (2018) utilized the transfer
learning to train a CNN classifier for PV identification and
then added an additional CNN branch directly connected to
the intermediate layers for PV segmentation. Apart from the
structure of deep networks, the quality of labeled samples
largely determines the final accuracy of obtained information
(Ball et al., 2017; Reichstein et al., 2019). Researchers have
spent a huge amount of time on building benchmark datasets
generated from aerial or satellite imagery (Ji et al., 2019; Li
et al., 2020; Xia et al., 2018). However, to date, there are no

open-source datasets available for PVs and no relevant stud-
ies evaluating the generalization ability of deep learning from
aerial data to satellite data, and vice versa.

To meet the requirements of deep learning for labeled
samples, we built a PV dataset from satellite and aerial im-
agery at three different spatial resolutions (i.e., 0.8, 0.3, and
0.1 m). We tested the effectiveness of our datasets in extract-
ing multi-scale PVs using the coarse satellite samples (0.8 m)
for concentrated PVs, the medium aerial samples (0.3 m) for
distributed ground PVs, and the high-resolution unmanned
aerial vehicle (UAV) samples (0.1 m) for fine-grained rooftop
PVs. In addition, we evaluated the feasibility of deep net-
works for cross applications between satellite and aerial sam-
ples. Our dataset will contribute to a variety of PV applica-
tions in the future.

2 Sampling area and data sources

All PV samples are collected in Jiangsu Province, China,
covering a total area of 107 200 km2 (Fig. 1a). Located in
the lower reaches of the Yangtze River and Huaihe River,
the province is very flat, averaging only 12.3 m above sea
level. The land terrain is mostly made up of low lands and flat
plains, with hills and mountains in the southwest and north
(Fig. 1b). With the continuous economic development and
population growth, the energy demand in Jiangsu Province is
increasing rapidly. The government was committed to energy
transition by improving energy efficiency and promoting the
use of green energy. A number of policies were introduced to
popularize solar PVs. Due to the shortage of land resources,
most of the installed PVs in Jiangsu Province are distributed
in areas where land competition is not fierce (e.g., sparse
shrubs, low-density grasslands, reservoirs, ponds, saline–
alkali lands, and rooftops), which makes it convenient to col-
lect various PVs with different backgrounds.

The sizes of distributed PVs typically vary from a few
panels to several hectares depending on the area of available
background land. It is difficult to identify all these PVs from
a single data source; hence, we used satellite and aerial im-
ages with different spatial resolutions to collect PV samples
at various scales. Gaofen-2 and Beijing-2 satellite images
are used to prepare samples of large-scale PVs. Gaofen-2 is
part of the CHEOS (China High Resolution Earth Observa-
tion System) family and is capable of acquiring images with
a ground sampling distance (GSD) of 0.81 m in panchro-
matic and 3.24 m in multispectral bands. The Beijing-2 satel-
lite constellation consists of three satellites and can provide
images with a GSD of 0.80 m in the panchromatic band
and 3.2 m in the blue, green, red, and near-infrared bands.
Aerial imagery with a GSD of 0.3 m is used to collect sam-
ples of distributed ground PVs. The aerial photography was
conducted by the Provincial Geomatics Center of Jiangsu
in 2018, covering the whole of Jiangsu Province. UAV im-
ages are used to collect rooftop PV samples. The UAV flight
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was carried out in Hai’an County (yellow box in Fig. 1b),
where the development of rooftop PVs is relatively advanced.
Ground control point (GCP) data obtained by continuous
operating reference stations were used for georeferencing.
The final orthophotos have a GSD of 0.1 m and location ac-
curacy of approximately 0.02 m. Figure 1c–d illustrate the
appearance of two rooftop PVs in different images. In the
Gaofen-2 image, the PVs take up only a dozen pixels that
are mixed with surrounding rooftops (Fig. 1c). It is diffi-
cult to distinguish the PVs from the background, let alone
get their exact position and size. In contrast, PV detection
becomes slightly easier in the aerial photograph (Fig. 1d),
but obtaining accurate PV boundaries is still difficult. In the
UAV image (Fig. 1e), we can clearly recognize the PVs, ob-
tain their boundaries, and even count how many panels each
PV is composed of. This example illustrates the necessity of
using multi-resolution images to build PV datasets that meet
the needs of a variety of applications.

