Articles | Volume 12, issue 2
https://doi.org/10.5194/essd-12-907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-907-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
PhytoBase: A global synthesis of open-ocean phytoplankton occurrences
Damiano Righetti
CORRESPONDING AUTHOR
Environmental Physics, Institute of Biogeochemistry and Pollutant
Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich,
Switzerland
Meike Vogt
Environmental Physics, Institute of Biogeochemistry and Pollutant
Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich,
Switzerland
Niklaus E. Zimmermann
Dynamic Macroecology, Landscape Dynamics, Swiss Federal Research
Institute WSL, 8903 Birmensdorf, Switzerland
Michael D. Guiry
AlgaeBase, Ryan Institute, NUI, Galway, University Road, Galway H91
TK33, Ireland
Nicolas Gruber
Environmental Physics, Institute of Biogeochemistry and Pollutant
Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich,
Switzerland
Related authors
No articles found.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Gesa K. Eirund, Matthieu Leclair, Matthias Muennich, and Nicolas Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2024-2922, https://doi.org/10.5194/egusphere-2024-2922, 2024
Short summary
Short summary
To realistically simulate small-scale processes in the atmosphere and ocean, such as clouds or mixing, high-resolution numerical models are needed. However, these models are computationally very demanding. Here, we present a newly developed atmosphere-ocean model, which is able to resolve most of these processes and is less expensive to run, due to its computational design. Our model can be used for a wide range of applications, as the investigation of marine heatwaves or future projections.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Flora Desmet, Matthias Münnich, and Nicolas Gruber
Biogeosciences, 20, 5151–5175, https://doi.org/10.5194/bg-20-5151-2023, https://doi.org/10.5194/bg-20-5151-2023, 2023
Short summary
Short summary
Ocean acidity extremes in the upper 250 m depth of the northeastern Pacific rapidly increase with atmospheric CO2 rise, which is worrisome for marine organisms that rapidly experience pH levels outside their local environmental conditions. Presented research shows the spatiotemporal heterogeneity in this increase between regions and depths. In particular, the subsurface increase is substantially slowed down by the presence of mesoscale eddies, often not resolved in Earth system models.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Dirk Nikolaus Karger, Stefan Lange, Chantal Hari, Christopher P. O. Reyer, Olaf Conrad, Niklaus E. Zimmermann, and Katja Frieler
Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023, https://doi.org/10.5194/essd-15-2445-2023, 2023
Short summary
Short summary
We present the first 1 km, daily, global climate dataset for climate impact studies. We show that the high-resolution data have a decreased bias and higher correlation with measurements from meteorological stations than coarser data. The dataset will be of value for a wide range of climate change impact studies both at global and regional level that benefit from using a consistent global dataset.
Corentin Clerc, Laurent Bopp, Fabio Benedetti, Meike Vogt, and Olivier Aumont
Biogeosciences, 20, 869–895, https://doi.org/10.5194/bg-20-869-2023, https://doi.org/10.5194/bg-20-869-2023, 2023
Short summary
Short summary
Gelatinous zooplankton play a key role in the ocean carbon cycle. In particular, pelagic tunicates, which feed on a wide size range of prey, produce rapidly sinking detritus. Thus, they efficiently transfer carbon from the surface to the depths. Consequently, we added these organisms to a marine biogeochemical model (PISCES-v2) and evaluated their impact on the global carbon cycle. We found that they contribute significantly to carbon export and that this contribution increases with depth.
Dirk Nikolaus Karger, Michael P. Nobis, Signe Normand, Catherine H. Graham, and Niklaus E. Zimmermann
Clim. Past, 19, 439–456, https://doi.org/10.5194/cp-19-439-2023, https://doi.org/10.5194/cp-19-439-2023, 2023
Short summary
Short summary
Here we present global monthly climate time series for air temperature and precipitation at 1 km resolution for the last 21 000 years. The topography at all time steps is created by combining high-resolution information on glacial cover from current and Last Glacial Maximum glacier databases with the interpolation of an ice sheet model and a coupling to mean annual temperatures from a global circulation model.
