Data description paper
24 Apr 2020
Data description paper
| 24 Apr 2020
PhytoBase: A global synthesis of open-ocean phytoplankton occurrences
Damiano Righetti et al.
Related authors
No articles found.
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk N. Karger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-212, https://doi.org/10.5194/essd-2022-212, 2022
Preprint under review for ESSD
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year-averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-30, https://doi.org/10.5194/cp-2021-30, 2021
Revised manuscript under review for CP
Short summary
Short summary
Here we present global monthly climatologies for temperature and precipitation at high spatial resolution for the last 21,000 years. The topography at all time steps is created by combining high resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021, https://doi.org/10.5194/essd-13-777-2021, 2021
Short summary
Short summary
Ocean acidification (OA) has altered the ocean's carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits us to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021, https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary
Short summary
Using a regional Southern Ocean ecosystem model, we find that the relative importance of Phaeocystis and diatoms at high latitudes is controlled by iron and temperature variability, with light levels controlling the seasonal succession in coastal areas. Yet, biomass losses via aggregation and grazing matter as well. We show that the seasonal succession of Phaeocystis and diatoms impacts the seasonality of carbon export fluxes with ramifications for nutrient cycling and food web dynamics.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Riley X. Brady, Nicole S. Lovenduski, Michael A. Alexander, Michael Jacox, and Nicolas Gruber
Biogeosciences, 16, 329–346, https://doi.org/10.5194/bg-16-329-2019, https://doi.org/10.5194/bg-16-329-2019, 2019
Cara Nissen, Meike Vogt, Matthias Münnich, Nicolas Gruber, and F. Alexander Haumann
Biogeosciences, 15, 6997–7024, https://doi.org/10.5194/bg-15-6997-2018, https://doi.org/10.5194/bg-15-6997-2018, 2018
Short summary
Short summary
Using a regional ocean model, we find that coccolithophore biomass in the Southern Ocean is highest in the subantarctic in late summer when diatom growth becomes limited by silicate. We show that zooplankton grazing is crucial to explain phytoplankton biomass distributions in this area and conclude that assessments of future distributions should not only consider physical and chemical factors (temperature, light, nutrients, pH), but also interactions with other phytoplankton or zooplankton.
Elisa Lovecchio, Nicolas Gruber, and Matthias Münnich
Biogeosciences, 15, 5061–5091, https://doi.org/10.5194/bg-15-5061-2018, https://doi.org/10.5194/bg-15-5061-2018, 2018
Short summary
Short summary
We find that the ocean's flow on scales of a few tens to a few hundred km has a central role in the lateral redistribution of the organic carbon from the coast to the open ocean. Narrow coastal filaments drive the offshore flux of organic carbon and strongly enhance its availability up to 1000 km from the coast. Eddies extend the flux up to 2000 km offshore containing 30 % of the organic matter in the open waters. Resolving these scales is essential to capture the coastal/open ocean coupling.
Ivy Frenger, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 15, 4781–4798, https://doi.org/10.5194/bg-15-4781-2018, https://doi.org/10.5194/bg-15-4781-2018, 2018
Short summary
Short summary
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean (SO), their regional and seasonal association with phytoplankton has not been quantified. We identify over 100 000 eddies and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll (Chl) as a proxy. The emerging Chl anomalies can be explained largely by lateral advection of Chl by eddies. This impact of eddies on phytoplankton may implicate downstream effects on SO biogeochemical properties.
Yu Liu, Nicolas Gruber, and Dominik Brunner
Atmos. Chem. Phys., 17, 14145–14169, https://doi.org/10.5194/acp-17-14145-2017, https://doi.org/10.5194/acp-17-14145-2017, 2017
Short summary
Short summary
We analyze fossil fuel signals in atmospheric CO2 over Europe using a high-resolution atmospheric transport model and diurnal emission data. We find that fossil fuel CO2 accounts for more than half of the atmospheric CO2 variations, mainly at diurnal timescales. The covariance of diurnal emission and transport also leads to a substantial rectification effect. Thus, the consideration of diurnal emissions and high-resolution transport is paramount for accurately modeling the fossil fuel signal.
Goulven G. Laruelle, Peter Landschützer, Nicolas Gruber, Jean-Louis Tison, Bruno Delille, and Pierre Regnier
Biogeosciences, 14, 4545–4561, https://doi.org/10.5194/bg-14-4545-2017, https://doi.org/10.5194/bg-14-4545-2017, 2017
Jakob Zscheischler, Miguel D. Mahecha, Valerio Avitabile, Leonardo Calle, Nuno Carvalhais, Philippe Ciais, Fabian Gans, Nicolas Gruber, Jens Hartmann, Martin Herold, Kazuhito Ichii, Martin Jung, Peter Landschützer, Goulven G. Laruelle, Ronny Lauerwald, Dario Papale, Philippe Peylin, Benjamin Poulter, Deepak Ray, Pierre Regnier, Christian Rödenbeck, Rosa M. Roman-Cuesta, Christopher Schwalm, Gianluca Tramontana, Alexandra Tyukavina, Riccardo Valentini, Guido van der Werf, Tristram O. West, Julie E. Wolf, and Markus Reichstein
Biogeosciences, 14, 3685–3703, https://doi.org/10.5194/bg-14-3685-2017, https://doi.org/10.5194/bg-14-3685-2017, 2017
Short summary
Short summary
Here we synthesize a wide range of global spatiotemporal observational data on carbon exchanges between the Earth surface and the atmosphere. A key challenge was to consistently combining observational products of terrestrial and aquatic surfaces. Our primary goal is to identify today’s key uncertainties and observational shortcomings that would need to be addressed in future measurement campaigns or expansions of in situ observatories.
Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, and Zouhair Lachkar
Biogeosciences, 14, 3337–3369, https://doi.org/10.5194/bg-14-3337-2017, https://doi.org/10.5194/bg-14-3337-2017, 2017
Short summary
Short summary
We find that a big portion of the phytoplankton, zooplankton, and detrital organic matter produced near the northern African coast is laterally transported towards the open North Atlantic. This offshore flux sustains a relevant part of the biological activity in the open sea and reaches as far as the middle of the North Atlantic. Our results, obtained with a state-of-the-art model, highlight the fundamental role of the narrow but productive coastal ocean in sustaining global marine life.
Corinne Le Quéré, Erik T. Buitenhuis, Róisín Moriarty, Séverine Alvain, Olivier Aumont, Laurent Bopp, Sophie Chollet, Clare Enright, Daniel J. Franklin, Richard J. Geider, Sandy P. Harrison, Andrew G. Hirst, Stuart Larsen, Louis Legendre, Trevor Platt, I. Colin Prentice, Richard B. Rivkin, Sévrine Sailley, Shubha Sathyendranath, Nick Stephens, Meike Vogt, and Sergio M. Vallina
Biogeosciences, 13, 4111–4133, https://doi.org/10.5194/bg-13-4111-2016, https://doi.org/10.5194/bg-13-4111-2016, 2016
Short summary
Short summary
We present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types, and use the model to assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean. Our results suggest that observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton growth.
Charlotte Laufkötter, Meike Vogt, Nicolas Gruber, Olivier Aumont, Laurent Bopp, Scott C. Doney, John P. Dunne, Judith Hauck, Jasmin G. John, Ivan D. Lima, Roland Seferian, and Christoph Völker
Biogeosciences, 13, 4023–4047, https://doi.org/10.5194/bg-13-4023-2016, https://doi.org/10.5194/bg-13-4023-2016, 2016
Short summary
Short summary
We compare future projections in marine export production, generated by four ecosystem models under IPCC's high-emission scenario RCP8.5. While all models project decreases in export, they differ strongly regarding the drivers. The formation of sinking particles of organic matter is the most uncertain process with models not agreeing on either magnitude or the direction of change. Changes in diatom concentration are a strong driver for export in some models but of low significance in others.
Zhen Zhang, Niklaus E. Zimmermann, Jed O. Kaplan, and Benjamin Poulter
Biogeosciences, 13, 1387–1408, https://doi.org/10.5194/bg-13-1387-2016, https://doi.org/10.5194/bg-13-1387-2016, 2016
Short summary
Short summary
This study investigates improvements and uncertainties associated with estimating global inundated area and wetland CH4 emissions using TOPMODEL. Different topographic information and catchment aggregation schemes are evaluated against seasonal and permanently inundated wetland observations. Reducing uncertainty in prognostic wetland dynamics modeling must take into account forcing data as well as topographic scaling schemes.
