Articles | Volume 13, issue 6
https://doi.org/10.5194/essd-13-2561-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-2561-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CASCADE – The Circum-Arctic Sediment CArbon DatabasE
Jannik Martens
Department of Environmental Science and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Evgeny Romankevich
Shirshov Institute of Oceanology, Moscow, Russia
Igor Semiletov
Il'ichov Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Tomsk State University, Tomsk, Russia
Tomsk Polytechnic University, Tomsk, Russia
Birgit Wild
Department of Environmental Science and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Bart van Dongen
Department of Environmental Science and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Department of Earth and Environmental Sciences and Williamson Research
Centre for Molecular Environmental Science, University of Manchester, Manchester, UK
Jorien Vonk
Department of Environmental Science and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the
Netherlands
Tommaso Tesi
Department of Environmental Science and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Institute of Polar Sciences, National Research Council, Bologna, Italy
Natalia Shakhova
Il'ichov Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Department of Chemistry, Moscow State University, Moscow, Russia
Oleg V. Dudarev
Il'ichov Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Denis Kosmach
Il'ichov Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Alexander Vetrov
Shirshov Institute of Oceanology, Moscow, Russia
Leopold Lobkovsky
Shirshov Institute of Oceanology, Moscow, Russia
Nikolay Belyaev
Shirshov Institute of Oceanology, Moscow, Russia
Robie W. Macdonald
Institute of Ocean Sciences, Department of Fisheries and Oceans,
Sidney, Canada
Anna J. Pieńkowski
Department of Arctic Geology, The University Centre in Svalbard
(UNIS), Svalbard, Norway
current address: Norwegian Polar Institute,
Longyearbyen, Svalbard, Norway
Timothy I. Eglinton
Laboratory of Ion Beam Physics and Geological Institute, ETH
Zurich, Switzerland
Negar Haghipour
Laboratory of Ion Beam Physics and Geological Institute, ETH
Zurich, Switzerland
Salve Dahle
Akvaplan-niva, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway
Michael L. Carroll
Akvaplan-niva, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway
Emmelie K. L. Åström
Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, Tromsø, Norway
Jacqueline M. Grebmeier
Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, USA
Lee W. Cooper
Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, USA
Göran Possnert
Department of Physics and Astronomy, Tandem Laboratory, Uppsala
University, Uppsala, Sweden
Örjan Gustafsson
CORRESPONDING AUTHOR
Department of Environmental Science and Bolin Centre for Climate
Research, Stockholm University, Stockholm, Sweden
Related authors
No articles found.
Tsai-Wen Lin, Tommaso Tesi, Jens Hefter, Hendrik Grotheer, Jutta Wollenburg, Florian Adolphi, Henning A. Bauch, Alessio Nogarotto, Juliane Müller, and Gesine Mollenhauer
Clim. Past, 21, 753–772, https://doi.org/10.5194/cp-21-753-2025, https://doi.org/10.5194/cp-21-753-2025, 2025
Short summary
Short summary
In order to understand the mechanisms governing permafrost organic matter remobilization, we investigated organic matter composition during past intervals of rapid sea-level rise, of inland warming, and of dense sea-ice cover in the Laptev Sea. We find that sea-level rise resulted in widespread erosion and transport of permafrost materials to the ocean but that erosion is mitigated by regional dense sea-ice cover. Factors like inland warming or floods increase permafrost mobilization locally.
Szabina Karancz, Lennart J. de Nooijer, Bas van der Wagt, Marcel T. J. van der Meer, Sambuddha Misra, Rick Hennekam, Zeynep Erdem, Julie Lattaud, Negar Haghipour, Stefan Schouten, and Gert-Jan Reichart
Clim. Past, 21, 679–704, https://doi.org/10.5194/cp-21-679-2025, https://doi.org/10.5194/cp-21-679-2025, 2025
Short summary
Short summary
Changes in upwelling intensity of the Benguela upwelling region during the last glacial motivated us to investigate the local CO2 history during the last glacial-to-interglacial transition. Using various geochemical tracers on archives from both subsurface and surface waters reveals enhanced storage of carbon at depth during the Last Glacial Maximum. An efficient biological pump likely prevented outgassing of CO2 from intermediate depth to the atmosphere.
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, and Gustaf Hugelius
EGUsphere, https://doi.org/10.5194/egusphere-2025-1052, https://doi.org/10.5194/egusphere-2025-1052, 2025
Short summary
Short summary
Permafrost soils store vast amounts of organic carbon, key to understanding climate change. This study uses machine learning and combines existing data with new field data to create detailed regional maps of soil carbon and nitrogen stocks for the Yukon coastal plain. The results show how soil properties vary across the landscape highlighting the importance of data selection for accurate predictions. These findings improve carbon storage estimates and may aid regional carbon budget assessments.
Arnaud Nicolas, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Ruediger Stein, Alessio Nogarotto, Eduardo Queiroz Alves, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2025-744, https://doi.org/10.5194/egusphere-2025-744, 2025
Short summary
Short summary
We analyzed a high-resolution marine sediment record from the Laptev Sea to reconstruct deglacial permafrost thaw events during the last 16 kyr. Using biomarkers and radiocarbon dating, we found that peaks in pre-aged terrigenous material coincided with rapid sea-level rise, indicating coastal erosion as the main mobilization mechanism. This research provides insights into past permafrost carbon release, informing predictions of future climate-permafrost feedback in a warming world.