Philipp Brun, Niklaus E. Zimmermann, Chantal Hari, Loïc Pellissier, and Dirk Nikolaus Karger
Earth Syst. Sci. Data, 14, 5573–5603, https://doi.org/10.5194/essd-14-5573-2022, https://doi.org/10.5194/essd-14-5573-2022, 2022
Short summary
Short summary
Using mechanistic downscaling, we developed CHELSA-BIOCLIM+, a set of 15 biologically relevant, climate-related variables at unprecedented resolution, as a basis for environmental analyses. It includes monthly time series for 38+ years and 30-year averages for three future periods and three emission scenarios. Estimates matched well with station measurements, but few biases existed. The data allow for detailed assessments of climate-change impact on ecosystems and their services to societies.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 119, https://doi.org/10.5194/ica-abs-3-119-2021, https://doi.org/10.5194/ica-abs-3-119-2021, 2021
Ionuț Iosifescu Enescu, David Hanimann, Dominik Haas-Artho, Marius Rüetschi, Dirk Nikolaus Karger, Gian-Kasper Plattner, Martin Hägeli, Rebecca Kurup Buchholz, Lucia de Espona, Niklaus E. Zimmermann, and Loïc Pellissier
Abstr. Int. Cartogr. Assoc., 3, 120, https://doi.org/10.5194/ica-abs-3-120-2021, https://doi.org/10.5194/ica-abs-3-120-2021, 2021
Amanda R. Fay, Luke Gregor, Peter Landschützer, Galen A. McKinley, Nicolas Gruber, Marion Gehlen, Yosuke Iida, Goulven G. Laruelle, Christian Rödenbeck, Alizée Roobaert, and Jiye Zeng
Earth Syst. Sci. Data, 13, 4693–4710, https://doi.org/10.5194/essd-13-4693-2021, https://doi.org/10.5194/essd-13-4693-2021, 2021
Short summary
Short summary
The movement of carbon dioxide from the atmosphere to the ocean is estimated using surface ocean carbon (pCO2) measurements and an equation including variables such as temperature and wind speed; the choices of these variables lead to uncertainties. We introduce the SeaFlux ensemble which provides carbon flux maps calculated in a consistent manner, thus reducing uncertainty by using common choices for wind speed and a set definition of "global" coverage.
Tessa Sophia van der Voort, Thomas Michael Blattmann, Muhammed Usman, Daniel Montluçon, Thomas Loeffler, Maria Luisa Tavagna, Nicolas Gruber, and Timothy Ian Eglinton
Earth Syst. Sci. Data, 13, 2135–2146, https://doi.org/10.5194/essd-13-2135-2021, https://doi.org/10.5194/essd-13-2135-2021, 2021
Short summary
Short summary
Ocean sediments form the largest and longest-term storage of organic carbon. Despite their global importance, information on these sediments is often scattered, incomplete or inaccessible. Here we present MOSAIC (Modern Ocean Sediment Archive and Inventory of Carbon, mosaic.ethz.ch), a (radio)carbon-centric database that addresses this information gap. This database provides a platform for assessing the transport, deposition and storage of carbon in ocean surface sediments.
Giulia Bonino, Elisa Lovecchio, Nicolas Gruber, Matthias Münnich, Simona Masina, and Doroteaciro Iovino
Biogeosciences, 18, 2429–2448, https://doi.org/10.5194/bg-18-2429-2021, https://doi.org/10.5194/bg-18-2429-2021, 2021
Short summary
Short summary
Seasonal variations of processes such as upwelling and biological production that happen along the northwestern African coast can modulate the temporal variability of the biological activity of the adjacent open North Atlantic hundreds of kilometers away from the coast thanks to the lateral transport of coastal organic carbon. This happens with a temporal delay, which is smaller than a season up to roughly 500 km from the coast due to the intense transport by small-scale filaments.