C. Rödenbeck, D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K. B. Rodgers, T. P. Sasse, U. Schuster, J. D. Shutler, V. Valsala, R. Wanninkhof, and J. Zeng
Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, https://doi.org/10.5194/bg-12-7251-2015, 2015
Short summary
Short summary
This study investigates variations in the CO2 uptake of the ocean from year to year. These variations have been calculated from measurements of the surface-ocean carbon content by various different interpolation methods. The equatorial Pacific is estimated to be the region with the strongest year-to-year variations, tied to the El Nino phase. The global ocean CO2 uptake gradually increased from about the year 2000. The comparison of the interpolation methods identifies these findings as robust.
C. Laufkötter, M. Vogt, N. Gruber, M. Aita-Noguchi, O. Aumont, L. Bopp, E. Buitenhuis, S. C. Doney, J. Dunne, T. Hashioka, J. Hauck, T. Hirata, J. John, C. Le Quéré, I. D. Lima, H. Nakano, R. Seferian, I. Totterdell, M. Vichi, and C. Völker
Biogeosciences, 12, 6955–6984, https://doi.org/10.5194/bg-12-6955-2015, https://doi.org/10.5194/bg-12-6955-2015, 2015
Short summary
Short summary
We analyze changes in marine net primary production (NPP) and its drivers for the 21st century in 9 marine ecosystem models under the RCP8.5 scenario. NPP decreases in 5 models and increases in 1 model; 3 models show no significant trend. The main drivers include stronger nutrient limitation, but in many models warming-induced increases in phytoplankton growth outbalance the nutrient effect. Temperature-driven increases in grazing and other loss processes cause a net decrease in biomass and NPP.
R. Arruda, P. H. R. Calil, A. A. Bianchi, S. C. Doney, N. Gruber, I. Lima, and G. Turi
Biogeosciences, 12, 5793–5809, https://doi.org/10.5194/bg-12-5793-2015, https://doi.org/10.5194/bg-12-5793-2015, 2015
Short summary
Short summary
We investigate surface ocean pCO2 and air-sea CO2 fluxes climatological variability through biogeochemical modeling in the southwestern Atlantic Ocean. Surface ocean pCO2 spatio-temporal variability was found to be controlled mainly by temperature and Dissolved Inorganic Carbon (DIC). Biological production, physical transport and solubility are the main controlling processes. With different behaviors on subtropical and subantarctic open ocean, and on inner/outer continental shelves.
B. Oney, S. Henne, N. Gruber, M. Leuenberger, I. Bamberger, W. Eugster, and D. Brunner
Atmos. Chem. Phys., 15, 11147–11164, https://doi.org/10.5194/acp-15-11147-2015, https://doi.org/10.5194/acp-15-11147-2015, 2015
Short summary
Short summary
We present a detailed analysis of a new greenhouse gas measurement network
in the Swiss Plateau, situated between the Jura mountains and the Alps. We
find the network's measurements to be information rich and suitable
for studying surface carbon fluxes of the study region. However, we are
limited by the high-resolution (2km) atmospheric transport model's ability
to simulate meteorology at the individual measurement stations, especially
at those situated in rough terrain.
A. Jahn, K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu, and E. C. Brady
Geosci. Model Dev., 8, 2419–2434, https://doi.org/10.5194/gmd-8-2419-2015, https://doi.org/10.5194/gmd-8-2419-2015, 2015
Short summary
Short summary
Carbon isotopes have been added to the ocean model of the Community Earth System Model version 1 (CESM1). This paper describes the details of how the abiotic 14C tracer and the biotic 13C and 14C tracers were added to the existing ocean model of the CESM. In addition, it shows the first results of the new model features compared to observational data for the 1990s.
J. Martinez-Rey, L. Bopp, M. Gehlen, A. Tagliabue, and N. Gruber
Biogeosciences, 12, 4133–4148, https://doi.org/10.5194/bg-12-4133-2015, https://doi.org/10.5194/bg-12-4133-2015, 2015
D. R. Schmatz, J. Luterbacher, N. E. Zimmermann, and P. B. Pearman
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-2585-2015, https://doi.org/10.5194/cpd-11-2585-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Global climate model output for the Last Glacial Maximum (LGM) is downscaled to a very high resolution using the change factor method. We develop two new methods to extend current baseline climate to the LGM coastline so that the final data cover all terrestrial area at LGM. Results are gridded data for temperature, precipitation and 19 bioclimatic variables which are often used in studies on climate change impact on biological diversity, glacial refugia or migration during Holocene warming.
S. K. Lauvset, N. Gruber, P. Landschützer, A. Olsen, and J. Tjiputra
Biogeosciences, 12, 1285–1298, https://doi.org/10.5194/bg-12-1285-2015, https://doi.org/10.5194/bg-12-1285-2015, 2015
Short summary
Short summary
This paper utilizes the SOCATv2 data product to calculate surface ocean pH. The pH data are divided into 17 biomes, and a linear regression is used to derive the long-term trend of pH in each biome. The results are consistent with the trends observed at time series stations. The uncertainties are too large for a mechanistic understanding of the driving forces behind the trend, but there are indications that concurrent changes in chemistry create spatial variability.
S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
Biogeosciences, 12, 653–679, https://doi.org/10.5194/bg-12-653-2015, https://doi.org/10.5194/bg-12-653-2015, 2015
F. Fendereski, M. Vogt, M. R. Payne, Z. Lachkar, N. Gruber, A. Salmanmahiny, and S. A. Hosseini
Biogeosciences, 11, 6451–6470, https://doi.org/10.5194/bg-11-6451-2014, https://doi.org/10.5194/bg-11-6451-2014, 2014
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
G. Turi, Z. Lachkar, and N. Gruber
Biogeosciences, 11, 671–690, https://doi.org/10.5194/bg-11-671-2014, https://doi.org/10.5194/bg-11-671-2014, 2014
P. Landschützer, N. Gruber, D. C. E. Bakker, U. Schuster, S. Nakaoka, M. R. Payne, T. P. Sasse, and J. Zeng
Biogeosciences, 10, 7793–7815, https://doi.org/10.5194/bg-10-7793-2013, https://doi.org/10.5194/bg-10-7793-2013, 2013
C. Laufkötter, M. Vogt, and N. Gruber
Biogeosciences, 10, 7373–7393, https://doi.org/10.5194/bg-10-7373-2013, https://doi.org/10.5194/bg-10-7373-2013, 2013
M. Vogt, T. Hashioka, M. R. Payne, E. T. Buitenhuis, C. Le Quéré, S. Alvain, M. N. Aita, L. Bopp, S. C. Doney, T. Hirata, I. Lima, S. Sailley, and Y. Yamanaka
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-17193-2013, https://doi.org/10.5194/bgd-10-17193-2013, 2013
Revised manuscript has not been submitted
T. Hashioka, M. Vogt, Y. Yamanaka, C. Le Quéré, E. T. Buitenhuis, M. N. Aita, S. Alvain, L. Bopp, T. Hirata, I. Lima, S. Sailley, and S. C. Doney
Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-6833-2013, https://doi.org/10.5194/bg-10-6833-2013, 2013
A. Schmittner, N. Gruber, A. C. Mix, R. M. Key, A. Tagliabue, and T. K. Westberry
Biogeosciences, 10, 5793–5816, https://doi.org/10.5194/bg-10-5793-2013, https://doi.org/10.5194/bg-10-5793-2013, 2013
E. T. Buitenhuis, M. Vogt, R. Moriarty, N. Bednaršek, S. C. Doney, K. Leblanc, C. Le Quéré, Y.-W. Luo, C. O'Brien, T. O'Brien, J. Peloquin, R. Schiebel, and C. Swan
Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, https://doi.org/10.5194/essd-5-227-2013, 2013
C. J. O'Brien, J. A. Peloquin, M. Vogt, M. Heinle, N. Gruber, P. Ajani, H. Andruleit, J. Arístegui, L. Beaufort, M. Estrada, D. Karentz, E. Kopczyńska, R. Lee, A. J. Poulton, T. Pritchard, and C. Widdicombe
Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, https://doi.org/10.5194/essd-5-259-2013, 2013
A. Lenton, B. Tilbrook, R. M. Law, D. Bakker, S. C. Doney, N. Gruber, M. Ishii, M. Hoppema, N. S. Lovenduski, R. J. Matear, B. I. McNeil, N. Metzl, S. E. Mikaloff Fletcher, P. M. S. Monteiro, C. Rödenbeck, C. Sweeney, and T. Takahashi
Biogeosciences, 10, 4037–4054, https://doi.org/10.5194/bg-10-4037-2013, https://doi.org/10.5194/bg-10-4037-2013, 2013