Giulia Zazzeri, Lukas Wacker, Negar Haghipour, Philip Gautschi, Thomas Laemmel, Sönke Szidat, and Heather Graven
Atmos. Meas. Tech., 18, 319–325, https://doi.org/10.5194/amt-18-319-2025, https://doi.org/10.5194/amt-18-319-2025, 2025
Short summary
Short summary
Radiocarbon (14C) is an optimal tracer of methane (CH4) emissions, as 14C measurements enable distinguishing between fossil methane and biogenic methane. However, these measurements are particularly challenging, mainly due to technical difficulties in the sampling procedure. We made the sample extraction much simpler and time efficient, providing a new technology that can be used by any research group, with the goal of expanding 14C measurements for an improved understanding of methane sources.
Lucas R. Diaz, Clement J. F. Delcourt, Moritz Langer, Michael M. Loranty, Brendan M. Rogers, Rebecca C. Scholten, Tatiana A. Shestakova, Anna C. Talucci, Jorien E. Vonk, Sonam Wangchuk, and Sander Veraverbeke
Earth Syst. Dynam., 15, 1459–1482, https://doi.org/10.5194/esd-15-1459-2024, https://doi.org/10.5194/esd-15-1459-2024, 2024
Short summary
Short summary
Our study in eastern Siberia investigated how fires affect permafrost thaw depth in larch forests. We found that fire induces deeper thaw, yet this process was mediated by topography and vegetation. By combining field and satellite data, we estimated summer thaw depth across an entire fire scar. This research provides insights into post-fire permafrost dynamics and the use of satellite data for mapping fire-induced permafrost thaw.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Sandra Raab, Karel Castro-Morales, Anke Hildebrandt, Martin Heimann, Jorien Elisabeth Vonk, Nikita Zimov, and Mathias Goeckede
Biogeosciences, 21, 2571–2597, https://doi.org/10.5194/bg-21-2571-2024, https://doi.org/10.5194/bg-21-2571-2024, 2024
Short summary
Short summary
Water status is an important control factor on sustainability of Arctic permafrost soils, including production and transport of carbon. We compared a drained permafrost ecosystem with a natural control area, investigating water levels, thaw depths, and lateral water flows. We found that shifts in water levels following drainage affected soil water availability and that lateral transport patterns were of major relevance. Understanding these shifts is crucial for future carbon budget studies.
Miguel Bartolomé, Ana Moreno, Carlos Sancho, Isabel Cacho, Heather Stoll, Negar Haghipour, Ánchel Belmonte, Christoph Spötl, John Hellstrom, R. Lawrence Edwards, and Hai Cheng
Clim. Past, 20, 467–494, https://doi.org/10.5194/cp-20-467-2024, https://doi.org/10.5194/cp-20-467-2024, 2024
Short summary
Short summary
Reconstructing past temperatures at regional scales during the Common Era is necessary to place the current warming in the context of natural climate variability. We present a climate reconstruction based on eight stalagmites from four caves in the Pyrenees, NE Spain. These stalagmites were dated precisely and analysed for their oxygen isotopes, which appear dominated by temperature changes. Solar variability and major volcanic eruptions are the two main drivers of observed climate variability.
Kirsi H. Keskitalo, Lisa Bröder, Tommaso Tesi, Paul J. Mann, Dirk J. Jong, Sergio Bulte Garcia, Anna Davydova, Sergei Davydov, Nikita Zimov, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 21, 357–379, https://doi.org/10.5194/bg-21-357-2024, https://doi.org/10.5194/bg-21-357-2024, 2024
Short summary
Short summary
Permafrost thaw releases organic carbon into waterways. Decomposition of this carbon pool emits greenhouse gases into the atmosphere, enhancing climate warming. We show that Arctic river carbon and water chemistry are different between the spring ice breakup and summer and that primary production is initiated in small Arctic rivers right after ice breakup, in contrast to in large rivers. This may have implications for fluvial carbon dynamics and greenhouse gas uptake and emission balance.
Eduardo Queiroz Alves, Wanyee Wong, Jens Hefter, Hendrik Grotheer, Tommaso Tesi, Torben Gentz, Karin Zonneveld, and Gesine Mollenhauer
Clim. Past, 20, 121–136, https://doi.org/10.5194/cp-20-121-2024, https://doi.org/10.5194/cp-20-121-2024, 2024
Short summary
Short summary
Our study reveals a previously unknown peat source for the massive influx of terrestrial organic matter that was exported from the European continent to the ocean during the last deglaciation. Our findings shed light on ancient terrestrial organic carbon mobilization, providing insights that are crucial for refining climate models.
