Data description paper 10 May 2021
Data description paper | 10 May 2021
Historical cartographic and topo-bathymetric database on the French Rhône River (17th–20th century)
Fanny Arnaud et al.
Related authors
No articles found.
Hossein Ghaffarian, Pierre Lemaire, Zhang Zhi, Laure Tougne, Bruce MacVicar, and Hervé Piégay
Earth Surf. Dynam., 9, 519–537, https://doi.org/10.5194/esurf-9-519-2021, https://doi.org/10.5194/esurf-9-519-2021, 2021
Short summary
Short summary
Quantifying wood fluxes in rivers would improve our understanding of the key processes in river ecology and morphology. In this work, we introduce new software for the automatic detection of wood pieces in rivers. The results show 93.5 % and 86.5 % accuracy for piece number and volume, respectively.
E. Lalot, F. Curie, V. Wawrzyniak, F. Baratelli, S. Schomburgk, N. Flipo, H. Piegay, and F. Moatar
Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015, https://doi.org/10.5194/hess-19-4479-2015, 2015
Short summary
Short summary
This work shows that satellite thermal infrared images (LANDSAT) can be used to locate and quantify groundwater discharge into a large river (Loire River, France - 100 to 300 m wide). Groundwater discharge rate is found to be highly variable with time and space and maximum during flow recession periods and in winter. The main identified groundwater discharge area into the Loire River corresponds to a known discharge area of the Beauce aquifer.
Related subject area
Hydrology and Soil Science – Hydrology
CCAM: China Catchment Attributes and Meteorology dataset
A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons
Baseline data for monitoring geomorphological effects of glacier lake outburst flood: a very-high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland
Mineral, thermal and deep groundwater of Hesse, Germany
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Development of observation-based global multilayer soil moisture products for 1970 to 2016
A year of attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge, and weather observations
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation
CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia
Global distribution of wastewater treatment plants and their released effluents into rivers and streams
A multi-source 120-year US flood database with a unified common format and public access
C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco)
The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses
Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices
A national topographic dataset for hydrological modeling over the contiguous United States
Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset
CLIGEN parameter regionalization for mainland China
Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer
STH-net: a soil monitoring network for process-based hydrological modelling from the pedon to the hillslope scale
Comprehensive bathymetry and intertidal topography of the Amazon estuary
Virtual water trade and water footprint of agricultural goods: the 1961–2016 CWASI database
COSMOS-UK: national soil moisture and hydrometeorology data for environmental science research
SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications
ADHI: the African Database of Hydrometric Indices (1950–2018)
Dynamics of shallow wakes on gravel-bed floodplains: dataset from field experiments
Two decades of distributed global radiation time series across a mountainous semiarid area (Sierra Nevada, Spain)
Inventory of dams in Germany
Country-level and gridded estimates of wastewater production, collection, treatment and reuse
Dataset of Georeferenced Dams in South America (DDSA)
The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines
The CH-IRP data set: a decade of fortnightly data on δ2H and δ18O in streamflow and precipitation in Switzerland
CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil
GloFAS-ERA5 operational global river discharge reanalysis 1979–present
A Canadian River Ice Database from the National Hydrometric Program Archives
An integration of gauge, satellite, and reanalysis precipitation datasets for the largest river basin of the Tibetan Plateau
Towards harmonisation of image velocimetry techniques for river surface velocity observations
AIMERG: a new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE
Vegetation, ground cover, soil, rainfall simulation, and overland-flow experiments before and after tree removal in woodland-encroached sagebrush steppe: the hydrology component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP)
Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018
Data for wetlandscapes and their changes around the world
Measurements of the water balance components of a large green roof in the greater Paris area
A distributed soil moisture, temperature and infiltrometer dataset for permeable pavements and green spaces
A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China
Runoff reaction from extreme rainfall events on natural hillslopes: a data set from 132 large-scale sprinkling experiments in south-western Germany
Paleo-hydrologic reconstruction of 400 years of past flows at a weekly time step for major rivers of Western Canada
Global River Radar Altimetry Time Series (GRRATS): new river elevation earth science data records for the hydrologic community
An Arctic watershed observatory at Lake Peters, Alaska: weather–glacier–river–lake system data for 2015–2018
Zhen Hao, Jin Jin, Runliang Xia, Shimin Tian, Wushuang Yang, Qixing Liu, Min Zhu, Tao Ma, Chengran Jing, and Yanning Zhang
Earth Syst. Sci. Data, 13, 5591–5616, https://doi.org/10.5194/essd-13-5591-2021, https://doi.org/10.5194/essd-13-5591-2021, 2021
Short summary
Short summary
CCAM is proposed to promote large-sample hydrological research in China. The first catchment attribute dataset and catchment-scale meteorological time series dataset in China are built. We also built HydroMLYR, a hydrological dataset with standardized streamflow observations supporting machine learning modeling. The open-source code producing CCAM supports the calculation of custom watersheds.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Aleksandra M. Tomczyk and Marek W. Ewertowski
Earth Syst. Sci. Data, 13, 5293–5309, https://doi.org/10.5194/essd-13-5293-2021, https://doi.org/10.5194/essd-13-5293-2021, 2021
Short summary
Short summary
We collected detailed (cm-scale) topographical data to illustrate how a single flood event can modify river landscape in the high-Arctic setting of Zackenberg Valley, NE Greenland. The studied flood was a result of an outburst from a glacier-dammed lake. We used drones to capture images immediately before, during, and after the flood for the 2 km long section of the river. Data can be used for monitoring and modelling of flood events and assessment of geohazards for Zackenberg Research Station.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Short summary
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains hydrometeorological time series (daily and hourly resolution) and various attributes for 859 gauged basins. Sticking closely to the CAMELS datasets, LamaH includes additional basin delineations and attributes for describing a large interconnected river network. LamaH further contains outputs of a conceptual hydrological baseline model for plausibility checking of the inputs and for benchmarking.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021, https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
Short summary
Rosalia is a 222 ha forested research watershed in eastern Austria to study water, energy and solute transport processes. The paper describes the site, monitoring network, instrumentation and the datasets: high-resolution (10 min interval) time series starting in 2015 of four discharge gauging stations, seven rain gauges, and observations of air and water temperature, relative humidity, and conductivity, as well as soil water content and temperature, at different depths at four profiles.