S. Khatiwala, T. Tanhua, S. Mikaloff Fletcher, M. Gerber, S. C. Doney, H. D. Graven, N. Gruber, G. A. McKinley, A. Murata, A. F. Ríos, and C. L. Sabine
Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, https://doi.org/10.5194/bg-10-2169-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
R. Wanninkhof, G. -H. Park, T. Takahashi, C. Sweeney, R. Feely, Y. Nojiri, N. Gruber, S. C. Doney, G. A. McKinley, A. Lenton, C. Le Quéré, C. Heinze, J. Schwinger, H. Graven, and S. Khatiwala
Biogeosciences, 10, 1983–2000, https://doi.org/10.5194/bg-10-1983-2013, https://doi.org/10.5194/bg-10-1983-2013, 2013
U. Schuster, G. A. McKinley, N. Bates, F. Chevallier, S. C. Doney, A. R. Fay, M. González-Dávila, N. Gruber, S. Jones, J. Krijnen, P. Landschützer, N. Lefèvre, M. Manizza, J. Mathis, N. Metzl, A. Olsen, A. F. Rios, C. Rödenbeck, J. M. Santana-Casiano, T. Takahashi, R. Wanninkhof, and A. J. Watson
Biogeosciences, 10, 607–627, https://doi.org/10.5194/bg-10-607-2013, https://doi.org/10.5194/bg-10-607-2013, 2013
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Y. Yara, M. Vogt, M. Fujii, H. Yamano, C. Hauri, M. Steinacher, N. Gruber, and Y. Yamanaka
Biogeosciences, 9, 4955–4968, https://doi.org/10.5194/bg-9-4955-2012, https://doi.org/10.5194/bg-9-4955-2012, 2012
Related subject area
Biological oceanography
Primary productivity measurements in the Ross Sea, Antarctica: a regional synthesis
Patos Lagoon estuary and adjacent marine coastal biodiversity long-term data
The COSMUS Expedition: Seafloor Images and acoustic bathymetric data from the PS124 expedition to the southern Weddell Sea, Antarctica
Weight-to-weight conversion factors for benthic macrofauna: recent measurements from the Baltic and the North seas
The Plankton Lifeform Extraction Tool: a digital tool to increase the discoverability and usability of plankton time-series data
Collection and analysis of a global marine phytoplankton primary-production dataset
Daily to annual net primary production in the North Sea determined using autonomous underwater gliders and satellite Earth observation
The ADRIREEF database: a comprehensive collection of natural/artificial reefs and wrecks in the Adriatic Sea
Diets of the Barents Sea cod (Gadus morhua) from the 1930s to 2018
A global viral oceanography database (gVOD)
A long-term (1965–2015) ecological marine database from the LTER-Italy Northern Adriatic Sea site: plankton and oceanographic observations
An interactive atlas for marine biodiversity conservation in the Coral Triangle
A synthetic satellite dataset of the spatio-temporal distributions of Emiliania huxleyi blooms and their impacts on Arctic and sub-Arctic marine environments (1998–2016)
A 40-year global data set of visible-channel remote-sensing reflectances and coccolithophore bloom occurrence derived from the Advanced Very High Resolution Radiometer catalogue
Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set
Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications
KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926–2016
A trait database for marine copepods
Global ocean particulate organic carbon flux merged with satellite parameters
A compilation of global bio-optical in situ data for ocean-colour satellite applications
Data compilation on the biological response to ocean acidification: an update
CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters
Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean
Biogeography of key mesozooplankton species in the North Atlantic and egg production of Calanus finmarchicus
Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods
A metadata template for ocean acidification data
Spatially explicit estimates of stock sizes, structure and biomass of herring and blue whiting, and catch data of bluefin tuna
A new compilation of stomach content data for commercially important pelagic fish species in the northeast Atlantic
Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga)
Data compilation of fluxes of sedimenting material from sediment traps in the Atlantic Ocean
Global database of surface ocean particulate organic carbon export fluxes diagnosed from the 234Th technique
Distribution of known macrozooplankton abundance and biomass in the global ocean
Global marine plankton functional type biomass distributions: coccolithophores
The MAREDAT global database of high performance liquid chromatography marine pigment measurements
Distribution of mesozooplankton biomass in the global ocean
Calibration procedures and first dataset of Southern Ocean chlorophyll a profiles collected by elephant seals equipped with a newly developed CTD-fluorescence tags
The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean
A global diatom database – abundance, biovolume and biomass in the world ocean
Global marine plankton functional type biomass distributions: Phaeocystis spp.
Picoheterotroph (Bacteria and Archaea) biomass distribution in the global ocean
Picophytoplankton biomass distribution in the global ocean
EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification
Walker O. Smith Jr.
Earth Syst. Sci. Data, 14, 2737–2747, https://doi.org/10.5194/essd-14-2737-2022, https://doi.org/10.5194/essd-14-2737-2022, 2022
Short summary
Short summary
The rate of photosynthesis of marine phytoplankton – primary productivity – is typically measured by quantifying the rate of radioisotope incorporation. However, generally such measurements are not collected by one individual through time and so are difficult to compare due to methodological differences. A data set compiled by one investigator over more than 20 years in the Ross Sea demonstrates the importance of the region as a "hot spot" for growth and synthesis.
Valéria M. Lemos, Marianna Lanari, Margareth Copertino, Eduardo R. Secchi, Paulo Cesar O. V. de Abreu, José H. Muelbert, Alexandre M. Garcia, Felipe C. Dumont, Erik Muxagata, João P. Vieira, André Colling, and Clarisse Odebrecht
Earth Syst. Sci. Data, 14, 1015–1041, https://doi.org/10.5194/essd-14-1015-2022, https://doi.org/10.5194/essd-14-1015-2022, 2022
Short summary
Short summary
The Patos Lagoon estuary and adjacent marine coast (PLEA) has been a site of the Brazilian Long-Term Ecological Research (LTER) program since 1998. LTER-PLEA contributes information about the biota composition, distribution and abundance, and estuarine ecological processes. The LTER-PLEA database (8 datasets containing 6972 sampling events and records of 275 species) represents one of the most robust and longest databases of biological diversity in an estuarine coastal system of South America.
Autun Purser, Laura Hehemann, Lilian Boehringer, Ellen Werner, Santiago E. A. Pineda-Metz, Lucie Vignes, Axel Nordhausen, Moritz Holtappels, and Frank Wenzhoefer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-444, https://doi.org/10.5194/essd-2021-444, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
Within this paper we present the seafloor images, maps and acoustic camera data collected by a towed underwater research platform deployed in 20 locations across the eastern Weddell Sea, Antarctica during the PS124 COSMUS expedition with the research icebreaker, RV Polarstern. The 20 deployments highlight the great variability in seafloor structure and faunal communities present. Of key interest was the discovery of the largest fish nesting colony discovered globally to date.
Mayya Gogina, Anja Zettler, and Michael L. Zettler
Earth Syst. Sci. Data, 14, 1–4, https://doi.org/10.5194/essd-14-1-2022, https://doi.org/10.5194/essd-14-1-2022, 2022
Short summary
Short summary
For the first time we publish a taxonomically detailed and robust dataset of biomass conversion factors for macro-zoobenthos, often required in many studies. Georeferenced raw data for 497 taxa empower the user to make the best selections for combining them with their own data, and aggregation can help to quantify natural variability and uncertainty and refine current ecological theory. Standardised measurements were done on material collected for over 2 decades in the Baltic and the North seas.