Leonard Kirago, Örjan Gustafsson, Samuel Mwaniki Gaita, Sophie L. Haslett, Michael J. Gatari, Maria Elena Popa, Thomas Röckmann, Christoph Zellweger, Martin Steinbacher, Jörg Klausen, Christian Félix, David Njiru, and August Andersson
Atmos. Chem. Phys., 23, 14349–14357, https://doi.org/10.5194/acp-23-14349-2023, https://doi.org/10.5194/acp-23-14349-2023, 2023
Short summary
Short summary
This study provides ground-observational evidence that supports earlier suggestions that savanna fires are the main emitters and modulators of carbon monoxide gas in Africa. Using isotope-based techniques, the study has shown that about two-thirds of this gas is emitted from savanna fires, while for urban areas, in this case Nairobi, primary sources approach 100 %. The latter has implications for air quality policy, suggesting primary emissions such as traffic should be targeted.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Giacomo Galli, Caterina Morigi, Romana Melis, Alessio Di Roberto, Tommaso Tesi, Fiorenza Torricella, Leonardo Langone, Patrizia Giordano, Ester Colizza, Lucilla Capotondi, Andrea Gallerani, and Karen Gariboldi
J. Micropalaeontol., 42, 95–115, https://doi.org/10.5194/jm-42-95-2023, https://doi.org/10.5194/jm-42-95-2023, 2023
Short summary
Short summary
A sediment core was analysed, focusing over the 2000 years, in Edisto Inlet. Benthic and planktic foraminifera were picked and used to determine changes in the faunal composition. Using other nearby cores, by comparing different proxies, we were able to identify a succession of three different environmental phases over the studied period: a seasonal-cycle phase (from 2000 to around 1500 years BP), a transitional phase (from 1500 to 700 years BP) and a cold phase (from 700 years to present).
Oliver Kost, Saúl González-Lemos, Laura Rodríguez-Rodríguez, Jakub Sliwinski, Laura Endres, Negar Haghipour, and Heather Stoll
Hydrol. Earth Syst. Sci., 27, 2227–2255, https://doi.org/10.5194/hess-27-2227-2023, https://doi.org/10.5194/hess-27-2227-2023, 2023
Short summary
Short summary
Cave monitoring studies including cave drip water are unique opportunities to sample water which has percolated through the soil and rock. The change in drip water chemistry is resolved over the course of 16 months, inferring seasonal and hydrological variations in soil and karst processes at the water–air and water–rock interface. Such data sets improve the understanding of hydrological and hydrochemical processes and ultimately advance the interpretation of geochemical stalagmite records.
Thibauld M. Béjard, Andrés S. Rigual-Hernández, José A. Flores, Javier P. Tarruella, Xavier Durrieu de Madron, Isabel Cacho, Neghar Haghipour, Aidan Hunter, and Francisco J. Sierro
Biogeosciences, 20, 1505–1528, https://doi.org/10.5194/bg-20-1505-2023, https://doi.org/10.5194/bg-20-1505-2023, 2023
Short summary
Short summary
The Mediterranean Sea is undergoing a rapid and unprecedented environmental change. Planktic foraminifera calcification is affected on different timescales. On seasonal and interannual scales, calcification trends differ according to the species and are linked mainly to sea surface temperatures and carbonate system parameters, while comparison with pre/post-industrial assemblages shows that all three species have reduced their calcification between 10 % to 35 % according to the species.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Dirk Jong, Lisa Bröder, Tommaso Tesi, Kirsi H. Keskitalo, Nikita Zimov, Anna Davydova, Philip Pika, Negar Haghipour, Timothy I. Eglinton, and Jorien E. Vonk
Biogeosciences, 20, 271–294, https://doi.org/10.5194/bg-20-271-2023, https://doi.org/10.5194/bg-20-271-2023, 2023
Short summary
Short summary
With this study, we want to highlight the importance of studying both land and ocean together, and water and sediment together, as these systems function as a continuum, and determine how organic carbon derived from permafrost is broken down and its effect on global warming. Although on the one hand it appears that organic carbon is removed from sediments along the pathway of transport from river to ocean, it also appears to remain relatively ‘fresh’, despite this removal and its very old age.
Melissa Sophia Schwab, Hannah Gies, Chantal Valérie Freymond, Maarten Lupker, Negar Haghipour, and Timothy Ian Eglinton
Biogeosciences, 19, 5591–5616, https://doi.org/10.5194/bg-19-5591-2022, https://doi.org/10.5194/bg-19-5591-2022, 2022
Short summary
Short summary
The majority of river studies focus on headwater or floodplain systems, while often neglecting intermediate river segments. Our study on the subalpine Sihl River bridges the gap between streams and lowlands and demonstrates that moderately steep river segments are areas of significant instream alterations, modulating the export of organic carbon over short distances.
Frédérique M. S. A. Kirkels, Huub M. Zwart, Muhammed O. Usman, Suning Hou, Camilo Ponton, Liviu Giosan, Timothy I. Eglinton, and Francien Peterse
Biogeosciences, 19, 3979–4010, https://doi.org/10.5194/bg-19-3979-2022, https://doi.org/10.5194/bg-19-3979-2022, 2022
Short summary
Short summary
Soil organic carbon (SOC) that is transferred to the ocean by rivers forms a long-term sink of atmospheric CO2 upon burial on the ocean floor. We here test if certain bacterial membrane lipids can be used to trace SOC through the monsoon-fed Godavari River basin in India. We find that these lipids trace the mobilisation and transport of SOC in the wet season but that these lipids are not transferred far into the sea. This suggests that the burial of SOC on the sea floor is limited here.