3 Generation of PV samples

The schematic workflow to generate PV samples is shown in
Fig. 2. The main procedures are described in the following:

1. Data pre-processing. To obtain high-quality PV sam-
ples, a series of pre-processing methods were applied to
the original satellite and aerial images. We first checked
the raw data and removed images with lots of clouds,
noise, and bright spots. Geometric correction was un-
dertaken to eliminate the spatial distortions in origi-
nal images, and additional orthorectification was used
for aerial images to minimize the perspective (tilt) and
relief (terrain) effects. The adaptive pan sharpening
method (Song et al., 2016) was utilized to improve the
spatial resolution of multi-spectral images by fusing the
panchromatic band. We also performed block adjust-
ment on multi-temporal images to ensure that they have
the same location accuracy. Finally, we use histogram
equalization to adjust the hue component of the images.

2. Sample organization. Our PV dataset includes three
groups of PV samples collected at different spatial res-
olutions (Table 1), namely PV08 from Gaofen-2 and
Beijing-2 imagery, PV03 from aerial photography, and
PV01 from UAV orthophotos. PV08 contains rooftop
and ground PV samples. Ground samples in PV03 are
divided into five categories according to their back-
ground land use type: shrub land, grassland, cropland,
saline–alkali land, and water surface. Rooftop samples
in PV01 are divided into three categories according to
their background roof type: flat concrete, steel tile, and
brick.

3. Image annotation. Due to the differences in the shape,
size, and direction of various PVs, we used polygo-
nal annotations, that is, drawing lines by placing points

around the outer edges of each PV panel. The inner
space surrounded by the points was then assigned a pre-
defined code in Table 1 to indicate the category to which
it belongs. The annotators worked in pairs to ensure that
each PV panel was annotated twice. After getting the
initial annotations, a third annotator would merge the
two annotations and check one by one to fix the po-
tential errors. Finally, a supervisor was responsible for
checking the quality of all annotations, including loca-
tion and category. Figure 3 shows some examples of PV
panels and their annotations.

4. Sample making. The shapefile of polygonal annotations
was converted to a raster that has the same spatial reso-
lution as satellite or aerial images. The raster and origi-
nal red, green, and blue (RGB) images were then seam-
lessly cropped into tiles at a fixed size by referring to
the sampling grids. Tiles containing a single category
of PVs were paired with corresponding image blocks to
form a complete sample (refer to the example in Fig. 2).
We prepared PV08 and PV03 samples at the size of
1024× 1024 pixels, while PV01 samples were prepared
at the size of 256× 256 pixels. The numbers of each cat-
egory are listed in Table 1.

One concern of our dataset is the representativeness of the
samples because the changes in geographic context will in-
evitably affect the performance of deep learning models. We
compared the samples from Gaofen-2 and Beijing-2 images
and found that PV panels exhibit similar characteristics in
high-resolution imagery and that the main difference comes
from the background. Therefore, we collected samples cov-
ering as many backgrounds as possible to ensure the repre-
sentativeness. Besides, some skills (e.g., transferring learn-
ing, cross-domain feature representation) in the deep learn-
ing community can be adopted to enhance the generalization
ability of deep networks trained by our dataset, which is be-
yond the discussion of this study. In the following, we in-
troduce some applications of deep learning to illustrate the
quality and value of our dataset.

4 Applications of the dataset

4.1 PV segmentation using deep networks

To examine the possibility of extracting multi-scale PVs
from complex backgrounds based on our dataset, we carried
out a group of segmentation experiments using deep learning.
We compared the performance of three deep networks, in-
cluding U-Net (Ronneberger et al., 2015), RefineNet (Lin et
al., 2017), and DeepLab v3+ (Chen et al., 2018). The U-Net
consists of a contracting path (encoder) to capture context
and a symmetric expanding path (decoder) that enables pre-
cise localization. The feature map of the encoder is combined
with the up-sampling feature map of the decoder through
skip connection to generate the final segmentation map. The

https://doi.org/10.5194/essd-13-5389-2021 Earth Syst. Sci. Data, 13, 5389–5401, 2021



5392 H. Jiang et al.: Multi-resolution dataset for photovoltaic panel segmentation

Figure 1. Map of the study area and data sources. (a) The location of Jiangsu Province; (b) spatial distribution of all sampling areas;
(c) Gaofen-2 satellite image with a spatial resolution of 0.8 m; (d) image from aerial photography with a spatial resolution of 0.3 m; and
(e) image from unmanned aerial vehicle with a spatial resolution of 0.1 m. The yellow boxes in panels (c–e) represent the same rooftop PVs.

Table 1. Organizational structure of our PV dataset.

Dataset Category Spatial resolution Code Size No.