Luke Gregor and Nicolas Gruber
Earth Syst. Sci. Data, 13, 777–808, https://doi.org/10.5194/essd-13-777-2021, https://doi.org/10.5194/essd-13-777-2021, 2021
Short summary
Short summary
Ocean acidification (OA) has altered the ocean's carbonate chemistry, with consequences for marine life. Yet, no observation-based data set exists that permits us to study changes in OA. We fill this gap with a global data set of relevant surface ocean parameters over the period 1985–2018. This data set, OceanSODA-ETHZ, was created by using satellite and other data to extrapolate ship-based measurements of carbon dioxide and total alkalinity from which parameters for OA were computed.
Anne-Marie Wefing, Núria Casacuberta, Marcus Christl, Nicolas Gruber, and John N. Smith
Ocean Sci., 17, 111–129, https://doi.org/10.5194/os-17-111-2021, https://doi.org/10.5194/os-17-111-2021, 2021
Short summary
Short summary
Atlantic Water that carries heat and anthropogenic carbon into the Arctic Ocean plays an important role in the Arctic sea-ice cover decline, but its pathways and travel times remain unclear. Here we used two radionuclides of anthropogenic origin (129I and 236U) to track Atlantic-derived waters along their way through the Arctic Ocean, estimating their travel times and mixing properties. Results help to understand how future changes in Atlantic Water properties will spread through the Arctic.
Derara Hailegeorgis, Zouhair Lachkar, Christoph Rieper, and Nicolas Gruber
Biogeosciences, 18, 303–325, https://doi.org/10.5194/bg-18-303-2021, https://doi.org/10.5194/bg-18-303-2021, 2021
Short summary
Short summary
Using a Lagrangian modeling approach, this study provides a quantitative analysis of water and nitrogen offshore transport in the Canary Current System. We investigate the timescales, reach and structure of offshore transport and demonstrate that the Canary upwelling is a key source of nutrients to the open North Atlantic Ocean. Our findings stress the need for improving the representation of the Canary system and other eastern boundary upwelling systems in global coarse-resolution models.
Cara Nissen and Meike Vogt
Biogeosciences, 18, 251–283, https://doi.org/10.5194/bg-18-251-2021, https://doi.org/10.5194/bg-18-251-2021, 2021
Short summary
Short summary
Using a regional Southern Ocean ecosystem model, we find that the relative importance of Phaeocystis and diatoms at high latitudes is controlled by iron and temperature variability, with light levels controlling the seasonal succession in coastal areas. Yet, biomass losses via aggregation and grazing matter as well. We show that the seasonal succession of Phaeocystis and diatoms impacts the seasonality of carbon export fluxes with ramifications for nutrient cycling and food web dynamics.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cited articles
Aiken, J., Rees, N., Hooker, S., Holligan, P., Bale, A., Robins, D., Moore,
G., Harris, R., and Pilgrim, D.: The Atlantic Meridional Transect: overview
and synthesis of data, Prog. Oceanogr., 45, 257–312,
https://doi.org/10.1016/S0079-6611(00)00005-7, 2000.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, NOAA Tech. Memo. NESDIS NGDC-24,
Natl. Geophys. Data Center, NOAA, 2009, https://doi.org/10.7289/V5C8276M, 2009.
Balch, W. M., Bates, N. R., Lam, P. J., Twining, B. S., Rosengard, S. Z.,
Bowler, B. C., Drapeau, D. T., Garley, R., Lubelczyk, L. C., Mitchell, C.,
and Rauschenberg, S.: Factors regulating the Great Calcite Belt in the
Southern Ocean and its biogeochemical significance, Global Biogeochem.
Cy., 30, 1124–1144, https://doi.org/10.1002/2016GB005414, 2016.
Bork, P., Bowler, C., de Vargas, C., Gorsky, G., Karsenti, E., and Wincker,
P.: Tara Oceans studies plankton at planetary scale, Science, 348,
873–873, https://doi.org/10.1126/science.aac5605, 2015.
Breiner, F. T., Guisan, A., Bergamini, A., and Nobis, M. P.: Overcoming
limitations of modelling rare species by using ensembles of small models,
Methods Ecol. Evol., 6, 1210–1218, https://doi.org/10.1111/2041-210X.12403, 2015.