Minghan Cheng, Xiyun Jiao, Binbin Li, Xun Yu, Mingchao Shao, and Xiuliang Jin
Earth Syst. Sci. Data, 13, 3995–4017, https://doi.org/10.5194/essd-13-3995-2021, https://doi.org/10.5194/essd-13-3995-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a key node linking surface water and energy balance. Satellite observations of ET have been widely used for water resources management in China. In this study, an ET product with high spatiotemporal resolution was generated using a surface energy balance algorithm and multisource remote sensing data. The generated ET product can be used for geoscience studies, especially global change, water resources management, and agricultural drought monitoring, for example.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, Günther Grill, Jing Li, Antonio Limtong, and Ranish Shakya
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-214, https://doi.org/10.5194/essd-2021-214, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
We introduce HydroWASTE, a location-explicit global database of 58,502 wastewater treatment plants (WWTPs) and their characteristics to understand the impact of discharges from such facilities. HydroWASTE was developed compiling regional datasets and using auxiliary information to complete missing characteristics. The location of the outfall of the WWTPs into the river system is also included, allowing the identification of the waterbodies most likely affected.
Zhi Li, Mengye Chen, Shang Gao, Jonathan J. Gourley, Tiantian Yang, Xinyi Shen, Randall Kolar, and Yang Hong
Earth Syst. Sci. Data, 13, 3755–3766, https://doi.org/10.5194/essd-13-3755-2021, https://doi.org/10.5194/essd-13-3755-2021, 2021
Short summary
Short summary
This dataset is a compilation of multi-sourced flood records, retrieved from official reports, instruments, and crowdsourcing data since 1900. This study utilizes the flood database to analyze flood seasonality within major basins and socioeconomic impacts over time. It is anticipated that this dataset can support a variety of flood-related research, such as validation resources for hydrologic models, hydroclimatic studies, and flood vulnerability analysis across the United States.
Nadia Ouaadi, Jamal Ezzahar, Saïd Khabba, Salah Er-Raki, Adnane Chakir, Bouchra Ait Hssaine, Valérie Le Dantec, Zoubair Rafi, Antoine Beaumont, Mohamed Kasbani, and Lionel Jarlan
Earth Syst. Sci. Data, 13, 3707–3731, https://doi.org/10.5194/essd-13-3707-2021, https://doi.org/10.5194/essd-13-3707-2021, 2021
Short summary
Short summary
In this paper, a radar remote sensing database composed of processed Sentinel-1 products and field measurements of soil and vegetation characteristics, weather data, and irrigation water inputs is described. The data set was collected over 3 years (2016–2019) in three drip-irrigated wheat fields in the center of Morocco. It is dedicated to radar data analysis over vegetated surface including the retrieval of soil and vegetation characteristics.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-115, https://doi.org/10.5194/essd-2021-115, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g. UNEP, Thronthwaite) that make use of this formula. The coefficients were produced using as benchmark the ASCE-standardized reference evapotranspiration formula (former FAO-56) that requires temperature, solar radiation, wind speed and relative humidity data.
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Wenting Wang, Shuiqing Yin, Bofu Yu, and Shaodong Wang
Earth Syst. Sci. Data, 13, 2945–2962, https://doi.org/10.5194/essd-13-2945-2021, https://doi.org/10.5194/essd-13-2945-2021, 2021
Short summary
Short summary
A gridded input dataset at a 10 km resolution of a weather generator, CLIGEN, was established for mainland China. Based on this, CLIGEN can generate a series of daily temperature, solar radiation, precipitation data, and rainfall intensity information. In each grid, the input file contains 13 groups of parameters. All parameters were first calculated based on long-term observations and then interpolated by universal kriging. The accuracy of the gridded input dataset has been fully assessed.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Alice César Fassoni-Andrade, Fabien Durand, Daniel Moreira, Alberto Azevedo, Valdenira Ferreira dos Santos, Claudia Funi, and Alain Laraque
Earth Syst. Sci. Data, 13, 2275–2291, https://doi.org/10.5194/essd-13-2275-2021, https://doi.org/10.5194/essd-13-2275-2021, 2021
Short summary
Short summary
We present a seamless dataset of river, land, and ocean topography of the Amazon River estuary with a 30 m spatial resolution. An innovative remote sensing approach was used to estimate the topography of the intertidal flats, riverbanks, and adjacent floodplains. Amazon River bathymetry was generated from digitized nautical charts. The novel dataset opens up a broad range of opportunities, providing the poorly known underwater digital topography required for environmental sciences.