Niek Jesse Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Chris Boucher, Rachele Lodi, Christian Knoblauch, Boris P. Koch, Urban Wünsch, Hugues Lantuit, and Jorien E. Vonk
Biogeosciences, 19, 3073–3097, https://doi.org/10.5194/bg-19-3073-2022, https://doi.org/10.5194/bg-19-3073-2022, 2022
Short summary
Short summary
Climate change and warming in the Arctic exceed global averages. As a result, permanently frozen soils (permafrost) which store vast quantities of carbon in the form of dead plant material (organic matter) are thawing. Our study shows that as permafrost landscapes degrade, high concentrations of organic matter are released. Partly, this organic matter is degraded rapidly upon release, while another significant fraction enters stream networks and enters the Arctic Ocean.
Sarah Shakil, Suzanne E. Tank, Jorien E. Vonk, and Scott Zolkos
Biogeosciences, 19, 1871–1890, https://doi.org/10.5194/bg-19-1871-2022, https://doi.org/10.5194/bg-19-1871-2022, 2022
Short summary
Short summary
Permafrost thaw-driven landslides in the western Arctic are increasing organic carbon delivered to headwaters of drainage networks in the western Canadian Arctic by orders of magnitude. Through a series of laboratory experiments, we show that less than 10 % of this organic carbon is likely to be mineralized to greenhouse gases during transport in these networks. Rather most of the organic carbon is likely destined for burial and sequestration for centuries to millennia.
Gabriella M. Weiss, Julie Lattaud, Marcel T. J. van der Meer, and Timothy I. Eglinton
Clim. Past, 18, 233–248, https://doi.org/10.5194/cp-18-233-2022, https://doi.org/10.5194/cp-18-233-2022, 2022
Short summary
Short summary
Here we study the elemental signatures of plant wax compounds as well as molecules from algae and bacteria to understand how water sources changed over the last 11 000 years in the northeastern part of Europe surrounding the Baltic Sea. Our results show diversity in plant and aquatic microorganisms following the melting of the large ice sheet that covered northern Europe as the regional climate continued to warm. A shift in water source from ice melt to rain also occurred around the same time.
Blanca Ausín, Negar Haghipour, Elena Bruni, and Timothy Eglinton
Biogeosciences, 19, 613–627, https://doi.org/10.5194/bg-19-613-2022, https://doi.org/10.5194/bg-19-613-2022, 2022
Short summary
Short summary
The preservation and distribution of alkenones – organic molecules produced by marine algae – in marine sediments allows us to reconstruct past variations in sea surface temperature, primary productivity and CO2. Here, we explore the impact of remobilization and lateral transport of sedimentary alkenones on their fate in marine sediments. We demonstrate the pervasive influence of these processes on alkenone-derived environmental signals, compromising the reliability of related paleorecords.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Caroline Welte, Jens Fohlmeister, Melina Wertnik, Lukas Wacker, Bodo Hattendorf, Timothy I. Eglinton, and Christoph Spötl
Clim. Past, 17, 2165–2177, https://doi.org/10.5194/cp-17-2165-2021, https://doi.org/10.5194/cp-17-2165-2021, 2021
Short summary
Short summary
Stalagmites are valuable climate archives, but unlike other proxies the use of stable carbon isotopes (δ13C) is still difficult. A stalagmite from the Austrian Alps was analyzed using a new laser ablation method for fast radiocarbon (14C) analysis. This allowed 14C and δ13C to be combined, showing that besides soil and bedrock a third source is contributing during periods of warm, wet climate: old organic matter.
Franziska A. Lechleitner, Christopher C. Day, Oliver Kost, Micah Wilhelm, Negar Haghipour, Gideon M. Henderson, and Heather M. Stoll
Clim. Past, 17, 1903–1918, https://doi.org/10.5194/cp-17-1903-2021, https://doi.org/10.5194/cp-17-1903-2021, 2021
Short summary
Short summary
Soil respiration is a critical but poorly constrained component of the global carbon cycle. We analyse the effect of changing soil respiration rates on the stable carbon isotope ratio of speleothems from northern Spain covering the last deglaciation. Using geochemical analysis and forward modelling we quantify the processes affecting speleothem stable carbon isotope ratios and extract a signature of increasing soil respiration synchronous with deglacial warming.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Ove H. Meisel, Joshua F. Dean, Jorien E. Vonk, Lukas Wacker, Gert-Jan Reichart, and Han Dolman
Biogeosciences, 18, 2241–2258, https://doi.org/10.5194/bg-18-2241-2021, https://doi.org/10.5194/bg-18-2241-2021, 2021
Short summary
Short summary
Arctic permafrost lakes form thaw bulbs of unfrozen soil (taliks) beneath them where carbon degradation and greenhouse gas production are increased. We analyzed the stable carbon isotopes of Alaskan talik sediments and their porewater dissolved organic carbon and found that the top layers of these taliks are likely more actively degraded than the deeper layers. This in turn implies that these top layers are likely also more potent greenhouse gas producers than the underlying deeper layers.
Alix G. Cage, Anna J. Pieńkowski, Anne Jennings, Karen Luise Knudsen, and Marit-Solveig Seidenkrantz
J. Micropalaeontol., 40, 37–60, https://doi.org/10.5194/jm-40-37-2021, https://doi.org/10.5194/jm-40-37-2021, 2021
Short summary
Short summary
Morphologically similar benthic foraminifera taxa are difficult to separate, resulting in incorrect identifications, complications understanding species-specific ecological preferences, and flawed reconstructions of past environments. Here we provide descriptions and illustrated guidelines on how to separate some key Arctic–North Atlantic species to circumvent taxonomic confusion, improve understanding of ecological affinities, and work towards more accurate palaeoenvironmental reconstructions.