Clare Ostle, Kevin Paxman, Carolyn A. Graves, Mathew Arnold, Luis Felipe Artigas, Angus Atkinson, Anaïs Aubert, Malcolm Baptie, Beth Bear, Jacob Bedford, Michael Best, Eileen Bresnan, Rachel Brittain, Derek Broughton, Alexandre Budria, Kathryn Cook, Michelle Devlin, George Graham, Nick Halliday, Pierre Hélaouët, Marie Johansen, David G. Johns, Dan Lear, Margarita Machairopoulou, April McKinney, Adam Mellor, Alex Milligan, Sophie Pitois, Isabelle Rombouts, Cordula Scherer, Paul Tett, Claire Widdicombe, and Abigail McQuatters-Gollop
Earth Syst. Sci. Data, 13, 5617–5642, https://doi.org/10.5194/essd-13-5617-2021, https://doi.org/10.5194/essd-13-5617-2021, 2021
Short summary
Short summary
Plankton form the base of the marine food web and are sensitive indicators of environmental change. The Plankton Lifeform Extraction Tool brings together disparate plankton datasets into a central database from which it extracts abundance time series of plankton functional groups, called
lifeforms, according to shared biological traits. This tool has been designed to make complex plankton datasets accessible and meaningful for policy, public interest, and scientific discovery.
Francesco Mattei and Michele Scardi
Earth Syst. Sci. Data, 13, 4967–4985, https://doi.org/10.5194/essd-13-4967-2021, https://doi.org/10.5194/essd-13-4967-2021, 2021
Short summary
Short summary
Data paucity hinders the understanding of natural processes such as phytoplankton production. Several studies stressed how the lack of data is the main constraint for modeling phytoplankton production. We created a global and ready-to-use dataset regarding phytoplankton production, collecting and processing data from several sources. We performed a general data analysis from a numerical and an ecological perspective. This dataset will help enhance the understanding of phytoplankton production.
Benjamin Loveday, Timothy Smyth, Anıl Akpinar, Tom Hull, Mark Inall, Jan Kaiser, Bastien Queste, Matt Tobermann, Charlotte Williams, and Matthew Palmer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-311, https://doi.org/10.5194/essd-2021-311, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Using a new approach to combine autonomous underwater glider data and satellite Earth observations, we have generated a 19-month time-series of North Sea net primary productivity – the rate at which phytoplankton absorbs carbon dioxide, minus that lost through respiration. This time-series, which spans 13 gliders, allows for new investigations into small-scale, high-frequency variability in the biogeochemical processes that underpin the carbon cycle and coastal marine ecosystems in shelf seas.
Annalisa Minelli, Carmen Ferrà, Alessandra Spagnolo, Martina Scanu, Anna Nora Tassetti, Carla Rita Ferrari, Cristina Mazziotti, Silvia Pigozzi, Zrinka Jakl, Tena Šarčević, Miranda Šimac, Claudia Kruschel, Dubravko Pejdo, Enrico Barbone, Michele De Gioia, Diego Borme, Emiliano Gordini, Rocco Auriemma, Ivo Benzon, Đeni Vuković-Stanišić, Sandi Orlić, Vlado Frančić, Damir Zec, Ivana Orlić Kapović, Michela Soldati, Silvia Ulazzi, and Gianna Fabi
Earth Syst. Sci. Data, 13, 1905–1923, https://doi.org/10.5194/essd-13-1905-2021, https://doi.org/10.5194/essd-13-1905-2021, 2021
Short summary
Short summary
This data paper describes a dataset of natural and artificial reefs and wrecks in the Adriatic Sea collected, from a survey, in the frame of the ADRIREEF Interreg project. Information about the identification of the reef and its physical characteristics, surrounding area, and management actions/facilities has been collected in order to create a very detailed dataset, which has been harmonized and published in the SEANOE repository (https://doi.org/10.17882/74880).
Bryony L. Townhill, Rebecca E. Holt, Bjarte Bogstad, Joël M. Durant, John K. Pinnegar, Andrey V. Dolgov, Natalia A. Yaragina, Edda Johannesen, and Geir Ottersen
Earth Syst. Sci. Data, 13, 1361–1370, https://doi.org/10.5194/essd-13-1361-2021, https://doi.org/10.5194/essd-13-1361-2021, 2021
Short summary
Short summary
A dataset on the diet of Atlantic cod in the Barents Sea from the 1930s to 2018 has been compiled to produce one of the largest fish diet datasets available globally. A top predator, cod plays a key role in the food web. The data from Norway, the United Kingdom and Russia include data from 2.5 million fish. Diets have changed considerably from the start of the dataset in the 1930s. This dataset helps us understand how the environment and ecosystems are responding to a changing climate.
Le Xie, Wei Wei, Lanlan Cai, Xiaowei Chen, Yuhong Huang, Nianzhi Jiao, Rui Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 13, 1251–1271, https://doi.org/10.5194/essd-13-1251-2021, https://doi.org/10.5194/essd-13-1251-2021, 2021
Short summary
Short summary
Viruses play key roles in marine ecosystems by killing their hosts, maintaining diversity and recycling nutrients. In the global viral oceanography database (gVOD), 10 931 viral abundance data and 727 viral production data, along with host and other oceanographic parameters, were compiled. It identified viral data were undersampled in the southeast Pacific and Indian oceans. The gVOD can be used in marine viral ecology investigation and modeling of marine ecosystems and biogeochemical cycles.
Francesco Acri, Mauro Bastianini, Fabrizio Bernardi Aubry, Elisa Camatti, Alfredo Boldrin, Caterina Bergami, Daniele Cassin, Amelia De Lazzari, Stefania Finotto, Annalisa Minelli, Alessandro Oggioni, Marco Pansera, Alessandro Sarretta, Giorgio Socal, and Alessandra Pugnetti
Earth Syst. Sci. Data, 12, 215–230, https://doi.org/10.5194/essd-12-215-2020, https://doi.org/10.5194/essd-12-215-2020, 2020
Short summary
Short summary
The present paper describes a database containing observations for 21 parameters of abiotic, phytoplankton, and zooplankton data collected in the northern Adriatic Sea region (Italy) from 1965 to 2015. Due to the long temporal coverage, the majority of parameters changed collection and analysis method over time. These variations are reported in the database and detailed in the paper.
Irawan Asaad, Carolyn J. Lundquist, Mark V. Erdmann, and Mark J. Costello
Earth Syst. Sci. Data, 11, 163–174, https://doi.org/10.5194/essd-11-163-2019, https://doi.org/10.5194/essd-11-163-2019, 2019
Short summary
Short summary
This atlas is a compendium of geospatial online and open-access data describing biodiversity conservation in the Coral Triangle of the Indo-Pacific biogeographic realm. It consists of three sets of interlinked digital maps: (1) biodiversity features; (2) areas of importance for biodiversity conservation; and (3) recommended priorities for Marine Protected Area (MPA) Network Expansion. These maps provide the most comprehensive biodiversity datasets available to date for the region.
Dmitry Kondrik, Eduard Kazakov, and Dmitry Pozdnyakov
Earth Syst. Sci. Data, 11, 119–128, https://doi.org/10.5194/essd-11-119-2019, https://doi.org/10.5194/essd-11-119-2019, 2019
Short summary
Short summary
This paper presents a description of the original database of blooms of the calcifying phytoplankton in sub-Arctic and Arctic seas, their spatio-temporal features and associated environmental influences. This type of phytoplankton is efficient in decreasing the ability of the ocean to intake external carbon dioxide and hence amplifies the greenhouse effect. The published database can be used by a large community of users involved in studies of both aquatic ecology and carbon cycles.
Benjamin Roger Loveday and Timothy Smyth
Earth Syst. Sci. Data, 10, 2043–2054, https://doi.org/10.5194/essd-10-2043-2018, https://doi.org/10.5194/essd-10-2043-2018, 2018
Short summary
Short summary
A 40-year data set of ocean reflectance is derived from an atmospherically corrected climate quality record of top-of-atmosphere signals taken from the satellite-based AVHRR sensor. The data set provides a unique view of visible changes in the global ocean over timescales where climatic effects are demonstrable and spans coverage gaps left by more traditional satellite ocean colour sensors. It is particularly relevant to monitoring bright plankton blooms, such as coccolithophores.
Heather A. Bouman, Trevor Platt, Martina Doblin, Francisco G. Figueiras, Kristinn Gudmundsson, Hafsteinn G. Gudfinnsson, Bangqin Huang, Anna Hickman, Michael Hiscock, Thomas Jackson, Vivian A. Lutz, Frédéric Mélin, Francisco Rey, Pierre Pepin, Valeria Segura, Gavin H. Tilstone, Virginie van Dongen-Vogels, and Shubha Sathyendranath
Earth Syst. Sci. Data, 10, 251–266, https://doi.org/10.5194/essd-10-251-2018, https://doi.org/10.5194/essd-10-251-2018, 2018
Short summary
Short summary
The photosynthetic response of marine phytoplankton to available irradiance is a central part of satellite-based models of ocean productivity. This study brings together data from a variety of oceanographic campaigns to examine how the parameters of photosynthesis–irradiance response curves vary over the global ocean. This global synthesis reveals biogeographic, latitudinal and depth-dependent patterns in the photosynthetic properties of natural phytoplankton assemblages.