Stefania Tamea, Marta Tuninetti, Irene Soligno, and Francesco Laio
Earth Syst. Sci. Data, 13, 2025–2051, https://doi.org/10.5194/essd-13-2025-2021, https://doi.org/10.5194/essd-13-2025-2021, 2021
Short summary
Short summary
The database includes water footprint and virtual water trade data for 370 agricultural goods in all countries, starting from 1961 and 1986, respectively. Data improve upon earlier datasets because of the annual variability of data and the tracing of goods’ origin within the international trade. The CWASI database aims at supporting national and global assessments of water use in agriculture and food production/consumption and welcomes contributions from the research community.
Hollie M. Cooper, Emma Bennett, James Blake, Eleanor Blyth, David Boorman, Elizabeth Cooper, Jonathan Evans, Matthew Fry, Alan Jenkins, Ross Morrison, Daniel Rylett, Simon Stanley, Magdalena Szczykulska, Emily Trill, Vasileios Antoniou, Anne Askquith-Ellis, Lucy Ball, Milo Brooks, Michael A. Clarke, Nicholas Cowan, Alexander Cumming, Philip Farrand, Olivia Hitt, William Lord, Peter Scarlett, Oliver Swain, Jenna Thornton, Alan Warwick, and Ben Winterbourn
Earth Syst. Sci. Data, 13, 1737–1757, https://doi.org/10.5194/essd-13-1737-2021, https://doi.org/10.5194/essd-13-1737-2021, 2021
Short summary
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Oleksandra O. Shumilova, Alexander N. Sukhodolov, George S. Constantinescu, and Bruce J. MacVicar
Earth Syst. Sci. Data, 13, 1519–1529, https://doi.org/10.5194/essd-13-1519-2021, https://doi.org/10.5194/essd-13-1519-2021, 2021
Short summary
Short summary
Obstructions (vegetation and/or boulders) located on a riverbed alter flow structure and affect riverbed morphology and biodiversity. We studied flow dynamics around obstructions by carrying out experiments in a gravel-bed river. Flow rates, size, submergence and solid fractions of the obstructions were varied in a set of 30 experimental runs, in which high-resolution patterns of mean and turbulent flow were obtained. For an introduction to the experiments see: https://youtu.be/5wXjvzqxONI.
Cristina Aguilar, Rafael Pimentel, and María J. Polo
Earth Syst. Sci. Data, 13, 1335–1359, https://doi.org/10.5194/essd-13-1335-2021, https://doi.org/10.5194/essd-13-1335-2021, 2021
Short summary
Short summary
This work presents the reconstruction of 19 years of daily, monthly, and annual global radiation maps in Sierra Nevada (Spain) derived using daily historical records from weather stations in the area and a modeling scheme that captures the topographic effects that constitute the main sources of the spatial and temporal variability of solar radiation. The generated datasets are valuable in different fields, such as hydrology, ecology, or energy production systems downstream.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Bolivar Paredes-Beltran, Alvaro Sordo-Ward, and Luis Garrote
Earth Syst. Sci. Data, 13, 213–229, https://doi.org/10.5194/essd-13-213-2021, https://doi.org/10.5194/essd-13-213-2021, 2021
Short summary
Short summary
We present a dataset of 1010 entries of dams in South America describing several attributes such as the dams' names, characteristics, purposes, georeferenced locations and also relevant data on the dams' catchments. Information was obtained from extensive research through numerous sources and then validated individually.
With this work we expect to contribute to the development of new research in the region, which to date has been limited to certain basins due to the absence of information.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Laurent de Rham, Yonas Dibike, Spyros Beltaos, Daniel Peters, Barrie Bonsal, and Terry Prowse
Earth Syst. Sci. Data, 12, 1835–1860, https://doi.org/10.5194/essd-12-1835-2020, https://doi.org/10.5194/essd-12-1835-2020, 2020
Short summary
Short summary
This paper describes the Canadian River Ice Database. Water level recordings at a network of 196 National Hydrometric Program gauging sites over the period 1894–2015 were reviewed. This database, of nearly 73 000 recorded variables and over 460 000 data entries, includes the timing and magnitude of fall freeze-up, midwinter break-up, winter minimum, ice thickness, spring break-up and maximum open-water levels. These data cover the range of river types and climate regions for Canada.
Yuanwei Wang, Lei Wang, Xiuping Li, Jing Zhou, and Zhidan Hu
Earth Syst. Sci. Data, 12, 1789–1803, https://doi.org/10.5194/essd-12-1789-2020, https://doi.org/10.5194/essd-12-1789-2020, 2020
Short summary
Short summary
This article is to provide a better precipitation product for the largest river basin of the Tibetan Plateau, the upper Brahmaputra River basin, suitable for use in hydrological simulations and other climate change studies. We integrate gauge, satellite, and reanalysis precipitation datasets to generate a new dataset. The new product has been rigorously validated at various temporal and spatial scales with gauge precipitation observations as well as in cryosphere hydrological simulations.