Brun, P., Vogt, M., Payne, M. R., Gruber, N., O'Brien, C. J., Buitenhuis, E.
T., Le Quéré, C., Leblanc, K., and Luo, Y.-W.: Ecological niches of
open ocean phytoplankton taxa, Limnol. Oceanogr., 60, 1020–1038,
https://doi.org/10.1002/lno.10074, 2015.
Buitenhuis, E. T., Li, W. K. W., Vaulot, D., Lomas, M. W., Landry, M. R., Partensky, F., Karl, D. M., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M., and McManus, G. B.: Picophytoplankton biomass distribution in the global ocean, Earth Syst. Sci. Data, 4, 37–46, https://doi.org/10.5194/essd-4-37-2012, 2012.
Buitenhuis, E. T., Vogt, M., Moriarty, R., Bednaršek, N., Doney, S. C., Leblanc, K., Le Quéré, C., Luo, Y.-W., O'Brien, C., O'Brien, T., Peloquin, J., Schiebel, R., and Swan, C.: MAREDAT: towards a world atlas of MARine Ecosystem DATa, Earth Syst. Sci. Data, 5, 227–239, https://doi.org/10.5194/essd-5-227-2013, 2013.
Cermeño, P., Teixeira, I. G., Branco, M., Figueiras, F. G., and
Marañón, E.: Sampling the limits of species richness in marine
phytoplankton communities, J. Plankton Res., 36, 1135–1139,
https://doi.org/10.1093/plankt/fbu033, 2014.
Chamberlain, S.: rgbif: Interface to the Global Biodiversity Information
Facility API, R package version 0.9.7, 2015.
Chaudhary, C., Saeedi, H., and Costello, M. J.: Bimodality of latitudinal
gradients in marine species richness, Trends Ecol. Evol., 31, 670–676,
https://doi.org/10.1016/j.tree.2016.06.001, 2016.
Chaudhary, C., Saeedi, H., and Costello, M. J.: Marine species richness is
bimodal with latitude: a reply to fernandez and marques, Trends Ecol. Evol.,
32, 234–237, https://doi.org/10.1016/j.tree.2017.02.007, 2017.
Colwell, R. K. and Rangel, T. F.: Hutchinson's duality: The once and future
niche, P. Natl. Acad. Sci. USA, 106,
19651–19658, https://doi.org/10.1073/pnas.0901650106, 2009.
Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S. K., and Tiffin, N.:
RPostgreSQL: R interface to the PostgreSQL database system. R package
version 0.4, 2015.
de Boyer Montégut, C.: Mixed layer depth over the global ocean: An
examination of profile data and a profile-based climatology, J. Geophys.
Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R.,
Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain,
J., Romac, S., Colin, S., Aury, J.-M., Bittner, L., Chaffron, S., Dunthorn,
M., Engelen, S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O.,
Lima-Mendez, G., Luke, J., Malviya, S., Morard, R., Mulot, M., Scalco, E.,
Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S.,
Kandels-Lewis, S., Acinas, S. G., Bork, P., Bowler, C., Gorsky, G.,
Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S.,
Raes, J., Sieracki, M. E., Speich, S., Stemmann, L., Sunagawa, S.,
Weissenbach, J., Wincker, P., Karsenti, E., Boss, E., Follows, M.,
Karp-Boss, L., Krzic, U., Reynaud, E. G., Sardet, C., Sullivan, M. B., and
Velayoudon, D.: Eukaryotic plankton diversity in the sunlit ocean, Science,
348, 1261605–1261605, https://doi.org/10.1126/science.1261605, 2015.
Duarte, C. M.: Seafaring in the 21St Century: The Malaspina 2010
Circumnavigation Expedition, Limnol. Oceanogr. Bull., 24, 11–14,
https://doi.org/10.1002/lob.10008, 2015.
Edwards, J. L.: Interoperability of biodiversity databases: biodiversity
information on every desktop, Science, 289, 2312–2314,
https://doi.org/10.1126/science.289.5488.2312, 2000.
Endo, H., Ogata, H., and Suzuki, K.: Contrasting biogeography and diversity
patterns between diatoms and haptophytes in the central Pacific Ocean, Sci.