Emanuele Organelli, Marie Barbieux, Hervé Claustre, Catherine Schmechtig, Antoine Poteau, Annick Bricaud, Emmanuel Boss, Nathan Briggs, Giorgio Dall'Olmo, Fabrizio D'Ortenzio, Edouard Leymarie, Antoine Mangin, Grigor Obolensky, Christophe Penkerc'h, Louis Prieur, Collin Roesler, Romain Serra, Julia Uitz, and Xiaogang Xing
Earth Syst. Sci. Data, 9, 861–880, https://doi.org/10.5194/essd-9-861-2017, https://doi.org/10.5194/essd-9-861-2017, 2017
Short summary
Short summary
Autonomous robotic platforms such as Biogeochemical-Argo floats allow observation of the ocean, from the surface to the interior, in a new and systematic way. A fleet of 105 of these platforms have collected several biological, biogeochemical, and optical variables in still unexplored regions. The quality-controlled databases presented here will enable scientists to improve knowledge on the functioning of marine ecosystems and investigate the climatic implications.
Angus Atkinson, Simeon L. Hill, Evgeny A. Pakhomov, Volker Siegel, Ricardo Anadon, Sanae Chiba, Kendra L. Daly, Rod Downie, Sophie Fielding, Peter Fretwell, Laura Gerrish, Graham W. Hosie, Mark J. Jessopp, So Kawaguchi, Bjørn A. Krafft, Valerie Loeb, Jun Nishikawa, Helen J. Peat, Christian S. Reiss, Robin M. Ross, Langdon B. Quetin, Katrin Schmidt, Deborah K. Steinberg, Roshni C. Subramaniam, Geraint A. Tarling, and Peter Ward
Earth Syst. Sci. Data, 9, 193–210, https://doi.org/10.5194/essd-9-193-2017, https://doi.org/10.5194/essd-9-193-2017, 2017
Short summary
Short summary
KRILLBASE is a data rescue and compilation project to improve the availability of information on two key Southern Ocean zooplankton: Antarctic krill and salps. We provide a circumpolar database that combines 15 194 scientific net hauls (1926 to 2016) from 10 countries. These data provide a resource for analysing the distribution and abundance of krill and salps throughout the Southern Ocean to support ecological and biogeochemical research as well as fisheries management and conservation.
Philipp Brun, Mark R. Payne, and Thomas Kiørboe
Earth Syst. Sci. Data, 9, 99–113, https://doi.org/10.5194/essd-9-99-2017, https://doi.org/10.5194/essd-9-99-2017, 2017
Short summary
Short summary
We compiled data to understand the organization of marine zooplankton based on their fundamental traits, such as body size or growth rate, rather than based on species names. Zooplankton, and in particular the dominant crustacean copepods, are central to marine food webs and the carbon cycle. The data include 14 traits and thousands of copepod species and may be used for comparisons between species or communities and ultimately to inspire better large-scale models of planktonic ecosystems.
Colleen B. Mouw, Audrey Barnett, Galen A. McKinley, Lucas Gloege, and Darren Pilcher
Earth Syst. Sci. Data, 8, 531–541, https://doi.org/10.5194/essd-8-531-2016, https://doi.org/10.5194/essd-8-531-2016, 2016
Short summary
Short summary
Particulate organic carbon (POC) flux estimated from POC concentration observations from sediment traps and 234Th are compiled across the global ocean. By providing merged coincident satellite imagery products, the dataset can be used to link phytoplankton surface process with POC flux. Due to rapid remineralization within the first 500 m of the water column, shallow observations from 234Th supplement the more extensive sediment trap record.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Hervé Claustre, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford Hooker, Mati Kahru, Holger Klein, Susanne Kratzer, Hubert Loisel, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Alex J. Poulton, Michel Repecaud, Timothy Smyth, Heidi M. Sosik, Michael Twardowski, Kenneth Voss, Jeremy Werdell, Marcel Wernand, and Giuseppe Zibordi
Earth Syst. Sci. Data, 8, 235–252, https://doi.org/10.5194/essd-8-235-2016, https://doi.org/10.5194/essd-8-235-2016, 2016
Short summary
Short summary
A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2012) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Y. Yang, L. Hansson, and J.-P. Gattuso
Earth Syst. Sci. Data, 8, 79–87, https://doi.org/10.5194/essd-8-79-2016, https://doi.org/10.5194/essd-8-79-2016, 2016
Short summary
Short summary
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation was initiated in 2008 and is updated on a regular basis. By January 2015, a total of 581 data sets (over 4,000,000 data points) from 539 papers had been archived.
B. Nechad, K. Ruddick, T. Schroeder, K. Oubelkheir, D. Blondeau-Patissier, N. Cherukuru, V. Brando, A. Dekker, L. Clementson, A. C. Banks, S. Maritorena, P. J. Werdell, C. Sá, V. Brotas, I. Caballero de Frutos, Y.-H. Ahn, S. Salama, G. Tilstone, V. Martinez-Vicente, D. Foley, M. McKibben, J. Nahorniak, T. Peterson, A. Siliò-Calzada, R. Röttgers, Z. Lee, M. Peters, and C. Brockmann
Earth Syst. Sci. Data, 7, 319–348, https://doi.org/10.5194/essd-7-319-2015, https://doi.org/10.5194/essd-7-319-2015, 2015
Short summary
Short summary
The CoastColour Round Robin (CCRR) project (European Space Agency) was designed to set up the first database for remote-sensing algorithm testing and accuracy assessment of water quality parameter retrieval in coastal waters, from satellite imagery. This paper analyses the CCRR database, which includes in situ bio-geochemical and optical measurements in various water types, match-up reflectance products from the MEdium Resolution Imaging Spectrometer (MERIS), and radiative transfer simulations.
R. Sauzède, H. Lavigne, H. Claustre, J. Uitz, C. Schmechtig, F. D'Ortenzio, C. Guinet, and S. Pesant
Earth Syst. Sci. Data, 7, 261–273, https://doi.org/10.5194/essd-7-261-2015, https://doi.org/10.5194/essd-7-261-2015, 2015
W. Melle, J. A. Runge, E. Head, S. Plourde, C. Castellani, P. Licandro, J. Pierson, S. H. Jónasdóttir, C. Johnson, C. Broms, H. Debes, T. Falkenhaug, E. Gaard, A. Gislason, M. R. Heath, B. Niehoff, T. G. Nielsen, P. Pepin, E. K. Stenevik, and G. Chust
Earth Syst. Sci. Data, 7, 223–230, https://doi.org/10.5194/essd-7-223-2015, https://doi.org/10.5194/essd-7-223-2015, 2015
P. Licandro, M. Blackett, A. Fischer, A. Hosia, J. Kennedy, R. R. Kirby, K. Raab, R. Stern, and P. Tranter
Earth Syst. Sci. Data, 7, 173–191, https://doi.org/10.5194/essd-7-173-2015, https://doi.org/10.5194/essd-7-173-2015, 2015
L.-Q. Jiang, S. A. O'Connor, K. M. Arzayus, and A. R. Parsons
Earth Syst. Sci. Data, 7, 117–125, https://doi.org/10.5194/essd-7-117-2015, https://doi.org/10.5194/essd-7-117-2015, 2015
Short summary
Short summary
With the rapid expansion of studies on biological responses of organisms to OA, the lack of a common metadata template to document the resulting data poses a significant hindrance to effective OA data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses of organisms to OA. This paper defines best practices for documenting ocean acidification (OA) data.
G. Huse, B. R. MacKenzie, V. Trenkel, M. Doray, L. Nøttestad, and G. Oskarsson
Earth Syst. Sci. Data, 7, 35–46, https://doi.org/10.5194/essd-7-35-2015, https://doi.org/10.5194/essd-7-35-2015, 2015
J. K. Pinnegar, N. Goñi, V. M. Trenkel, H. Arrizabalaga, W. Melle, J. Keating, and G. Óskarsson
Earth Syst. Sci. Data, 7, 19–28, https://doi.org/10.5194/essd-7-19-2015, https://doi.org/10.5194/essd-7-19-2015, 2015
Short summary
Short summary
This work describes a 148-year compilation of stomach content data for five pelagic fish species (herring, blue whiting, mackerel, albacore and bluefin tuna) sampled over a broad geographic region of the northeast Atlantic. We describe the main results in terms of diet composition and predator–prey relationships. The analyses suggests significant differences in the prey items selected by predators in different parts of the area at different times of year.