Hannah Gies, Frank Hagedorn, Maarten Lupker, Daniel Montluçon, Negar Haghipour, Tessa Sophia van der Voort, and Timothy Ian Eglinton
Biogeosciences, 18, 189–205, https://doi.org/10.5194/bg-18-189-2021, https://doi.org/10.5194/bg-18-189-2021, 2021
Short summary
Short summary
Understanding controls on the persistence of organic matter in soils is essential to constrain its role in the carbon cycle. Emerging concepts suggest that the soil carbon pool is predominantly comprised of stabilized microbial residues. To test this hypothesis we isolated microbial membrane lipids from two Swiss soil profiles and measured their radiocarbon age. We find that the ages of these compounds are in the range of millenia and thus provide evidence for stabilized microbial mass in soils.
Michael Sarnthein, Kevin Küssner, Pieter M. Grootes, Blanca Ausin, Timothy Eglinton, Juan Muglia, Raimund Muscheler, and Gordon Schlolaut
Clim. Past, 16, 2547–2571, https://doi.org/10.5194/cp-16-2547-2020, https://doi.org/10.5194/cp-16-2547-2020, 2020
Short summary
Short summary
The dating technique of 14C plateau tuning uses U/Th-based model ages, refinements of the Lake Suigetsu age scale, and the link of surface ocean carbon to the globally mixed atmosphere as basis of age correlation. Our synthesis employs data of 20 sediment cores from the global ocean and offers a coherent picture of global ocean circulation evolving over glacial-to-deglacial times on semi-millennial scales to be compared with climate records stored in marine sediments, ice cores, and speleothems.
Cited articles
AMAP: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic
Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2017.
Belicka, L. L., Macdonald, R. W., Yunker, M. B., and Harvey, H. R.: The role
of depositional regime on carbon transport and preservation in Arctic Ocean
sediments, Mar. Chem., 86, 65–88, https://doi.org/10.1016/j.marchem.2003.12.006,
2004.
Berner, R. A.: Burial of organic carbon and pyrite sulfur in the modern
ocean: Its geochemical and environmental significance, Am. J. Sci., 282,
451–473, https://doi.org/10.2475/ajs.282.4.451, 1982.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G.,
Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q.,
Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a
global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4,
2019.
Bröder, L., Tesi, T., Salvadó, J. A., Semiletov, I. P., Dudarev, O. V., and Gustafsson, Ö.: Fate of terrigenous organic matter across the Laptev Sea from the mouth of the Lena River to the deep sea of the Arctic interior, Biogeosciences, 13, 5003–5019, https://doi.org/10.5194/bg-13-5003-2016, 2016.
Bröder, L., Tesi, T., Andersson, A., Semiletov, I., and Gustafsson,
Ö.: Bounding the role of cross-shelf transport and degradation in
land-ocean carbon transfer, Nat. Commun., 9, 806,
https://doi.org/10.1038/s41467-018-03192-1, 2018.
van Dongen, B. E., Semiletov, I., Weijers, J. W. H., and Gustafsson, Ö.:
Contrasting lipid biomarker composition of terrestrial organic matter
exported from across the Eurasian Arctic by the five great Russian Arctic
rivers, Global Biogeochem. Cy., 22, GB1011, https://doi.org/10.1029/2007GB002974, 2008.
Drenzek, N. J., Montluçon, D. B., Yunker, M. B., Macdonald, R. W., and
Eglinton, T. I.: Constraints on the origin of sedimentary organic carbon in
the Beaufort Sea from coupled molecular 13C and 14C measurements, Mar.
Chem., 103, 146–162, https://doi.org/10.1016/j.marchem.2006.06.017, 2007.
Eglinton, G. and Hamilton, R. J.: Leaf Epicuticular Waxes, Science,
156, 1322–1335, https://doi.org/10.1126/science.156.3780.1322, 1967.
Fahl, K. and Stein, R.: Modern organic carbon deposition in the Laptev Sea
and the adjacent continental slope: Surface water productivity vs.
terrigenous input, Org. Geochem., 26, 379–390,
https://doi.org/10.1016/S0146-6380(97)00007-7, 1997.
Feng, X., Vonk, J. E., van Dongen, B. E., Gustafsson, Ö., Semiletov, I.
P., Dudarev, O. V, Wang, Z., Montluçon, D. B., Wacker, L., and Eglinton,
T. I.: Differential mobilization of terrestrial carbon pools in Eurasian
Arctic river basins, P. Natl. Acad. Sci. USA, 110, 14168–14173,
https://doi.org/10.1073/pnas.1307031110, 2013.
Fry, B. and Sherr, E. B.: δ13C Measurements as Indicators of Carbon
Flow in Marine and Freshwater Ecosystems, in: Stable Isotopes in Ecological
Research, Ecological Studies (Analysis and Synthesis),
Springer, New York, NY, 196–229, 1989.
Goñi, M. A. and Montgomery, S.: Alkaline CuO Oxidation with a Microwave
Digestion System: Lignin Analyses of Geochemical Samples, Anal. Chem.,
72, 3116–3121, https://doi.org/10.1021/ac991316w, 2000.