PV08 PV08_Rooftop ∼ 0.8 m 11 1024× 1024 90
PV08_Ground ∼ 0.8 m 12 1024× 1024 673

PV03 PV03_Rooftop ∼ 0.3 m 111 1024× 1024 236
PV03_Ground_Shrubwood ∼ 0.3 m 121 1024× 1024 119
PV03_Ground_Grassland ∼ 0.3 m 122 1024× 1024 117
PV03_Ground_Cropland ∼ 0.3 m 123 1024× 1024 859
PV03_Ground_SalineAlkali ∼ 0.3 m 124 1024× 1024 352
PV03_Ground_WaterSurface ∼ 0.3 m 125 1024× 1024 625

PV01 PV01_Rooftop_FlatConcrete ∼ 0.1 m 211 256× 256 413
PV01_Rooftop_SteelTile ∼ 0.1 m 212 256× 256 94
PV01_Rooftop_Brick ∼ 0.1 m 213 256× 256 138

RefineNet is a multi-path refinement network which exploits
all information available along the down-sampling process
to enable high-resolution prediction. The high-level seman-
tic features are refined using low-level fine-grained features.
In addition, a chained residual pooling is introduced into in-
dividual residual connections to capture background context.
The DeepLab v3+ combines the advantages from a spatial

pyramid pooling module and encoder–decoder structure. The
former is capable of encoding multi-scale contextual infor-
mation, while the latter can enhance the ability to capture
object boundaries.

The experiments were conducted on PV08, PV03, and
PV01 datasets. For each sub-category (e.g., PV08_Rooftop,
PV08_Ground), all samples were separated into 80 % train-
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Figure 2. Flowchart to generate PV samples.

ing set (from which 20 % of the samples were used for vali-
dation) and 20 % testing set. The Adam optimizer was used
for training, and an early stopping mechanism was adopted to
prevent overfitting. The final segmentation results were eval-
uated using five indicators, including accuracy, precision, re-
call, F1 score, and intersection over union (IoU). Accuracy
refers to the ratio of PVs and background correctly classified
by the model to the sum of PVs and background in the im-
age. Precision is the ratio of PVs correctly identified by the
model to the total number of PVs identified by the model, de-
scribing the reliability of PV segmentation results. The recall
equals the ratio of PVs correctly identified by the model to
the actual total number of PVs. F1 score ( 2×precision×recall

precision + recall ) is
a weighted average of precision and recall, providing a com-
prehensive evaluation of PV extraction results. IoU is the ra-
tio of the intersection to the union between PVs identified by
the model and the actual number of PVs. The evaluation ac-
curacy of PV segmentation results is summarized in Table 2.
It is noted that different networks were compared under equal
conditions, and additional techniques (e.g., data augmenta-
tion, class weight) were not taken into account.

Overall, DeepLab v3+ achieved the highest accuracy
across all three datasets, followed by RefineNet and U-Net.
The disparity among different models was relatively small
at coarse spatial resolution (approximately 2 % in terms of
IoU), but the advantage of the complex network became
obvious as the spatial resolution increases (IoU difference
reaches 5 % for PV03 and 8 % for PV01). The reasonable ex-
planation is that in coarse satellite images the blurred bound-
aries between PVs and background prevent the complex net-
works from acquiring more useful information. Figures 4–6
show some examples which help us in understanding the ef-
fects of network structure and image resolution on the final
segmentation results. With respect to the results of DeepLab
v3+, some parts of PVs were lost (e.g., Figs. 4d, 5d, and 6c),
and the gaps between adjacent PVs were wider than they ac-
tually were (e.g., Figs. 4b, 5d, and 6b). In contrast, RefineNet
and U-Net misclassified portions with similar characteristics
to PVs (e.g., Figs. 4a, b, d, 5a, c, f, and 6b and c). The phe-
nomena suggest that DeepLab v3+ tends to ensure the ex-
tracted PVs are reliable, while RefineNet and U-Net try to
identify as many PVs as possible. This explains why the pre-
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Figure 3. Examples of PV panels and their annotations. Red boxes indicate the boundaries of PV panels.

Table 2. Segmentation accuracy in terms of different evaluation indices. The best values are marked in bold.