Matthew T. Perks, Silvano Fortunato Dal Sasso, Alexandre Hauet, Elizabeth Jamieson, Jérôme Le Coz, Sophie Pearce, Salvador Peña-Haro, Alonso Pizarro, Dariia Strelnikova, Flavia Tauro, James Bomhof, Salvatore Grimaldi, Alain Goulet, Borbála Hortobágyi, Magali Jodeau, Sabine Käfer, Robert Ljubičić, Ian Maddock, Peter Mayr, Gernot Paulus, Lionel Pénard, Leigh Sinclair, and Salvatore Manfreda
Earth Syst. Sci. Data, 12, 1545–1559, https://doi.org/10.5194/essd-12-1545-2020, https://doi.org/10.5194/essd-12-1545-2020, 2020
Short summary
Short summary
We present datasets acquired from seven countries across Europe and North America consisting of image sequences. These have been subjected to a range of pre-processing methods in preparation for image velocimetry analysis. These datasets and accompanying reference data are a resource that may be used for conducting benchmarking experiments, assessing algorithm performances, and focusing future software development.
Ziqiang Ma, Jintao Xu, Siyu Zhu, Jun Yang, Guoqiang Tang, Yuanjian Yang, Zhou Shi, and Yang Hong
Earth Syst. Sci. Data, 12, 1525–1544, https://doi.org/10.5194/essd-12-1525-2020, https://doi.org/10.5194/essd-12-1525-2020, 2020
Short summary
Short summary
Focusing on the potential drawbacks in generating the state-of-the-art IMERG data in both the TRMM and GPM era, a new daily calibration algorithm on IMERG was proposed, as well as a new AIMERG precipitation dataset (0.1°/half-hourly, 2000–2015, Asia) with better quality than IMERG for Asian scientific research and applications. The proposed daily calibration algorithm for GPM is promising and applicable in generating the future IMERG in either an operational scheme or a retrospective manner.
C. Jason Williams, Frederick B. Pierson, Patrick R. Kormos, Osama Z. Al-Hamdan, and Justin C. Johnson
Earth Syst. Sci. Data, 12, 1347–1365, https://doi.org/10.5194/essd-12-1347-2020, https://doi.org/10.5194/essd-12-1347-2020, 2020
Short summary
Short summary
Data were collected at three sites over 10 years to evaluate ecologic impacts of tree encroachment on rangelands and assess impacts of tree-removal practices on vegetation, surface conditions, and hydrologic/erosion processes. The dataset includes 1300 rainfall simulation and 838 overland-flow experiments paired with vegetation, surface cover, and soil data across point to hillslope scales. The data advance hydrology/erosion process understanding and are a source for model development/testing.
Riccardo Tortini, Nina Noujdina, Samantha Yeo, Martina Ricko, Charon M. Birkett, Ankush Khandelwal, Vipin Kumar, Miriam E. Marlier, and Dennis P. Lettenmaier
Earth Syst. Sci. Data, 12, 1141–1151, https://doi.org/10.5194/essd-12-1141-2020, https://doi.org/10.5194/essd-12-1141-2020, 2020
Short summary
Short summary
We present a global collection of satellite-derived time series of surface water volume changes for 347 lakes and reservoirs for 1992–2018. These changes were estimated using a statistical relationship between water surface elevation and area measured from satellite, even during periods when either elevation or area was not available. These records represent the most complete global surface water time series, and they are of fundamental importance to baseline future satellite missions.
Navid Ghajarnia, Georgia Destouni, Josefin Thorslund, Zahra Kalantari, Imenne Åhlén, Jesús A. Anaya-Acevedo, Juan F. Blanco-Libreros, Sonia Borja, Sergey Chalov, Aleksandra Chalova, Kwok P. Chun, Nicola Clerici, Amanda Desormeaux, Bethany B. Garfield, Pierre Girard, Olga Gorelits, Amy Hansen, Fernando Jaramillo, Jerker Jarsjö, Adnane Labbaci, John Livsey, Giorgos Maneas, Kathryn McCurley Pisarello, Sebastián Palomino-Ángel, Jan Pietroń, René M. Price, Victor H. Rivera-Monroy, Jorge Salgado, A. Britta K. Sannel, Samaneh Seifollahi-Aghmiuni, Ylva Sjöberg, Pavel Terskii, Guillaume Vigouroux, Lucia Licero-Villanueva, and David Zamora
Earth Syst. Sci. Data, 12, 1083–1100, https://doi.org/10.5194/essd-12-1083-2020, https://doi.org/10.5194/essd-12-1083-2020, 2020
Short summary
Short summary
Hydroclimate and land-use conditions determine the dynamics of wetlands and their ecosystem services. However, knowledge and data for conditions and changes over entire wetlandscapes are scarce. This paper presents a novel database for 27 wetlandscapes around the world, combining survey-based local information and hydroclimatic and land-use datasets. The developed database can enhance our capacity to understand and manage critical wetland ecosystems and their services under global change.