Goñi, M. A., Yunker, M. B., MacDonald, R. W., and Eglinton, T. I.:
Distribution and sources of organic biomarkers in arctic sediments from the
Mackenzie River and Beaufort Shelf, Mar. Chem., 71, 23–51,
https://doi.org/10.1016/S0304-4203(00)00037-2, 2000.
Goñi, M. A., Yunker, M. B., Macdonald, R. W., and Eglinton, T. I.: The
supply and preservation of ancient and modern components of organic carbon
in the Canadian Beaufort Shelf of the Arctic Ocean, Mar. Chem., 93,
53–73, https://doi.org/10.1016/j.marchem.2004.08.001, 2005.
Goñi, M. A., O'Connor, A. E., Kuzyk, Z. Z., Yunker, M. B., Gobeil, C.,
and Macdonald, R. W.: Distribution and sources of organic matter in surface
marine sediments across the North American Arctic margin, J. Geophys. Res.-Ocean., 118, 4017–4035, https://doi.org/10.1002/jgrc.20286, 2013.
Grebmeier, J. M., Cooper, L. W., Feder, H. M., and Sirenko, B. I.: Ecosystem
dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the
Amerasian Arctic, Prog. Oceanogr., 71, 331–361,
https://doi.org/10.1016/j.pocean.2006.10.001, 2006.
Gribov, A. and Krivoruchko, K.: Empirical Bayesian kriging implementation
and usage, Sci. Total Environ., 722, 137290,
https://doi.org/10.1016/j.scitotenv.2020.137290, 2020.
Guo, L., Semiletov, I., Gustafsson, Ö., Ingri, J., Andersson, P.,
Dudarev, O., and White, D.: Characterization of Siberian Arctic coastal
sediments: Implications for terrestrial organic carbon export, Global
Biogeochem. Cy., 18, GB1036, https://doi.org/10.1029/2003gb002087, 2004.
Gustafsson, Ö., van Dongen, B. E., Vonk, J. E., Dudarev, O. V., and Semiletov, I. P.: Widespread release of old carbon across the Siberian Arctic echoed by its large rivers, Biogeosciences, 8, 1737–1743, https://doi.org/10.5194/bg-8-1737-2011, 2011.
Hedges, J. I. and Keil, R. G.: Sedimentary organic matter preservation: an
assessment and speculative synthesis, Mar. Chem., 49, 81–115,
https://doi.org/10.1016/0304-4203(95)00008-F, 1995.
Hedges, J. I. and Mann, D. C.: The characterization of plant tissues by
their lignin oxidation products, Geochim. Cosmochim. Acta, 43,
1803–1807, https://doi.org/10.1016/0016-7037(79)90028-0, 1979.
Hedges, J. I., Keil, R. G., and Benner, R.: What happens to terrestrial
organic matter in the ocean?, in: Organic Geochemistry, Pergamon, 27,
195–212, 1997.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Jakobsson, M.: Hypsometry and volume of the Arctic Ocean and its constituent
seas, Geochem. Geophy. Geosy., 3, 1–18,
https://doi.org/10.1029/2001GC000302, 2002.
Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R.,
Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E.,
Canals, M., Casamor, J. L., Chauché, N., Coakley, B., Danielson, S.,
Demarte, M., Dickson, M. L., Dorschel, B., Dowdeswell, J. A., Dreutter, S.,
Fremand, A. C., Gallant, D., Hall, J. K., Hehemann, L., Hodnesdal, H., Hong,
J., Ivaldi, R., Kane, E., Klaucke, I., Krawczyk, D. W., Kristoffersen, Y.,
Kuipers, B. R., Millan, R., Masetti, G., Morlighem, M., Noormets, R.,
Prescott, M. M., Rebesco, M., Rignot, E., Semiletov, I., Tate, A. J.,
Travaglini, P., Velicogna, I., Weatherall, P., Weinrebe, W., Willis, J. K.,
Wood, M., Zarayskaya, Y., Zhang, T., Zimmermann, M., and Zinglersen, K. B.:
The International Bathymetric Chart of the Arctic Ocean Version 4.0, Sci.
Data, 7, 176, https://doi.org/10.1038/s41597-020-0520-9, 2020.
Karlsson, E., Gelting, J., Tesi, T., van Dongen, B., Andersson, A.,
Semiletov, I., Charkin, A., Dudarev, O., and Gustafsson, Ö.: Different
sources and degradation state of dissolved, particulate, and sedimentary
organic matter along the Eurasian Arctic coastal margin, Global Biogeochem.
Cy., 30, 898–919, https://doi.org/10.1002/2015GB005307, 2016.
Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F.,
Atkinson, D., Brown, J., Cherkashov, G., Drozdov, D., Donald Forbes, L.,
Graves-Gaylord, A., Grigoriev, M., Hubberten, H. W., Jordan, J., Jorgenson,
T., Ødegård, R. S., Ogorodov, S., Pollard, W. H., Rachold, V.,
Sedenko, S., Solomon, S., Steenhuisen, F., Streletskaya, I., and Vasiliev,
A.: The Arctic Coastal Dynamics Database: A New Classification Scheme and
Statistics on Arctic Permafrost Coastlines, Estuar. Coast., 35,
383–400, https://doi.org/10.1007/s12237-010-9362-6, 2012.