Dataset Model Accuracy Precision Recall F1 score IoU

PV08 U-Net 0.980 0.871 0.864 0.868 0.776
RefineNet 0.979 0.848 0.884 0.866 0.773
DeepLab v3+ 0.984 0.877 0.857 0.867 0.790

PV03 U-Net 0.973 0.897 0.935 0.916 0.858
RefineNet 0.976 0.957 0.937 0.947 0.878
DeepLab v3+ 0.983 0.959 0.931 0.945 0.908

PV01 U-Net 0.961 0.831 0.900 0.864 0.787
RefineNet 0.981 0.909 0.897 0.903 0.859
DeepLab v3+ 0.983 0.928 0.894 0.911 0.868
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Figure 4. Segmentation results of PVs in PV08 dataset. We show examples of concentrated ground PVs (a, b), distributed ground PVs (c),
and distributed rooftop PVs (d). IoU of each segmentation result is marked in blue within the image.

cision of DeepLab v3+ was superior to those of RefineNet
and U-Net, but the recall was the opposite (Table 2).

Utility-scale PVs account for approximately 88 % of the
samples in PV08. The unbalance of training samples led to
the difference in segmentation accuracy (higher for utility-
scale PVs while lower for distributed PVs; Fig. 4), except
that the spatial resolution was responsible for the poor per-
formance on distributed PVs (Fig. 4c–d) that were mixed
with background in the 0.8 m satellite images. We may con-
clude that PV08 samples are only suitable for large-scale PV
extraction, and higher resolution is required for distributed
PVs. Intuitively, the texture of distributed PVs becomes clear
in the 0.3 m aerial images, and the contrast to the background
is significant, making it easy to distinguish PVs from vari-
ous backgrounds. The average IoU of DeepLab v3+ reached
0.900, 0.884, 0.920, 0.903, 0.911, and 0.926 for PVs on shrub
land, grassland, cropland, saline–alkali land, water surface,
and rooftop, respectively, which revealed that the segmenta-
tion accuracy was slightly affected by the background land
types. PVs on flat concrete and steel tile roofs occupy the en-
tire roof of large buildings, such as factories, shopping malls,
business centers, and urban residential buildings, and thus
seem “large scale” in the UAV images with a spatial reso-

lution of 0.1 m. On average, DeepLab v3+ achieved an IoU
of 0.873 for flat concrete PVs and 0.927 for steel tile PVs.
In contrast, PVs on brick roofs of rural residential building
and urban villas usually consist of several panels because of
the limited area available for PV installations. These “small-
scale” PVs may share the same feature with surrounding
roofs or shadows, thus the segmentation accuracy was re-
duced to 0.850 in terms of IoU. Based on the above analysis,
we recommend PV08 for extracting concentrated PVs, PV03
for distributed ground PVs, and PV01 for distributed rooftop
PVs.

4.2 Cross application at different resolutions

The generalization capability of deep learning is criti-
cal to automatic information extraction. This section in-
vestigates the feasibility of cross application between PV
samples with different spatial resolutions, including be-
tween PV08_Ground and PV03_Ground, and between
PV03_Rooftop and PV01_Rooftop. We compared the seg-
mentation results of DeepLab v3+ from direct training, cross
application, and fine-tuning. Taking the experiment between
PV08_Ground and PV03_Ground as an example, direct
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Figure 5. Segmentation results of PVs in PV03 dataset. Examples correspond to PVs on shrub land (a), grassland (b), cropland (c), saline–
alkali land (d), water surface (e), and rooftop (f). IoU of each segmentation result is marked in blue within the image.

training means that DeepLab v3+ trained on PV08 (PV03)
samples was applied to PV08 (PV03) samples; cross appli-
cation means that the model was trained on PV03 (PV08)
samples but applied to PV08 (PV03) samples; and fine-
tuning means that the model was first pre-trained on PV03
(PV08) samples, then fine-tuned (fine-tuning process lasted
10 epochs) using PV08 (PV03) samples, and finally applied
to PV08 (PV03) samples. The training set accounts for 80 %
of the whole dataset, and the testing set is the remaining
20 %, but only 20 % of the samples from the training set of
the target PV dataset are randomly selected for fine-tuning.

According to Table 3, the segmentation accuracy of cross
application was terrible with extremely low recall and IoU.
After fine-tuning, the accuracy increased rapidly to a level
comparable to direct training. Some examples are given in
Figs. 7–8, where the feature maps indicating the probabil-
ity that each pixel belongs to PVs are illustrated for cross
application and fine-tuning experiments. It can be seen that
during cross application, the model captured the main feature
of PVs, but the difference between PVs and background was
not significant. Through fine-tuning, the differences were en-
hanced; hence, PVs could be easily segmented. Our experi-
ments demonstrate that there are inherent defects in the cross
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Figure 6. Segmentation results of PVs in PV01 dataset. Examples correspond to PVs on flat concrete (a), steel tile (b), and brick (c) roofs.
IoU of each segmentation result is marked in blue within the image.