Pierre-Antoine Versini, Filip Stanic, Auguste Gires, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 1025–1035, https://doi.org/10.5194/essd-12-1025-2020, https://doi.org/10.5194/essd-12-1025-2020, 2020
Short summary
Short summary
The Blue Green Wave of Champs-sur-Marne (1 ha, France) has been converted into a full-scale monitoring site devoted to studying the uses of green infrastructure in storm-water management. For this purpose, the components of the water balance have been monitored: rainfall, water content in the substrate, and discharge. These measurements are useful to better understand the processes (infiltration and retention) in hydrological performance and spatial variability.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Chao Gao, Buda Su, Valentina Krysanova, Qianyu Zha, Cai Chen, Gang Luo, Xiaofan Zeng, Jinlong Huang, Ming Xiong, Liping Zhang, and Tong Jiang
Earth Syst. Sci. Data, 12, 387–402, https://doi.org/10.5194/essd-12-387-2020, https://doi.org/10.5194/essd-12-387-2020, 2020
Short summary
Short summary
The study produced the daily discharge time series for the upper Yangtze River basin (Cuntan hydrological station) in the period 1861–2299 under scenarios with and without anthropogenic climate change. The daily discharge was simulated by using four hydrological models (HBV, SWAT, SWIM and VIC) driven by multiple GCM outputs. This dataset could be compared to assess changes in river discharge in the upper Yangtze River basin attributable to anthropogenic climate change.
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020, https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Short summary
Pluvial or flash floods generated by heavy precipitation events cause large economic damage and loss of life worldwide. As discharge observations from such extreme occurrences are rare, data from artificial sprinkling experiments offer valuable information on runoff generation processes, overland and subsurface flow rates, and response times. A extensive data set from 132 large-scale sprinkling experiments in Germany is described and presented in this paper.
Andrew R. Slaughter and Saman Razavi
Earth Syst. Sci. Data, 12, 231–243, https://doi.org/10.5194/essd-12-231-2020, https://doi.org/10.5194/essd-12-231-2020, 2020
Short summary
Short summary
Water management faces the challenge of non-stationarity in future flows. To extend flow datasets beyond the gauging data, this study presents a method of generating an ensemble of weekly flows from tree-ring reconstructed flows to represent uncertainty that can overcome certain long-standing data challenges with paleo-reconstruction. An ensemble of 500 flow time series were generated for the four sub-basins of the Saskatchewan River basin, Canada, for the period 1600–2001.
Stephen Coss, Michael Durand, Yuchan Yi, Yuanyuan Jia, Qi Guo, Stephen Tuozzolo, C. K. Shum, George H. Allen, Stéphane Calmant, and Tamlin Pavelsky
Earth Syst. Sci. Data, 12, 137–150, https://doi.org/10.5194/essd-12-137-2020, https://doi.org/10.5194/essd-12-137-2020, 2020
Short summary
Short summary
We present a new radar-altimeter-satellite-measured river surface height dataset. Our novel approach is broadly applicable rather than location specific. We were able to measure rivers that account for > 34 % of global drainage area with an accuracy comparable to much of the established literature. 389 of our 932 measurement locations include river gage validation. We have focused our efforts on creating a consistent, well-documented data product to encourage use by the broader science community.
Ellie Broadman, Lorna L. Thurston, Erik Schiefer, Nicholas P. McKay, David Fortin, Jason Geck, Michael G. Loso, Matt Nolan, Stéphanie H. Arcusa, Christopher W. Benson, Rebecca A. Ellerbroek, Michael P. Erb, Cody C. Routson, Charlotte Wiman, A. Jade Wong, and Darrell S. Kaufman
Earth Syst. Sci. Data, 11, 1957–1970, https://doi.org/10.5194/essd-11-1957-2019, https://doi.org/10.5194/essd-11-1957-2019, 2019
Short summary
Short summary
Rapid climate warming is impacting physical processes in Arctic environments. Glacier–fed lakes are influenced by many of these processes, and they are impacted by the changing behavior of weather, glaciers, and rivers. We present data from weather stations, river gauging stations, lake moorings, and more, following 4 years of environmental monitoring in the watershed of Lake Peters, a glacier–fed lake in Arctic Alaska. These data can help us study the changing dynamics of this remote setting.
Cited articles
Amoros, C. and Bornette, G.: Connectivity and biocomplexity in waterbodies
of riverine floodplains, Freshw. Biol., 47, 761–776, 2002.
Arnaud, F., Sehen Chanu, L., Grillot, J., Riquier, J., Piégay, H.,
Roux-Michollet, D., Carrel, G., and Olivier, J. M.: Cartographic and
topo-bathymetric archive dataset on the French Rhône River (17th–20th
centuries), PANGAEA, https://doi.org/10.1594/PANGAEA.922437, 2020a.
Arnaud, F., Lerigoleur, E., Jean-Charles, A., Le Berre, I., Pardo, C.,
Raynal, J. C., Fozzani, J., Michel, K., Trémélo, M. L., and
Roux-Michollet, D.: Managing and sharing multidisciplinary information in
human-environment observatories: feedbacks and recommendations from the
French DRIIHM network, Journal of Interdisciplinary Methodologies and Issues in Sciences, https://doi.org/10.18713/JIMIS-120620-6-3, 2020b.