Rep., 8, 10916, https://doi.org/10.1038/s41598-018-29039-9, 2018.
Falkowski, P. G., Katz M. E., Knoll, A. H., Quigg, A., Raven, J. A.,
Schofield, O., and Taylor, F. J. R.: The evolution of modern eukaryotic
phytoplankton, Science, 305, 354–360, https://doi.org/10.1126/science.1095964,
2004.
Field, C. B., Behrenfeld, M. J., Tanderson, J. T., and Falkowski, P.: Primary
production of the biosphere: Integrating terrestrial and oceanic components,
Science, 281, 237–240, https://doi.org/10.1126/science.281.5374.237, 1998.
Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincon, J., Zabala, L. L.,
Jiao, N., Karl, D. M., Li, W. K. W., Lomas, M. W., Veneziano, D., Vera, C.
S., Vrugt, J. A., and Martiny, A. C.: Present and future global distributions
of the marine Cyanobacteria Prochlorococcus and Synechococcus, P. Natl.
Acad. Sci. USA, 110, 9824–9829, https://doi.org/10.1073/pnas.1307701110, 2013.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.
K., Zweng, M. M., Reagan, J. R., and Johnson, D. R.: World Ocean Atlas 2013,
Vol. 4 Dissolved Inorg. Nutr. (phosphate, nitrate, silicate), edited by: Levitus, S. and Mishonov, A., 25, 2013.
Guisan, A. and Thuiller, W.: Predicting species distribution: Offering more
than simple habitat models, Ecol. Lett., 8, 993–1009,
https://doi.org/10.1111/j.1461-0248.2005.00792.x, 2005.
Guisan, A. and Zimmermann, N. E.: Predictive habitat distribution models in
ecology, Ecol. Modell., 135, 147–186,
https://doi.org/10.1016/S0304-3800(00)00354-9, 2000.
Honjo, S. and Okada, H.: Community structure of coccolithophores in the
photic layer of the mid-pacific, Micropaleontology, 20, 209–230,
https://doi.org/10.2307/1485061, 1974.
Iglesias-Rodríguez, M. D., Brown, C. W., Doney, S. C., Kleypas, J.,
Kolber, D., Kolber, Z., Hayes, P. K., and Falkowski, P. G.: Representing key
phytoplankton functional groups in ocean carbon cycle models:
Coccolithophorids, Global Biogeochem. Cy., 16, 471–4720,
https://doi.org/10.1029/2001GB001454, 2002.
Jeong, H. J., Yoo, Y. Du, Kim, J. S., Seong, K. A., Kang, N. S., and Kim, T.
H.: Growth, feeding and ecological roles of the mixotrophic and
heterotrophic dinoflagellates in marine planktonic food webs, Ocean Sci. J.,
45, 65–91, https://doi.org/10.1007/s12601-010-0007-2, 2010.
Jones, M. C. and Cheung, W. W. L.: Multi-model ensemble projections of
climate change effects on global marine biodiversity, ICES J. Mar. Sci.,
72, 741–752, https://doi.org/10.1093/icesjms/fsu172, 2015.
Jordan, R. W.: A revised classification scheme for living haptophytes,
Micropaleontology, 50, 55–79,
https://doi.org/10.2113/50.Suppl_1.55, 2004.
Leblanc, K., Arístegui, J., Armand, L., Assmy, P., Beker, B., Bode, A., Breton, E., Cornet, V., Gibson, J., Gosselin, M.-P., Kopczynska, E., Marshall, H., Peloquin, J., Piontkovski, S., Poulton, A. J., Quéguiner, B., Schiebel, R., Shipe, R., Stefels, J., van Leeuwe, M. A., Varela, M., Widdicombe, C., and Yallop, M.: A global diatom database – abundance, biovolume and biomass in the world ocean, Earth Syst. Sci. Data, 4, 149–165, https://doi.org/10.5194/essd-4-149-2012, 2012.