Figure 7. Cross application of ground PV samples. Segmentation results of DeepLab v3+ from direct training, cross application, and fine-
tuning are shown for PVs in the PV08 (a, b) and PV03 (c, d) datasets. Feature map for cross application and fine-tuning is displayed on the
right of the corresponding segmentation result. IoU of each segmentation result is marked in blue within the image.
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Table 3. Segmentation accuracy of DeepLab v3+ trained by different strategies. The best values are marked in bold.

Dataset Model Accuracy Precision Recall F1 score IoU

PV08_Ground Direct training 0.984 0.907 0.908 0.908 0.845
Cross application 0.935 0.856 0.517 0.645 0.492
Fine-tuning 0.978 0.867 0.922 0.894 0.823

PV03_Ground Direct training 0.981 0.960 0.903 0.931 0.877
Cross application 0.752 0.726 0.185 0.295 0.177
Fine-tuning 0.975 0.943 0.897 0.919 0.865

PV03_Rooftop Direct training 0.977 0.824 0.823 0.824 0.707
Cross application 0.894 0.414 0.048 0.086 0.045
Fine-tuning 0.981 0.891 0.811 0.849 0.747

PV01_Rooftop Direct training 0.983 0.928 0.894 0.911 0.868
Cross application 0.846 0.672 0.403 0.504 0.368
Fine-tuning 0.965 0.918 0.809 0.860 0.784

Figure 8. Cross application of rooftop PV samples. Segmentation results of DeepLab v3+ from direct training, cross application, and fine-
tuning are shown for PVs in the PV03 (a, b) and PV01 (c, d) datasets. Feature map for cross application and fine-tuning is displayed on the
right of the corresponding segmentation result. IoU of each segmentation result is marked in blue within the image.

application at different resolutions, but these defects can be
compensated for by fine-tuning the target dataset. The fine-
tuning approach avoids the time consumption of direct train-
ing and the huge investment of building complete datasets
with various resolutions.

5 Data availability

The PV dataset is freely available from the Zenodo web-
site at https://doi.org/10.5281/zenodo.5171712 (Jiang et al.,
2021). There are three compressed folders, namely PV08.zip,
PV03.zip, and PV01.zip, for PV samples collected at the
spatial resolutions of 0.8, 0.3, and 0.1 m, respectively.
The original images are named as “PV0*_XXXXXX_
YYYYYYY.bmp”, and corresponding labels are named as
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“PV0*_XXXXXX_YYYYYYY_label.bmp” (* can be the
number 8, 3, or 1). The central location (latitude, longitude)
of each image equals (XX.XXXX, YY.YYYYY). For each
label, “0” indicates the background, while the target PV is
recorded as the code listed in Table 1.

6 Conclusions

This study built a multi-resolution dataset for PV panel seg-
mentation, including PV08 from Gaofen-2 and Beijing-2
satellite images with a spatial resolution of 0.8 m, PV03 from
aerial images with a spatial resolution of 0.3 m, and PV01
from UAV images with a spatial resolution of 0.1 m. Sam-
ples cover a variety of PVs installed on different lands (i.e.,
shrub land, grassland, cropland, saline–alkali land, and wa-
ter surface) and various rooftops (i.e., flat concrete, steel tile,
and brick), ranging in size from dozens of panels to several
hectares. To the best of our knowledge, this is the first open
PV dataset with multiple spatial resolutions.

Based on the dataset, we investigated the performance of
different deep networks on PV segmentation and evaluated
the feasibility of cross application between different resolu-
tions. It is recommended to use PV08 for concentrated PVs,
PV03 for distributed ground PVs, and PV01 for distributed
rooftop PVs so as to achieve the best segmentation results
with IoU values of 0.845, 0.871, and 0.868, respectively.
It is also proved that direct cross applications do not work
well, and fine-tuning of pre-trained network using the tar-
get samples is essential. Besides, this dataset may contribute
to a diversity of other research and applications related to
PVs. For example, the segmentation networks are generally
sensitive to the observational size and shape in the recep-
tive field; hence, it is valuable to quantitatively explore the
general guidelines on selecting image resolutions and input
sample sizes for PVs with different sizes. Whether a network
can be established to combine images with different resolu-
tions to achieve synchronous identification or segmentation
of multi-scale PVs is also of great interest.
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