Arnaud, F., Piégay, H., Schmitt, L., Rollet, A. J., Ferrier, V., and
Béal, D.: Historical geomorphic analysis (1932–2011) of a by-passed
river reach in process-based restoration perspectives: The Old Rhine
downstream of the Kembs diversion dam (France, Germany), Geomorphology, 236,
163–177, https://doi.org/10.1016/j.geomorph.2015.02.009, 2015.
Arnaud-Fassetta, G.: River channel changes in the Rhone Delta (France) since
the end of the Little Ice Age: geomorphological adjustment to hydroclimatic
change and natural resource management, Catena, 51, 141–172,
https://doi.org/10.1016/S0341-8162(02)00093-0, 2003.
Belletti, B., Dufour, S., and Piégay, H.: What is the relative effect of
space and time to explain the braided river width and island patterns at a
regional scale?, River Res. Appl., 31, 1–15, https://doi.org/10.1002/rra.2714, 2013.
Belliard, J., Beslagic, S., Delaigue, O., and Tales, E.: Reconstructing
long-term trajectories of fish assemblages using historical data: the Seine
River basin (France) during the last two centuries, Environ. Sci. Pollut.
Res., 25, 23430–23450, https://doi.org/10.1007/s11356-016-7095-1, 2018.
Billy, P., Bard, A., Lang, M., Naulet, R., and Mallet, T.: Updating flood
assessment of the Rhône river, a new methodology, in: Proceedings, 3rd
International Conference, Integrative Sciences and Sustainable Development
of Rivers, Lyon, France, June 2018, 4–8, available at:
https://www.graie.org/ISRivers/docs/ISRIVERS2018_ Actes_web.pdf (last access: 19 May 2020), 2018.
Bravard, J. P., Amoros, C., and Pautou, G.: Impact of civil engineering
works on the successions of communities in a fluvial system: a
methodological and predictive approach applied to a section of the upper
Rhône River, France, Oikos, 47, 92–111, https://doi.org/10.2307/3565924, 1986.
Bravard, J. P.: Discontinuities in braided patterns: The River Rhône
from Geneva to the Camargue delta before river training, Geomorphology, 117, 219–233, https://doi.org/10.1016/j.geomorph.2009.01.020, 2010.
Cadol, D., Rathburn, S. L., and Cooper, D. J.: Aerial photographic analysis
of channel narrowing and vegetation expansion in Canyon de Chelly National
Monument, Arizona, USA, 1935–2004, River Res. Appl., 27, 841–856,
https://doi.org/10.1002/rra.1399, 2011.
Carrel, G.: Prospecting for historical fish data from the Rhone River basin:
a contribution to the assessment of reference condition, Arch. Hydrobiol.,
155, 273–290, 2002.
Dépret, T., Riquier, J., and Piégay, H.: Evolution of abandoned
channels: Insights on controlling factors in a multi-pressure river system,
Geomorphology, 294, 99–118, https://doi.org/10.1016/j.geomorph.2017.01.036, 2017.
Downs, P. W., Dusterhoff, S. R., and Sears, W. A.: Reach-scale channel
sensitivity to multiple human activities and natural events: lower Santa
Clara River, California, USA, Geomorphology 189, 121–134,
https://doi.org/10.1016/j.geomorph.2013.01.023, 2013.
Dufour, S. and Piégay, H.: From the myth of a lost paradise to targeted
river restoration: forget natural references and focus on human benefits,
River Res. Appl., 25, 568–581, https://doi.org/10.1002/rra.1239, 2009.
Dufour, S., Rinaldi, M., Piégay, H., and Michalon, A.: How do river
dynamics and human influences affect the landscape pattern of fluvial
corridors? Lessons from the Magra River, Central–Northern Italy, Landscape Urban Plan., 134, 107–118, https://doi.org/10.1016/j.landurbplan.2014.10.007,
2015.
Eschbach, D., Schmitt, L., Imfeld, G., May, J.-H., Payraudeau, S., Preusser, F., Trauerstein, M., and Skupinski, G.: Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: an interdisciplinary study, Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, 2018.
Frimpong, E. A., Huang, J., and Liang, Y.: IchthyMaps: A database of
historical distributions of freshwater fishes of the United States,
Fisheries, 41, 590–599, https://doi.org/10.1080/03632415.2016.1219948, 2016.
Grabowski, R. C., Surian, N., and Gurnell, A. M.: Characterizing
geomorphological change to support sustainable river restoration and
management, WIREs Water, 1, 483–512, https://doi.org/10.1002/wat2.1037, 2014.
Habersack, H. and Piégay, H.: River restoration in the Alps and their
surroundings: past experience and future challenges, in: Gravel-bed Rivers
6: From Process Understanding to the Restoration of Mountain Rivers, edited
by: Rinaldi, M., Habersack, H., and Piégay, H., Elsevier, Amsterdam,
703–737, ISBN 978-0-444-52861-2, 2008.
