Articles | Volume 17, issue 3
https://doi.org/10.5194/essd-17-937-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-937-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface current variability in the East Australian Current from long-term high-frequency radar observations
Manh Cuong Tran
School of Biological Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
Centre for Marine Science and Innovation, UNSW Sydney, NSW 2052, Australia
School of Biological Earth and Environmental Sciences, UNSW Sydney, NSW 2052, Australia
Centre for Marine Science and Innovation, UNSW Sydney, NSW 2052, Australia
Amandine Schaeffer
School of Mathematics and Statistics, UNSW Sydney, NSW 2052, Australia
Centre for Marine Science and Innovation, UNSW Sydney, NSW 2052, Australia
Related authors
No articles found.
Daneeja Mawren, Julia Araujo, Romain Le Gendre, Jessica A. Benthuysen, Franck Eitel Kemgang Ghomsi, Jayanthi S. Saranya, and Amandine Schaeffer
EGUsphere, https://doi.org/10.5194/egusphere-2025-6045, https://doi.org/10.5194/egusphere-2025-6045, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Using sixteen years of ocean glider observations, we show that marine heatwaves shoal the mixed layer and alter subsurface biogeochemistry across Australia’s continental shelf. While surface chlorophyll generally declined, strong stratification and event severity promoted deeper, intensified chlorophyll maxima while subsurface oxygen responses varied. These findings underscore the importance of region-specific dynamics in shaping ecological responses to marine heatwaves.
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024, https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
Short summary
Ocean forecasting relies on the combination of numerical models and ocean observations through data assimilation (DA). Here we assess the performance of two DA systems in a dynamic western boundary current, the East Australian Current, across a common modelling and observational framework. We show that the more advanced, time-dependent method outperforms the time-independent method for forecast horizons of 5 d. This advocates the use of advanced methods for highly variable oceanic regions.
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024, https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Short summary
We present new datasets that are useful for exploring extreme ocean temperature events in Australian coastal waters. These datasets span multiple decades, starting from the 1940s and 1950s, and include observations from the surface to the bottom at four coastal sites. The datasets provide valuable insights into the intensity, frequency and timing of extreme warm and cold temperature events and include event characteristics such as duration, onset and decline rates and their categorisation.
Michael P. Hemming, Moninya Roughan, Neil Malan, and Amandine Schaeffer
Ocean Sci., 19, 1145–1162, https://doi.org/10.5194/os-19-1145-2023, https://doi.org/10.5194/os-19-1145-2023, 2023
Short summary
Short summary
We estimate subsurface linear and non-linear temperature trends at five coastal sites adjacent to the East Australian Current (EAC). We see accelerating trends at both 34.1 and 42.6 °S and place our results in the context of previously reported trends, highlighting that magnitudes are depth-dependent and vary across latitude. Our results indicate the important role of regional dynamics and show the necessity of subsurface data for the improved understanding of regional climate change impacts.
Joao Marcos Azevedo Correia de Souza, Sutara H. Suanda, Phellipe P. Couto, Robert O. Smith, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 211–231, https://doi.org/10.5194/gmd-16-211-2023, https://doi.org/10.5194/gmd-16-211-2023, 2023
Short summary
Short summary
The current paper describes the configuration and evaluation of the Moana Ocean Hindcast, a > 25-year simulation of the ocean state around New Zealand using the Regional Ocean Modeling System v3.9. This is the first open-access, long-term, continuous, realistic ocean simulation for this region and provides information for improving the understanding of the ocean processes that affect the New Zealand exclusive economic zone.
David E. Gwyther, Shane R. Keating, Colette Kerry, and Moninya Roughan
Geosci. Model Dev., 16, 157–178, https://doi.org/10.5194/gmd-16-157-2023, https://doi.org/10.5194/gmd-16-157-2023, 2023
Short summary
Short summary
Ocean eddies are important for weather, climate, biology, navigation, and search and rescue. Since eddies change rapidly, models that incorporate or assimilate observations are required to produce accurate eddy timings and locations, yet the model accuracy is rarely assessed below the surface. We use a unique type of ocean model experiment to assess three-dimensional eddy structure in the East Australian Current and explore two pathways in which this subsurface structure is being degraded.
David E. Gwyther, Colette Kerry, Moninya Roughan, and Shane R. Keating
Geosci. Model Dev., 15, 6541–6565, https://doi.org/10.5194/gmd-15-6541-2022, https://doi.org/10.5194/gmd-15-6541-2022, 2022
Short summary
Short summary
The ocean current flowing along the southeastern coast of Australia is called the East Australian Current (EAC). Using computer simulations, we tested how surface and subsurface observations might improve models of the EAC. Subsurface observations are particularly important for improving simulations, and if made in the correct location and time, can have impact 600 km upstream. The stability of the current affects model estimates could be capitalized upon in future observing strategies.