Lenton, T. M.: Arctic climate tipping points, Ambio, 41, 10–22,
https://doi.org/10.1007/s13280-011-0221-x, 2012.
Martens, J., Wild, B., Pearce, C., Tesi, T., Andersson, A., Bröder, L.,
O'Regan, M., Jakobsson, M., Sköld, M., Gemery, L., Cronin, T. M.,
Semiletov, I., Dudarev, O. V., and Gustafsson, Ö.: Remobilization of Old
Permafrost Carbon to Chukchi Sea Sediments During the End of the Last
Deglaciation, Global Biogeochem. Cy., 33, 2–14,
https://doi.org/10.1029/2018GB005969, 2019.
Martens, J., Wild, B., Muschitiello, F., O'Regan, M., Jakobsson, M.,
Semiletov, I., Dudarev, O. V., and Gustafsson, Ö.: Remobilization of
dormant carbon from Siberian-Arctic permafrost during three past warming
events, Sci. Adv., 6, 6546–6562, https://doi.org/10.1126/sciadv.abb6546, 2020.
Martens, J., Romankevic, E., Semiletov, I., Wild, B., Dongen, B. van, Vonk,
J., Tesi, T., Shakhova, N., Dudarev, O. V., Kosmach, D., Vetrov, A.,
Lobkovsky, L., Belyaev, N., Macdonald, R., Pieńkowski, A. J., Eglinton,
T. I., Haghipour, N., Dahle, S., Carroll, M. L., Åström, E. K. L.,
Grebmeier, J. M., Cooper, L. W., Possnert, G., and Gustafsson, Ö.: The
Circum-Arctic Sediment Carbon Database – CASCADE, version 1.0, Bolin
Centre Database, https://doi.org/10.17043/cascade, 2021.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions, chap. 3,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., IPCC, 2019.
Mueller-Lupp, T., Bauch, H. A., Erlenkeuser, H., Hefter, J., Kassens, H., and
Thiede, J.: Changes in the deposition of terrestrial organic matter on the
Laptev Sea shelf during the Holocene: evidence from stable carbon isotopes,
Int. J. Earth Sci., 89, 563–568, https://doi.org/10.1007/s005310000128, 2000.
Muschitiello, F., O'Regan, M., Martens, J., West, G., Gustafsson, Ö., and Jakobsson, M.: A new 30 000-year chronology for rapidly deposited sediments on the Lomonosov Ridge using bulk radiocarbon dating and probabilistic stratigraphic alignment, Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, 2020.
Naidu, A. S., Scalan, R. S., Feder, H. M., Goering, J. J., Hameedi, M. J.,
Parker, P. L., Behrens, E. W., Caughey, M. E., and Jewett, S. C.: Stable
organic carbon isotopes in sediments of the north Bering-south Chukchi seas,
Alaskan-Soviet Arctic Shelf, Cont. Shelf Res., 13, 669–691,
https://doi.org/10.1016/0278-4343(93)90099-J, 1993.
Naidu, A. S., Cooper, L. W., Finney, B. P., Macdonald, R. W., Alexander, C.,
and Semiletov, I. P.: Organic carbon isotope ratio (δ13C) of Arctic
Amerasian Continental shelf sediments, Int. J. Earth Sci., 89, 522–532,
https://doi.org/10.1007/s005310000121, 2000.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,
Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov,
A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda,
S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin,
J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.
Romankevich, E. A.: Geochemistry of Organic Matter in the Ocean, Springer
Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-49964-7, 1984.
Semiletov, I. and Gustafsson, Ö.: East Siberian shelf study alleviates
scarcity of observations, Eos, 90, 145–146,
https://doi.org/10.1029/2009eo170001, 2009.
Semiletov, I., Dudarev, O., Luchin, V., Charkin, A., Shin, K. H., and Tanaka,
N.: The East Siberian Sea as a transition zone between Pacific-derived
waters and Arctic shelf waters, Geophys. Res. Lett., 32, L10614,
https://doi.org/10.1029/2005GL022490, 2005.
Semiletov, I., Pipko, I., Gustafsson, Ö., Anderson, L. G., Sergienko,
V., Pugach, S., Dudarev, O., Charkin, A., Gukov, A., Bröder, L.,
Andersson, A., Spivak, E., and Shakhova, N.: Acidification of East Siberian
Arctic Shelf waters through addition of freshwater and terrestrial carbon,
Nat. Geosci., 9, 361–365, https://doi.org/10.1038/NEGO2695, 2016.
Sparkes, R. B., Doğrul Selver, A., Bischoff, J., Talbot, H. M., Gustafsson, Ö., Semiletov, I. P., Dudarev, O. V., and van Dongen, B. E.: GDGT distributions on the East Siberian Arctic Shelf: implications for organic carbon export, burial and degradation, Biogeosciences, 12, 3753–3768, https://doi.org/10.5194/bg-12-3753-2015, 2015.
Stein, R. and Macdonald, R. W. (Eds.): The Organic Carbon Cycle in the Arctic
Ocean, Springer,
Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-18912-8, 2004.
Stein, R., Grobe, H., and Wahsner, M.: Organic carbon, carbonate, and clay
mineral distributions in eastern central Arctic Ocean surface sediments,
Mar. Geol., 119, 269–285, https://doi.org/10.1016/0025-3227(94)90185-6, 1994.