Le Quéré, C.: Ecosystem dynamics based on plankton functional types
for global ocean biogeochemistry models, Global Change Biol., 11,
2016–2040, https://doi.org/10.1111/j.1365-2486.2005.1004.x, 2005.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Vol. 1 Temp, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 73, 40, 2013.
Lund, J. W. G., Kipling, C., and Le Cren, E. D.: The inverted microscope
method of estimating algal numbers and the statistical basis of estimations
by counting, Hydrobiol., 11, 143–170, https://doi.org/10.1007/BF00007865, 1958.
Luo, Y.-W., Doney, S. C., Anderson, L. A., Benavides, M., Berman-Frank, I., Bode, A., Bonnet, S., Boström, K. H., Böttjer, D., Capone, D. G., Carpenter, E. J., Chen, Y. L., Church, M. J., Dore, J. E., Falcón, L. I., Fernández, A., Foster, R. A., Furuya, K., Gómez, F., Gundersen, K., Hynes, A. M., Karl, D. M., Kitajima, S., Langlois, R. J., LaRoche, J., Letelier, R. M., Marañón, E., McGillicuddy Jr., D. J., Moisander, P. H., Moore, C. M., Mouriño-Carballido, B., Mulholland, M. R., Needoba, J. A., Orcutt, K. M., Poulton, A. J., Rahav, E., Raimbault, P., Rees, A. P., Riemann, L., Shiozaki, T., SubramanTiam, A., Tyrrell, T., Turk-Kubo, K. A., Varela, M., Villareal, T. A., Webb, E. A., White, A. E., Wu, J., and Zehr, J. P.: Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates, Earth Syst. Sci. Data, 4, 47–73, https://doi.org/10.5194/essd-4-47-2012, 2012.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J.,
Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., and
Bowler, C.: Insights into global diatom distribution and diversity in the
world's ocean, P. Natl. Acad. Sci. USA, 113, E1516–E1525,
https://doi.org/10.1073/pnas.1509523113, 2016.
Mawji, E., Schlitzer, R., Dodas, E. M., and GEOTRACES-group: The GEOTRACES intermediate data product 2014, Mar. Chem., 177, 1–8,
https://doi.org/10.1016/j.marchem.2015.04.005, 2015.
McQuatters-Gollop, A., Edwards, M., Helaouët, P., Johns, D. G., Owens,
N. J. P., Raitsos, D. E., Schroeder, D., Skinner, J., and Stern, R. F.: The
Continuous Plankton Recorder survey: How can long-term phytoplankton
datasets contribute to the assessment of Good Environmental Status?, Estuar.
Coast. Shelf Sci., 162, 88–97, https://doi.org/10.1016/j.ecss.2015.05.010, 2015.
Menegotto, A. and Rangel, T. F.: Mapping knowledge gaps in marine diversity
reveals a latitudinal gradient of missing species richness, Nat. Commun.,
9, 1–6, https://doi.org/10.1038/s41467-018-07217-7, 2018.
Meyer, C., Kreft, H., Guralnick, R., and Jetz, W.: Global priorities for an
effective information basis of biodiversity distributions, Nat. Commun.,
6, 1–8, https://doi.org/10.1038/ncomms9221, 2015.
O'Brien, C. J., Peloquin, J. A., Vogt, M., Heinle, M., Gruber, N., Ajani, P., Andruleit, H., Arístegui, J., Beaufort, L., Estrada, M., Karentz, D., Kopczyńska, E., Lee, R., Poulton, A. J., Pritchard, T., and Widdicombe, C.: Global marine plankton functional type biomass distributions: coccolithophores, Earth Syst. Sci. Data, 5, 259–276, https://doi.org/10.5194/essd-5-259-2013, 2013.
O'Brien, C. J., Vogt, M., and Gruber, N.: Global coccolithophore diversity:
Drivers and future change, Prog. Oceanogr., 140, 27–42,
https://doi.org/10.1016/j.pocean.2015.10.003, 2016.
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A.,
Leathwick, J., and Ferrier, S.: Sample selection bias and presence-only
distribution models: implications for background and pseudo-absence data,
Ecol. Appl., 19, 181–197, https://doi.org/10.1890/07-2153.1, 2009.