Hohensinner, S., Habersack, H., Jungwirth, M., and Zauner, G.:
Reconstruction of the characteristics of a natural alluvial river-floodplain
system and hydromorphological changes following human modifications: the
Danube River (1812–1991), River Res. Appl., 20, 25–41, https://doi.org/10.1002/rra.719,
2004.
Hohensinner, S., Jungwirth, M., Muhar, S., and Schmutz, S.: Spatio-temporal
habitat dynamics in a changing Danube River landscape 1812–2006, River Res.
Appl., 27, 939–955, https://doi.org/10.1002/rra.1407, 2011.
Hohensinner, S., Egger, G., Muhar, S., Vaudor, L., and Piégay, H.: What
remains today of pre-industrial Alpine rivers? Census of historical and
current channel patterns in the Alps, River Res. Appl., 37, 128–149, https://doi.org/10.1002/rra.3751, 2021.
Janssen, P., Stella, J. C., Piégay, H., Räpple, B., Pont, B., Faton,
J. M., Cornelissen, J. H. C., and Evette, A.: Divergence of riparian forest
composition and functional traits from natural succession along a degraded
river with multiple stressor legacies, Sci. Total Environ., 721, 137730,
https://doi.org/10.1016/j.scitotenv.2020.137730, 2020.
Lamouroux, N., Capra, H., Pouilly, M., and Souchon, Y.: Fish habitat
preferences at the local scale in large streams of southern France,
Freshw. Biol., 42, 673–687, 1999.
Lamouroux, N., Gore, J. A., Lepori, F., and Statzner, B.: The ecological
restoration of large rivers needs science-based, predictive tools meeting
public expectations: an overview of the Rhône project, Freshw.
Biol., 60, 1069–1084, https://doi.org/10.1111/fwb.12553, 2015.
Lestel, L., Eschbach, D., Steinmann, R., and Gastaldi, N.: ArchiSEINE: une
approche geìohistorique du bassin de la Seine, Fascicule No. 18 PIREN-Seine,
ARCEAU-IdF, 64 pp., ISBN 978-2-490463-07-7, 2018.
Locard, A.: Sur quelques modifications récentes survenues dans la faune
zoologique lyonnaise, hirondelles et moustiques, soafe et hotu, mouettes, A.
Rey, Lyon, collected in Bibliothèque nationale de France, MFICHE 4-S
piece-1517, 1901.
Marchis, E.: Poissons d'eau douce et d'eau saleìe. Saumon, Alose, Esturgeon,
Anguille, Muge, poissons d'estuaires, étangs et lacs salés,
Socieìteì d'Eìditions geìographiques, maritimes et coloniales, Paris,
collected in Bibliothèque nationale de France, MFICHE 8-S-18530, 1929.
Mould, S. and Fryirs, K.: Contextualising the trajectory of geomorphic river
recovery with environmental history to support river management, Appl.
Geogr., 94, 130–146, https://doi.org/10.1016/j.apgeog.2018.03.008, 2018.
Olivier, J. M., Carrel, G., Lamouroux, N., Dole-Olivier, M. J., Malard, F.,
Bravard, J. P., Piégay, H., Castella, E., and Barthélémy, C.:
The Rhône River Basin, in: Rivers of Europe, edited by: Tockner, K.,
Zarfl, C. and Robinson, C. T., Academic Press, Elsevier, London, ISBN 9780081026120, 2021.
Parrot, E.: Analyse spatio-temporelle de la morphologie du chenal du
Rhône du Léman à la Méditerranée, PhD thesis,
Université Lyon, France, 2015.
Pichard, G.: Les crues sur le bas Rhône de 1500 à nos jours. Pour
une histoire hydro-climatique, Méditerranée, 105–116,
https://doi.org/10.3406/medit.1995.2908, 1995.
Pichard, G. and Roucaute, E.: Sept siècles d'histoire hydroclimatique du
Rhône d'Orange à la mer (1300–2000), climat, crues, inondations,
Méditerranée, 192 pp., ISBN 9782853999410, 2014.
Piégay, H., Arnaud, F., Belletti, B., Bertrand, M., Bizzi,
S., Carbonneau, P., Dufour, S., Liébault, F., Ruiz-Villanueva, V.,
and Slater, L.: Remotely sensed rivers in the Anthropocene: state of the art
and prospects, Earth Surf. Process. Landf., 45, 157–188,
https://doi.org/10.1002/esp.4787, 2020.
Pont, D., Logez, M., Carrel, G., Rogers, C., and Haidvogl, G.: Historical
change in fish species distribution: shifting reference conditions and
global warming effects, Aquatic Sciences, 77, 441–453,
https://doi.org/10.1007/s00027-014-0386-z, 2015.
Provansal, M., Dufour, S., Sabatier, F., Anthony, E., Raccasi, G., and
Robresco, S.: The geomorphic evolution and sediment balance of the lower
Rhône River (southern France) over the last 130 years: hydropower dams
versus other control factors, Geomorphology, 219, 27–41,
https://doi.org/10.1016/j.geomorph.2014.04.033, 2014.
Ramos-Merchante, A., Sáez-Gómez, P., and Prenda, J.: Historical
distribution of freshwater fishes and the reference conditions concept in a
large Mediterranean basin, Aquat. Conserv. Mar. Freshwat. Ecosyst., 31, 888–902,
https://doi.org/10.1002/aqc.3521, 2021.