Stein, R., Macdonald, R. W., Naidu, A. S., Yunker, M. B., Gobeil, C.,
Cooper, L. W., Grebmeier, J. M., Whitledge, T. E., Hameedi, M. J., Petrova,
V. I., Batova, G. I., Zinchenko, A. G., Kursheva, A. V, Narkevskiy, E. V,
Fahl, K., Vetrov, A., Romankevich, E. A., Birgel, D., Schubert, C., Harvey,
H. R., and Weiel, D.: Organic Carbon in Arctic Ocean Sediments: Sources,
Variability, Burial, and Paleoenvironmental Significance, in: The Organic
Carbon Cycle in the Arctic Ocean, edited by: Stein, R. and MacDonald, R. W., Springer, Berlin, Heidelberg, 169–314, 2004.
Stenström, K. E., Skog, G., Georgiadou, E., Genberg, J., and Johansson,
A.: A guide to radiocarbon units and calculations, Lund University, Nuclear
Physics, 2011.
Stuiver, M. and Polach, H. A.: Discussion Reporting of 14C Data,
Radiocarbon, 19, 355–363, https://doi.org/10.1017/S0033822200003672, 1977.
Tesi, T., Semiletov, I., Hugelius, G., Dudarev, O., Kuhry, P., and
Gustafsson, Ö.: Composition and fate of terrigenous organic matter along
the Arctic land–ocean continuum in East Siberia: Insights from biomarkers
and carbon isotopes, Geochim. Cosmochim. Acta, 133, 235–256,
https://doi.org/10.1016/j.gca.2014.02.045, 2014.
Tesi, T., Muschitiello, F., Smittenberg, R. H., Jakobsson, M., Vonk, J. E.,
Hill, P., Andersson, A., Kirchner, N., Noormets, R., Dudarev, O. V.,
Semiletov, I. P., and Gustafsson, Ö.: Massive remobilization of
permafrost carbon during post-glacial warming, Nat. Commun., 7, 13653,
https://doi.org/10.1038/ncomms13653, 2016a.
Tesi, T., Semiletov, I., Dudarev, O., Andersson, A., and Gustafsson, Ö.:
Matrix association effects on hydrodynamic sorting and degradation of
terrestrial organic matter during cross-shelf transport in the Laptev and
East Siberian shelf seas, J. Geophys. Res.-Biogeo., 121, 731–752,
https://doi.org/10.1002/2015JG003067, 2016b.
Vetrov, A. A. and Romankevich, E. A.: Carbon Cycle in the Russian Arctic
Seas, Springer, Berlin, Heidelberg, 2004.
Vonk, J., Sánchez-García, L., van Dongen, B. E., Alling, V.,
Kosmach, D., Charkin, A., Semiletov, I. P., Dudarev, O. V, Shakhova, N.,
Roos, P., Eglinton, T. I., Andersson, A., Gustafsson, Ö., and Gustafsson,
O.: Activation of old carbon by erosion of coastal and subsea permafrost in
Arctic Siberia, Nature, 489, 137–140, https://doi.org/10.1038/nature11392, 2012.
Vonk, J. E. and Gustafsson, Ö.: Permafrost-carbon complexities, Nat.
Geosci., 6, 675–676, https://doi.org/10.1038/ngeo1937, 2013.
Vonk, J. E., Sánchez-García, L., Semiletov, I., Dudarev, O., Eglinton, T., Andersson, A., and Gustafsson, Ö.: Molecular and radiocarbon constraints on sources and degradation of terrestrial organic carbon along the Kolyma paleoriver transect, East Siberian Sea, Biogeosciences, 7, 3153–3166, https://doi.org/10.5194/bg-7-3153-2010, 2010.
Vonk, J. E., Semiletov, I. P., Dudarev, O. V, Eglinton, T. I., Andersson,
A., Shakhova, N., Charkin, A., Heim, B., and Gustafsson, Ö.: Preferential
burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters,
J. Geophys. Res.-Ocean., 119, 8410–8421, https://doi.org/10.1002/2014JC010261, 2014.
Xiao, X., Fahl, K., Müller, J., and Stein, R.: Sea-ice distribution in
the modern Arctic Ocean: Biomarker records from trans-Arctic Ocean surface
sediments, Geochim. Cosmochim. Acta, 155, 16–29,
https://doi.org/10.1016/j.gca.2015.01.029, 2015.
Yunker, M. B., Belicka, L. L., Harvey, H. R., and Macdonald, R. W.: Tracing
the inputs and fate of marine and terrigenous organic matter in Arctic Ocean
sediments: A multivariate analysis of lipid biomarkers, Deep-Res. Pt. II, 52, 3478–3508,
https://doi.org/10.1016/j.dsr2.2005.09.008, 2005.
Short summary
The paper describes the establishment, structure and current status of the first Circum-Arctic Sediment CArbon DatabasE (CASCADE), which is a scientific effort to harmonize and curate all published and unpublished data of carbon, nitrogen, carbon isotopes, and terrigenous biomarkers in sediments of the Arctic Ocean in one database. CASCADE will enable a variety of studies of the Arctic carbon cycle and thus contribute to a better understanding of how climate change affects the Arctic.
The paper describes the establishment, structure and current status of the first Circum-Arctic...
Altmetrics
Final-revised paper
Preprint