P. Lehodey, I. Senina, A.-C. Dragon, and H. Arrizabalaga
Earth Syst. Sci. Data, 6, 317–329, https://doi.org/10.5194/essd-6-317-2014, https://doi.org/10.5194/essd-6-317-2014, 2014
S. Torres Valdés, S. C. Painter, A. P. Martin, R. Sanders, and J. Felden
Earth Syst. Sci. Data, 6, 123–145, https://doi.org/10.5194/essd-6-123-2014, https://doi.org/10.5194/essd-6-123-2014, 2014
F. A. C. Le Moigne, S. A. Henson, R. J. Sanders, and E. Madsen
Earth Syst. Sci. Data, 5, 295–304, https://doi.org/10.5194/essd-5-295-2013, https://doi.org/10.5194/essd-5-295-2013, 2013
R. Moriarty, E. T. Buitenhuis, C. Le Quéré, and M.-P. Gosselin
Earth Syst. Sci. Data, 5, 241–257, https://doi.org/10.5194/essd-5-241-2013, https://doi.org/10.5194/essd-5-241-2013, 2013
C. J. O'Brien, J. A. Peloquin, M. Vogt, M. Heinle, N. Gruber, P. Ajani, H. Andruleit, J. Arístegui, L. Beaufort, M. Estrada, D. Karentz, E. Kopczyńska, R. Lee, A. J. Poulton, T. Pritchard, and C. Widdicombe
Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, https://doi.org/10.5194/essd-5-259-2013, 2013
J. Peloquin, C. Swan, N. Gruber, M. Vogt, H. Claustre, J. Ras, J. Uitz, R. Barlow, M. Behrenfeld, R. Bidigare, H. Dierssen, G. Ditullio, E. Fernandez, C. Gallienne, S. Gibb, R. Goericke, L. Harding, E. Head, P. Holligan, S. Hooker, D. Karl, M. Landry, R. Letelier, C. A. Llewellyn, M. Lomas, M. Lucas, A. Mannino, J.-C. Marty, B. G. Mitchell, F. Muller-Karger, N. Nelson, C. O'Brien, B. Prezelin, D. Repeta, W. O. Jr. Smith, D. Smythe-Wright, R. Stumpf, A. Subramaniam, K. Suzuki, C. Trees, M. Vernet, N. Wasmund, and S. Wright
Earth Syst. Sci. Data, 5, 109–123, https://doi.org/10.5194/essd-5-109-2013, https://doi.org/10.5194/essd-5-109-2013, 2013
R. Moriarty and T. D. O'Brien
Earth Syst. Sci. Data, 5, 45–55, https://doi.org/10.5194/essd-5-45-2013, https://doi.org/10.5194/essd-5-45-2013, 2013
C. Guinet, X. Xing, E. Walker, P. Monestiez, S. Marchand, B. Picard, T. Jaud, M. Authier, C. Cotté, A. C. Dragon, E. Diamond, D. Antoine, P. Lovell, S. Blain, F. D'Ortenzio, and H. Claustre
Earth Syst. Sci. Data, 5, 15–29, https://doi.org/10.5194/essd-5-15-2013, https://doi.org/10.5194/essd-5-15-2013, 2013
N. Bednaršek, J. Možina, M. Vogt, C. O'Brien, and G. A. Tarling
Earth Syst. Sci. Data, 4, 167–186, https://doi.org/10.5194/essd-4-167-2012, https://doi.org/10.5194/essd-4-167-2012, 2012
K. Leblanc, J. Arístegui, L. Armand, P. Assmy, B. Beker, A. Bode, E. Breton, V. Cornet, J. Gibson, M.-P. Gosselin, E. Kopczynska, H. Marshall, J. Peloquin, S. Piontkovski, A. J. Poulton, B. Quéguiner, R. Schiebel, R. Shipe, J. Stefels, M. A. van Leeuwe, M. Varela, C. Widdicombe, and M. Yallop
Earth Syst. Sci. Data, 4, 149–165, https://doi.org/10.5194/essd-4-149-2012, https://doi.org/10.5194/essd-4-149-2012, 2012
M. Vogt, C. O'Brien, J. Peloquin, V. Schoemann, E. Breton, M. Estrada, J. Gibson, D. Karentz, M. A. Van Leeuwe, J. Stefels, C. Widdicombe, and L. Peperzak
Earth Syst. Sci. Data, 4, 107–120, https://doi.org/10.5194/essd-4-107-2012, https://doi.org/10.5194/essd-4-107-2012, 2012
E. T. Buitenhuis, W. K. W. Li, M. W. Lomas, D. M. Karl, M. R. Landry, and S. Jacquet
Earth Syst. Sci. Data, 4, 101–106, https://doi.org/10.5194/essd-4-101-2012, https://doi.org/10.5194/essd-4-101-2012, 2012
E. T. Buitenhuis, W. K. W. Li, D. Vaulot, M. W. Lomas, M. R. Landry, F. Partensky, D. M. Karl, O. Ulloa, L. Campbell, S. Jacquet, F. Lantoine, F. Chavez, D. Macias, M. Gosselin, and G. B. McManus
Earth Syst. Sci. Data, 4, 37–46, https://doi.org/10.5194/essd-4-37-2012, https://doi.org/10.5194/essd-4-37-2012, 2012
A.-M. Nisumaa, S. Pesant, R. G. J. Bellerby, B. Delille, J. J. Middelburg, J. C. Orr, U. Riebesell, T. Tyrrell, D. Wolf-Gladrow, and J.-P. Gattuso
Earth Syst. Sci. Data, 2, 167–175, https://doi.org/10.5194/essd-2-167-2010, https://doi.org/10.5194/essd-2-167-2010, 2010
Cited articles
Aiken, J., Rees, N., Hooker, S., Holligan, P., Bale, A., Robins, D., Moore,
G., Harris, R., and Pilgrim, D.: The Atlantic Meridional Transect: overview
and synthesis of data, Prog. Oceanogr., 45, 257–312,
https://doi.org/10.1016/S0079-6611(00)00005-7, 2000.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Tech. Memo. NESDIS NGDC-24,
Natl. Geophys. Data Center, NOAA, 2009, https://doi.org/10.7289/V5C8276M, 2009.
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z.,
Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C.,
and Rauschenberg, S.: Factors regulating the Great Calcite Belt in the
Southern Ocean and its biogeochemical significance, Global Biogeochem.
Cy., 30, 1124–1144, https://doi.org/10.1002/2016GB005414, 2016.
Bork, P., Bowler, C., de Vargas, C., Gorsky, G., Karsenti, E., and Wincker,
P.: Tara Oceans studies plankton at planetary scale, Science, 348,
873–873, https://doi.org/10.1126/science.aac5605, 2015.
Breiner, F. T., Guisan, A., Bergamini, A., and Nobis, M. P.: Overcoming
limitations of modelling rare species by using ensembles of small models,
Methods Ecol. Evol., 6, 1210–1218, https://doi.org/10.1111/2041-210X.12403, 2015.
Brun, P., Vogt, M., Payne, M. R., Gruber, N., O'Brien, C. J., Buitenhuis, E.
T., Le Quéré, C., Leblanc, K., and Luo, Y.-W.: Ecological niches of
open ocean phytoplankton taxa, Limnol. Oceanogr., 60, 1020–1038,
https://doi.org/10.1002/lno.10074, 2015.
Buitenhuis, E. T., Li, W. K. W., Vaulot, D., Lomas, M. W., Landry, M. R., Partensky, F., Karl, D. M., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M., and McManus, G. B.: Picophytoplankton biomass distribution in the global ocean, Earth Syst. Sci. Data, 4, 37–46, https://doi.org/10.5194/essd-4-37-2012, 2012.
Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., and Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, 2013.
Cermeño, P., Teixeira, I. G., Branco, M., Figueiras, F. G., and
Marañón, E.: Sampling the limits of species richness in marine
phytoplankton communities, J. Plankton Res., 36, 1135–1139,
https://doi.org/10.1093/plankt/fbu033, 2014.