Provoost, P. and Bosch, S.: robis: R client for the OBIS API. R package
version 0.1.5, 2015.
Richardson, A. J., Walne, A. W., John, A. W. G., Jonas, T. D., Lindley, J.
A., Sims, D. W., Stevens, D., and Witt, M.: Using continuous plankton
recorder data, Prog. Oceanogr., 68, 27–74,
https://doi.org/10.1016/j.pocean.2005.09.011, 2006.
Righetti, D., Vogt, M., Zimmermann, N. E., and Gruber, N.: PHYTOBASE: A
global synthesis of open ocean phytoplankton occurrences, Pangaea,
https://doi.org/10.1594/PANGAEA.904397, 2019a.
Righetti, D., Vogt, M., Gruber, N., Psomas, A., and Zimmermann, N. E.: Global
pattern of phytoplankton diversity driven by temperature and environmental
variability, Sci. Adv., 5, eaau6253, https://doi.org/10.1126/sciadv.aau6253, 2019b.
Rodríguez-Ramos, T., Marañón, E., and Cermeño, P.: Marine
nano- and microphytoplankton diversity: redrawing global patterns from
sampling-standardized data, Glob. Ecol. Biogeogr., 24, 527–538,
https://doi.org/10.1111/geb.12274, 2015.
Rombouts, I., Beaugrand, G., Ibañez, F., Gasparini, S., Chiba, S., and
Legendre, L.: A multivariate approach to large-scale variation in marine
planktonic copepod diversity and its environmental correlates, Limnol.
Oceanogr., 55, 2219–2229, https://doi.org/10.4319/lo.2010.55.5.2219, 2010.
Sal, S., López-Urrutia, Á., Irigoien, X., Harbour, D. S., and Harris,
R. P.: Marine microplankton diversity database, Ecology, 94, 1658–1658,
https://doi.org/10.1890/13-0236.1, 2013.
Ser-Giacomi, E., Zinger, L., Malviya, S., De Vargas, C., Karsenti, E.,
Bowler, C., and De Monte, S.: Ubiquitous abundance distribution of
non-dominant plankton across the global ocean, Nat. Ecol. Evol., 2,
1243–1249, https://doi.org/10.1038/s41559-018-0587-2, 2018.
Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M.,
Neal, P. R., Arrieta, J. M., and Herndl, G. J.: Microbial diversity in the
deep sea and the underexplored “rare biosphere,” P. Natl. Acad. Sci. USA,
103, 12115–12120, https://doi.org/10.1073/pnas.0605127103, 2006.
Sournia, A., Chrdtiennot-Dinet, M.-J., and Ricard, M.: Marine phytoplankton:
how many species in the world ocean?, J. Plankton Res., 13, 1093–1099,
https://doi.org/10.1093/plankt/13.5.1093, 1991.
Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K.,
Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A.,
Cornejo-Castillo, F. M., Costea, P. I., Cruaud, C., D'Ovidio, F., Engelen,
S., Ferrera, I., Gasol, J. M., Guidi, L., Hildebrand, F., Kokoszka, F.,
Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B. T., Royo-Llonch, M.,
Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S.,
Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N.,
Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S.,
Speich, S., Stemmann, L., Sullivan, M. B., Weissenbach, J., Wincker, P.,
Karsenti, E., Raes, J., Acinas, S. G., Bork, P., Boss, E., Bowler, C.,
Follows, M., Karp-Boss, L., Krzic, U., Reynaud, E. G., Sardet, C., Sieracki,
M., and Velayoudon, D.: Structure and function of the global ocean
microbiome, Science, 348, 1261359–1261359,
https://doi.org/10.1126/science.1261359, 2015.
Thompson, G. G. and Withers, P. C.: Effect of species richness and relative
abundance on the shape of the species accumulation curve, Austral Ecol.,
28, 355–360, https://doi.org/10.1046/j.1442-9993.2003.01294.x, 2003.
Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E.
V., and Worm, B.: Global patterns and predictors of marine biodiversity
across taxa, Nature, 466, 1098–1101, https://doi.org/10.1038/nature09329, 2010.
Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D.
L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May,
T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J., and Smith, G. F. (Eds.): International Code of Nomenclature for algae, fungi, and plants
(Shenzhen Code) adopted by the Nineteenth International Botanical
Congress Shenzhen, China, July 2017, Regnum Vegetabile, Vol. 159,
1–253, Glashütten: Koeltz Botanical Books,
https://doi.org/10.12705/Code.2018, 2018.
Utermöhl, H.: Zur Vervollkommnung der quantitativen
Phytoplankton-Methodik, SIL Commun. 1953–1996, 9, 1–38,
https://doi.org/10.1080/05384680.1958.11904091, 1958.
Villar, E., Farrant, G. K., Follows, M., Garczarek, L., Speich, S., Audic,
S., Bittner, L., Blanke, B., Brum, J. R., Brunet, C., Casotti, R., Chase,
A., Dolan, J. R., D'Ortenzio, F., Gattuso, J.-P., Grima, N., Guidi, L.,
Hill, C. N., Jahn, O., Jamet, J.-L., Le Goff, H., Lepoivre, C., Malviya, S.,
Pelletier, E., Romagnan, J.-B., Roux, S., Santini, S., Scalco, E., Schwenck,
S. M., Tanaka, A., Testor, P., Vannier, T., Vincent, F., Zingone, A.,
Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S. G.,
Bork, P., Boss, E., de Vargas, C., Gorsky, G., Ogata, H., Pesant, S.,
Sullivan, M. B., Sunagawa, S., Wincker, P., Karsenti, E., Bowler, C., Not,
F., Hingamp, P., and Iudicone, D.: Environmental characteristics of Agulhas
rings affect interocean plankton transport, Science, 348,
1261447–1261447, https://doi.org/10.1126/science.1261447, 2015.
Vogt, M., O'Brien, C., Peloquin, J., Schoemann, V., Breton, E., Estrada, M., Gibson, J., Karentz, D., Van Leeuwe, M. A., Stefels, J., Widdicombe, C., and Peperzak, L.: Global marine plankton functional type biomass distributions: Phaeocystis spp., Earth Syst. Sci. Data, 4, 107–120, https://doi.org/10.5194/essd-4-107-2012, 2012.
Wallace, D. W. R.: Chapter 6.3 Storage and transport of excess CO2 in the
oceans: The JGOFS/WOCE global CO2 survey, in Eos, Transactions American Geophysical Union, Vol. 82, 489–521, 2001.
Wickham, H. and Chang, W.: Devtools: Tools to make developing R packages
easier. R package version 1.12.0, 2015.
Woolley, S. N. C., Tittensor, D. P., Dunstan, P. K., Guillera-Arroita, G.,
Lahoz-Monfort, J. J., Wintle, B. A., Worm, B., and O'Hara, T. D.: Deep-sea
diversity patterns are shaped by energy availability, Nature, 533,
393–396, https://doi.org/10.1038/nature17937, 2016.
Worm, B., Sandow, M., Oschlies, A., Lotze, H. K., and Myers, R. A.: Global
patterns of predator diversity in the open oceans, Science, 309,
1365–1369, https://doi.org/10.1126/science.1113399, 2005.
Zimmermann, N. E. and Guisan, A.: Predictive habitat distribution models in
ecology, Ecol. Modell., 135, 147–186,
https://doi.org/10.1016/S0304-3800(00)00354-9, 2000.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A.
V., Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D.,
and Biddle, M. M.: World Ocean Atlas 2013, Vol. 2, Salinity, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS 74, 39 pp., 2013.
Short summary
Phytoplankton sustain marine life, as they are the principal primary producers in the global ocean. Despite their ecological importance, their distribution and diversity patterns are poorly known, mostly due to data limitations. We present a global dataset that synthesizes over 1.3 million occurrences of phytoplankton from public archives. It is easily extendable. This dataset can be used to characterize phytoplankton distribution and diversity in current and future oceans.
Phytoplankton sustain marine life, as they are the principal primary producers in the global...
Altmetrics
Final-revised paper
Preprint