Räpple B.: Patrons de sédimentation et caractéristiques de la
ripisylve dans les casiers Girardon du Rhône: approche comparative pour
une analyse des facteurs de contrôle et une évaluation des
potentialités écologiques, PhD thesis, Université de Lyon,
France, 2018.
Riquier, J. and Cottet, M.: The Rhône River, in: Rivers of the Alps,
edited by: Muhar, S., Muhar, A., Siegrist, D., and Egger, G., Haupt Verlag
AG, Bern, 456–459, ISBN 978-3-258-08117-5, 2019.
Roux, A. L., Bravard, J. P., Amoros, A., and Pautou, G.: Ecological changes
of the French Upper Rhône River since 1750, in: Historical Change of
Large Alluvial Rivers: Western Europe, edited by: Petts, G. E., Möller,
H., and Roux A. L., John Wiley & Sons, Chichester, 323–350, ISBN 0-471-92163-7, 1989.
Safran, S. M., Baumgarten, S. A., Beller, E. E., Crook, J. A., Grossinger,
R. M., Lorda, J., and Stein, E. D.: Tijuana River Valley Historical Ecology
Investigation, prepared for the State Coastal Conservancy, SFEI-ASC's
Resilient Landscapes Program, SFEI Contribution No. 760, Aquatic Science
Center, San Francisco Estuary Institute, Richmond, CA, 2017.
Salvador, P. G. and Berger, J. F.: The evolution of the Rhône River in
the Basses Terres basin during the Holocene (Alpine foothills, France),
Geomorphology, 204, 71–85, https://doi.org/10.1016/j.geomorph.2013.07.030, 2014.
Scorpio, V., Aucelli, P. P. C., Giano, S. I., Pisano, L., Robustelli, G.,
Rosskopf, C. M., and Schiattarella, M.: River channel adjustments in
Southern Italy over the past 150 years and implications for channel
recovery, Geomorphology, 251, 77–90, https://doi.org/10.1016/j.geomorph.2015.07.008,
2015.
Słowik, M.: Is history of rivers important in restoration projects? The
example of human impact on a lowland river valley (the Obra River, Poland),
Geomorphology, 251, 50–63, https://doi.org/10.1016/j.geomorph.2015.05.031, 2015.
Solins, J. P., Thorne, J. H., and Cadenasso, M. L.: Riparian canopy
expansion in an urban landscape: Multiple drivers of vegetation change along
headwater streams near Sacramento, California, Landscape Urban Plan.,
172, 37–46, https://doi.org/10.1016/j.landurbplan.2017.12.005, 2018.
Steiger, J., Gurnell, A. M., Ergenzinger, P., and Snelder, D.: Sedimentation
in the riparian zone of an incising river, Earth Surf. Process. Land.,
26, 91–108, 2001.
Tena, A., Piégay, H., Seignemartin, G., Barra, A., Berger, J. F.,
Mourier, B., and Winiarski, T.: Cumulative effects of channel correction and
regulation on floodplain terrestrialisation patterns and connectivity,
Geomorphology, 354, 107034, https://doi.org/10.1016/j.geomorph.2020.107034, 2020.
Thorel, M., Piégay, H., Barthélémy, C., Räpple, B., Gruel,
C. R., Marmonier P., Winiarski, T., Bedell, J. P., Arnaud, F., Roux, G., and
Stella, J. C.: Socio-environmental implications of process-based restoration
strategies in large rivers: should we remove novel ecosystems along the
Rhône (France)?, Regional Environmental Change, 18, 2019–2031,
https://doi.org/10.1007/s10113-018-1325-7, 2018.
Van Den Broeck, N. and Moutin, T.: Phosphate in the sediments of the Gulf of
Lions (NW Mediterranean Sea), relationship with input by the river Rhone,
Hydrobiologia, 472, 85–94, https://doi.org/10.1023/A:1016308931115, 2002.
Vella, C., Fleury, J., Raccasi, G., Provansal, M., Sabatier, F., and
Bourcier, M.: Evolution of the Rhône delta plain in the Holocene, Mar.
Geol., 222–223, 235–265, https://doi.org/10.1016/j.margeo.2005.06.028, 2005.
Vingtrinier, A.: La pêche à l'Alose dans la rivière d'Ain, in:
Fantaisies lyonnaises, Lyon, collected in Departmental Archives of
Ain, BIB E 525, 44–72, 1882.
Wolter, C., Bischoff, A., and Wysujack, K.: The use of historical data to
characterize fish-faunistic reference conditions for large lowland rivers in
northern Germany, Archiv für Hydrobiologie Suppl., 155, Large Rivers, 15, 37–51, https://doi.org/10.1127/lr/15/2003/37, 2005.
Short summary
This article provides a database of 350 cartographic and topographic resources on the 530-km-long French Rhône River, compiled from the 17th to mid-20th century in 14 national, regional, and departmental archive services. The database has several potential applications in geomorphology, retrospective hydraulic modelling, historical ecology, and sustainable river management and restoration, as well as permitting comparisons of channel changes with other human-impacted rivers worldwide.
This article provides a database of 350 cartographic and topographic resources on the...