Chamberlain, S.: rgbif: Interface to the Global Biodiversity Information
Facility API, R package version 0.9.7, 2015.
Chaudhary, C., Saeedi, H., and Costello, M. J.: Bimodality of latitudinal
gradients in marine species richness, Trends Ecol. Evol., 31, 670–676,
https://doi.org/10.1016/j.tree.2016.06.001, 2016.
Chaudhary, C., Saeedi, H., and Costello, M. J.: Marine species richness is
bimodal with latitude: a reply to fernandez and marques, Trends Ecol. Evol.,
32, 234–237, https://doi.org/10.1016/j.tree.2017.02.007, 2017.
Colwell, R. K. and Rangel, T. F.: Hutchinson's duality: The once and future
niche, P. Natl. Acad. Sci. USA, 106,
19651–19658, https://doi.org/10.1073/pnas.0901650106, 2009.
Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S. K., and Tiffin, N.:
RPostgreSQL: R interface to the PostgreSQL database system. R package
version 0.4, 2015.
de Boyer Montégut, C.: Mixed layer depth over the global ocean: An
examination of profile data and a profile-based climatology, J. Geophys.
Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R.,
Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain,
J., Romac, S., Colin, S., Aury, J.-M., Bittner, L., Chaffron, S., Dunthorn,
M., Engelen, S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O.,
Lima-Mendez, G., Luke, J., Malviya, S., Morard, R., Mulot, M., Scalco, E.,
Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S.,
Kandels-Lewis, S., Acinas, S. G., Bork, P., Bowler, C., Gorsky, G.,
Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S.,
Raes, J., Sieracki, M. E., Speich, S., Stemmann, L., Sunagawa, S.,
Weissenbach, J., Wincker, P., Karsenti, E., Boss, E., Follows, M.,
Karp-Boss, L., Krzic, U., Reynaud, E. G., Sardet, C., Sullivan, M. B., and
Velayoudon, D.: Eukaryotic plankton diversity in the sunlit ocean, Science,
348, 1261605–1261605, https://doi.org/10.1126/science.1261605, 2015.
Duarte, C. M.: Seafaring in the 21St Century: The Malaspina 2010
Circumnavigation Expedition, Limnol. Oceanogr. Bull., 24, 11–14,
https://doi.org/10.1002/lob.10008, 2015.
Edwards, J. L.: Interoperability of biodiversity databases: biodiversity
information on every desktop, Science, 289, 2312–2314,
https://doi.org/10.1126/science.289.5488.2312, 2000.
Endo, H., Ogata, H., and Suzuki, K.: Contrasting biogeography and diversity
patterns between diatoms and haptophytes in the central Pacific Ocean, Sci.
Rep., 8, 10916, https://doi.org/10.1038/s41598-018-29039-9, 2018.
Falkowski, P. G., Katz M. E., Knoll, A. H., Quigg, A., Raven, J. A.,
Schofield, O., and Taylor, F. J. R.: The evolution of modern eukaryotic
phytoplankton, Science, 305, 354–360, https://doi.org/10.1126/science.1095964,
2004.
Field, C. B., Behrenfeld, M. J., Tanderson, J. T., and Falkowski, P.: Primary
production of the biosphere: Integrating terrestrial and oceanic components,
Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincon, J., Zabala, L. L.,
Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C.
S., Vrugt, J. A., and Martiny, A. C.: Present and future global distributions
of the marine Cyanobacteria Prochlorococcus and Synechococcus, P. Natl.
Acad. Sci. USA, 110, 9824–9829, https://doi.org/10.1073/pnas.1307701110, 2013.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.
K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013,
Vol. 4 Dissolved Inorg. Nutr. (phosphate, nitrate, silicate), edited by: Levitus, S. and Mishonov, A., 25, 2013.
Guisan, A. and Thuiller, W.: Predicting species distribution: Offering more
than simple habitat models, Ecol. Lett., 8, 993–1009,
https://doi.org/10.1111/j.1461-0248.2005.00792.x, 2005.
Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in
ecology, Ecol. Modell., 135, 147–186,
https://doi.org/10.1016/S0304-3800(00)00354-9, 2000.
Honjo, S. and Okada, H.: Community structure of coccolithophores in the
photic layer of the mid-pacific, Micropaleontology, 20, 209–230,
https://doi.org/10.2307/1485061, 1974.
Iglesias-Rodríguez, M. D., Brown, C. W., Doney, S. C., Kleypas, J.,
Kolber, D., Kolber, Z., Hayes, P. K., and Falkowski, P. G.: Representing key
phytoplankton functional groups in ocean carbon cycle models:
Coccolithophorids, Global Biogeochem. Cy., 16, 471–4720,
https://doi.org/10.1029/2001GB001454, 2002.
Jeong, H. J., Yoo, Y. Du, Kim, J. S., Seong, K. A., Kang, N. S., and Kim, T.
H.: Growth, feeding and ecological roles of the mixotrophic and
heterotrophic dinoflagellates in marine planktonic food webs, Ocean Sci. J.,
45, 65–91, https://doi.org/10.1007/s12601-010-0007-2, 2010.
Jones, M. C. and Cheung, W. W. L.: Multi-model ensemble projections of
climate change effects on global marine biodiversity, ICES J. Mar. Sci.,
72, 741–752, https://doi.org/10.1093/icesjms/fsu172, 2015.
Jordan, R. W.: A revised classification scheme for living haptophytes,
Micropaleontology, 50, 55–79,
https://doi.org/10.2113/50.Suppl_1.55, 2004.
Leblanc, K., Arístegui, J., Armand, L., Assmy, P., Beker, B., Bode, A., Breton, E., Cornet, V., Gibson, J., Gosselin, M.-P., Kopczynska, E., Marshall, H., Peloquin, J., Piontkovski, S., Poulton, A. J., Quéguiner, B., Schiebel, R., Shipe, R., Stefels, J., van Leeuwe, M. A., Varela, M., Widdicombe, C., and Yallop, M.: A global diatom database – abundance, biovolume and biomass in the world ocean, Earth Syst. Sci. Data, 4, 149–165, https://doi.org/10.5194/essd-4-149-2012, 2012.
Le Quéré, C.: Ecosystem dynamics based on plankton functional types
for global ocean biogeochemistry models, Global Change Biol., 11,
2016–2040, https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Vol. 1 Temp, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 73, 40, 2013.
Lund, J. W. G., Kipling, C., and Le Cren, E. D.: The inverted microscope
method of estimating algal numbers and the statistical basis of estimations
by counting, Hydrobiol., 11, 143–170, https://doi.org/10.1007/BF00007865, 1958.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., SubramanTiam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J.,
Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., and
Bowler, C.: Insights into global diatom distribution and diversity in the
world's ocean, P. Natl. Acad. Sci. USA, 113, E1516–E1525,
https://doi.org/10.1073/pnas.1509523113, 2016.
Mawji, E., Schlitzer, R., Dodas, E. M., and GEOTRACES-group: The GEOTRACES intermediate data product 2014, Mar. Chem., 177, 1–8,
https://doi.org/10.1016/j.marchem.2015.04.005, 2015.
McQuatters-Gollop, A., Edwards, M., Helaouët, P., Johns, D. G., Owens,
N. J. P., Raitsos, D. E., Schroeder, D., Skinner, J., and Stern, R. F.: The
Continuous Plankton Recorder survey: How can long-term phytoplankton
datasets contribute to the assessment of Good Environmental Status?, Estuar.
Coast. Shelf Sci., 162, 88–97, https://doi.org/10.1016/j.ecss.2015.05.010, 2015.
Menegotto, A. and Rangel, T. F.: Mapping knowledge gaps in marine diversity
reveals a latitudinal gradient of missing species richness, Nat. Commun.,
9, 1–6, https://doi.org/10.1038/s41467-018-07217-7, 2018.
Meyer, C., Kreft, H., Guralnick, R., and Jetz, W.: Global priorities for an
effective information basis of biodiversity distributions, Nat. Commun.,
6, 1–8, https://doi.org/10.1038/ncomms9221, 2015.
O'Brien, C. J., Peloquin, J. A., Vogt, M., Heinle, M., Gruber, N., Ajani, P., Andruleit, H., Arístegui, J., Beaufort, L., Estrada, M., Karentz, D., Kopczyńska, E., Lee, R., Poulton, A. J., Pritchard, T., and Widdicombe, C.: Global marine plankton functional type biomass distributions: coccolithophores, Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, 2013.
O'Brien, C. J., Vogt, M., and Gruber, N.: Global coccolithophore diversity:
Drivers and future change, Prog. Oceanogr., 140, 27–42,
https://doi.org/10.1016/j.pocean.2015.10.003, 2016.
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A.,
Leathwick, J., and Ferrier, S.: Sample selection bias and presence-only
distribution models: implications for background and pseudo-absence data,
Ecol. Appl., 19, 181–197, https://doi.org/10.1890/07-2153.1, 2009.
Provoost, P. and Bosch, S.: robis: R client for the OBIS API. R package
version 0.1.5, 2015.
Richardson, A. J., Walne, A. W., John, A. W. G., Jonas, T. D., Lindley, J.
A., Sims, D. W., Stevens, D., and Witt, M.: Using continuous plankton
recorder data, Prog. Oceanogr., 68, 27–74,
https://doi.org/10.1016/j.pocean.2005.09.011, 2006.
Righetti, D., Vogt, M., Zimmermann, N. E., and Gruber, N.: PHYTOBASE: A
global synthesis of open ocean phytoplankton occurrences, Pangaea,
https://doi.org/10.1594/PANGAEA.904397, 2019a.
Righetti, D., Vogt, M., Gruber, N., Psomas, A., and Zimmermann, N. E.: Global
pattern of phytoplankton diversity driven by temperature and environmental
variability, Sci. Adv., 5, eaau6253, https://doi.org/10.1126/sciadv.aau6253, 2019b.
Rodríguez-Ramos, T., Marañón, E., and Cermeño, P.: Marine
nano- and microphytoplankton diversity: redrawing global patterns from
sampling-standardized data, Glob. Ecol. Biogeogr., 24, 527–538,
https://doi.org/10.1111/geb.12274, 2015.
Rombouts, I., Beaugrand, G., Ibañez, F., Gasparini, S., Chiba, S., and
Legendre, L.: A multivariate approach to large-scale variation in marine
planktonic copepod diversity and its environmental correlates, Limnol.
Oceanogr., 55, 2219–2229, https://doi.org/10.4319/lo.2010.55.5.2219, 2010.
Sal, S., López-Urrutia, Á., Irigoien, X., Harbour, D. S., and Harris,
R. P.: Marine microplankton diversity database, Ecology, 94, 1658–1658,
https://doi.org/10.1890/13-0236.1, 2013.
Ser-Giacomi, E., Zinger, L., Malviya, S., De Vargas, C., Karsenti, E.,
Bowler, C., and De Monte, S.: Ubiquitous abundance distribution of
non-dominant plankton across the global ocean, Nat. Ecol. Evol., 2,
1243–1249, https://doi.org/10.1038/s41559-018-0587-2, 2018.
Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M.,
Neal, P. R., Arrieta, J. M., and Herndl, G. J.: Microbial diversity in the
deep sea and the underexplored “rare biosphere,” P. Natl. Acad. Sci. USA,
103, 12115–12120, https://doi.org/10.1073/pnas.0605127103, 2006.
Sournia, A., Chrdtiennot-Dinet, M.-J., and Ricard, M.: Marine phytoplankton:
how many species in the world ocean?, J. Plankton Res., 13, 1093–1099,
https://doi.org/10.1093/plankt/13.5.1093, 1991.
Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K.,
Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A.,
Cornejo-Castillo, F. M., Costea, P. I., Cruaud, C., D'Ovidio, F., Engelen,
S., Ferrera, I., Gasol, J. M., Guidi, L., Hildebrand, F., Kokoszka, F.,
Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B. T., Royo-Llonch, M.,
Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S.,
Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N.,
Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S.,
Speich, S., Stemmann, L., Sullivan, M. B., Weissenbach, J., Wincker, P.,
Karsenti, E., Raes, J., Acinas, S. G., Bork, P., Boss, E., Bowler, C.,
Follows, M., Karp-Boss, L., Krzic, U., Reynaud, E. G., Sardet, C., Sieracki,
M., and Velayoudon, D.: Structure and function of the global ocean
microbiome, Science, 348, 1261359–1261359,
https://doi.org/10.1126/science.1261359, 2015.
Thompson, G. G. and Withers, P. C.: Effect of species richness and relative
abundance on the shape of the species accumulation curve, Austral Ecol.,
28, 355–360, https://doi.org/10.1046/j.1442-9993.2003.01294.x, 2003.
Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E.
V., and Worm, B.: Global patterns and predictors of marine biodiversity
across taxa, Nature, 466, 1098–1101, https://doi.org/10.1038/nature09329, 2010.
Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D.
L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May,
T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J., and Smith, G. F. (Eds.): International Code of Nomenclature for algae, fungi, and plants
(Shenzhen Code) adopted by the Nineteenth International Botanical
Congress Shenzhen, China, July 2017, Regnum Vegetabile, Vol. 159,
1–253, Glashütten: Koeltz Botanical Books,
https://doi.org/10.12705/Code.2018, 2018.
Utermöhl, H.: Zur Vervollkommnung der quantitativen
Phytoplankton-Methodik, SIL Commun. 1953–1996, 9, 1–38,
https://doi.org/10.1080/05384680.1958.11904091, 1958.
Villar, E., Farrant, G. K., Follows, M., Garczarek, L., Speich, S., Audic,
S., Bittner, L., Blanke, B., Brum, J. R., Brunet, C., Casotti, R., Chase,
A., Dolan, J. R., D'Ortenzio, F., Gattuso, J.-P., Grima, N., Guidi, L.,
Hill, C. N., Jahn, O., Jamet, J.-L., Le Goff, H., Lepoivre, C., Malviya, S.,
Pelletier, E., Romagnan, J.-B., Roux, S., Santini, S., Scalco, E., Schwenck,
S. M., Tanaka, A., Testor, P., Vannier, T., Vincent, F., Zingone, A.,
Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S. G.,
Bork, P., Boss, E., de Vargas, C., Gorsky, G., Ogata, H., Pesant, S.,
Sullivan, M. B., Sunagawa, S., Wincker, P., Karsenti, E., Bowler, C., Not,
F., Hingamp, P., and Iudicone, D.: Environmental characteristics of Agulhas
rings affect interocean plankton transport, Science, 348,
1261447–1261447, https://doi.org/10.1126/science.1261447, 2015.
Vogt, M., O'Brien, C., Peloquin, J., Schoemann, V., Breton, E., Estrada, M., Gibson, J., Karentz, D., Van Leeuwe, M. A., Stefels, J., Widdicombe, C., and Peperzak, L.: Global marine plankton functional type biomass distributions: Phaeocystis spp., Earth Syst. Sci. Data, 4, 107–120, https://doi.org/10.5194/essd-4-107-2012, 2012.
Wallace, D. W. R.: Chapter 6.3 Storage and transport of excess CO2 in the
oceans: The JGOFS/WOCE global CO2 survey, in Eos, Transactions American Geophysical Union, Vol. 82, 489–521, 2001.
Wickham, H. and Chang, W.: Devtools: Tools to make developing R packages
easier. R package version 1.12.0, 2015.
Woolley, S. N. C., Tittensor, D. P., Dunstan, P. K., Guillera-Arroita, G.,
Lahoz-Monfort, J. J., Wintle, B. A., Worm, B., and O'Hara, T. D.: Deep-sea
diversity patterns are shaped by energy availability, Nature, 533,
393–396, https://doi.org/10.1038/nature17937, 2016.
Worm, B., Sandow, M., Oschlies, A., Lotze, H. K., and Myers, R. A.: Global
patterns of predator diversity in the open oceans, Science, 309,
1365–1369, https://doi.org/10.1126/science.1113399, 2005.
Zimmermann, N. E. and Guisan, A.: Predictive habitat distribution models in
ecology, Ecol. Modell., 135, 147–186,
https://doi.org/10.1016/S0304-3800(00)00354-9, 2000.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A.
V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D.,
and Biddle, M. M.: World Ocean Atlas 2013, Vol. 2, Salinity, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., 2013.
Short summary
Phytoplankton sustain marine life, as they are the principal primary producers in the global ocean. Despite their ecological importance, their distribution and diversity patterns are poorly known, mostly due to data limitations. We present a global dataset that synthesizes over 1.3 million occurrences of phytoplankton from public archives. It is easily extendable. This dataset can be used to characterize phytoplankton distribution and diversity in current and future oceans.
Phytoplankton sustain marine life, as they are the principal primary producers in the global...