Daniel Lee, Amandine Schaeffer, and Sjoerd Groeskamp
Ocean Sci., 17, 1341–1351, https://doi.org/10.5194/os-17-1341-2021, https://doi.org/10.5194/os-17-1341-2021, 2021
Short summary
Short summary
The bluebottle (Physalia physalis), or Portuguese man o' war, is well known for the painful stings caused by its tentacles. Its drifting dynamics have not been widely explored, with previous studies using simple assumptions to calculate its drift. Considering similarities with a sailboat, we present a new theoretical model for the drifting speed and course of the bluebottle in different wind and ocean conditions, providing new insights into the parameterization of its complex drifting dynamics.
Cited articles
Alvera-Azcárate, A., Barth, A., Rixen, M., and Beckers, J. M.: Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature, Ocean Model., 9, 325–346, https://doi.org/10.1016/j.ocemod.2004.08.001, 2005. a
Archer, M. R., Shay, L. K., and Johns, W. E.: The Surface Velocity Structure of the Florida Current in a Jet Coordinate Frame, J. Geophys. Res.-Oceans, 122, 9189–9208, https://doi.org/10.1002/2017jc013286, 2017b. a, b, c, d
Archer, M. R., Keating, S. R., Roughan, M., Johns, W. E., Lumpkin, R., Beron-Vera, F. J., and Shay, L. K.: The Kinematic Similarity of Two Western Boundary Currents Revealed by Sustained High-Resolution Observations, Geophys. Res. Lett., 45, 6176–6185, https://doi.org/10.1029/2018gl078429, 2018. a, b
Ardhuin, F., Marié, L., Rascle, N., Forget, P., and Roland, A.: Observation and Estimation of Lagrangian, Stokes, and Eulerian Currents Induced by Wind and Waves at the Sea Surface, J. Phys. Oceanogr., 39, 2820–2838, https://doi.org/10.1175/2009jpo4169.1, 2009. a
Bourg, N., Schaeffer, A., and Molcard, A.: East Australian Current System: Frontal Barrier and Fine-Scale Control of Chlorophyll-a Distribution, J. Geophys. Res.-Oceans, 129, e2023JC020312, https://doi.org/10.1029/2023jc020312, 2024. a, b, c
Bowen, M. M., Wilkin, J. L., and Emery, W. J.: Variability and forcing of the East Australian Current, J. Geophys. Res.-Oceans, 110, 2004JC002533, https://doi.org/10.1029/2004jc002533, 2005. a, b
Bull, C. Y. S., Kiss, A. E., Jourdain, N. C., England, M. H., and van Sebille, E.: Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current, J. Geophys. Res.-Oceans, 122, 9980–9998, https://doi.org/10.1002/2017jc013311, 2017. a
Capodici, F., Cosoli, S., Ciraolo, G., Nasello, C., Maltese, A., Poulain, P.-M., Drago, A., Azzopardi, J., and Gauci, A.: Validation of HF radar sea surface currents in the Malta-Sicily Channel, Remote Sens. Environ., 225, 65–76, https://doi.org/10.1016/j.rse.2019.02.026, 2019. a, b
Cetina-Heredia, P., Roughan, M., van Sebille, E., and Coleman, M. A.: Long-term trends in the East Australian Current separation latitude and eddy driven transport, J. Geophys. Res.-Oceans, 119, 4351–4366, https://doi.org/10.1002/2014jc010071, 2014. a, b
Cosoli, S.: Implementation of the Listen-Before-Talk Mode for SeaSonde High-Frequency Ocean Radars, Journal of Marine Science and Engineering, 8, 57, https://doi.org/10.3390/jmse8010057, 2020. a, b, c
Dumas, D., Gramoullé, A., Guérin, C.-A., Molcard, A., Ourmières, Y., and Zakardjian, B.: Multistatic estimation of high-frequency radar surface currents in the region of Toulon, Ocean Dynam., 70, 1485–1503, https://doi.org/10.1007/s10236-020-01406-z, 2020. a
Dzwonkowski, B., Kohut, J. T., and Yan, X.-H.: Sub-inertial characteristics of the surface flow field over the shelf of the central Mid-Atlantic Bight, Cont. Shelf Res., 29, 1873–1886, https://doi.org/10.1016/j.csr.2009.07.005, 2009. a
D'Asaro, E. A., Shcherbina, A. Y., Klymak, J. M., Molemaker, J., Novelli, G., Guigand, C. M., Haza, A. C., Haus, B. K., Ryan, E. H., Jacobs, G. A., Huntley, H. S., Laxague, N. J. M., Chen, S., Judt, F., McWilliams, J. C., Barkan, R., Kirwan, A. D., Poje, A. C., and Özgökmen, T. M.: Ocean convergence and the dispersion of flotsam, P. Natl. Acad. Sci. USA, 115, 1162–1167, https://doi.org/10.1073/pnas.1718453115, 2018. a
Ebuchi, N., Fukamachi, Y., Ohshima, K. I., and Wakatsuchi, M.: Subinertial and seasonal variations in the Soya Warm Current revealed by HF ocean radars, coastal tide gauges, and bottom-mounted ADCP, J. Oceanogr., 65, 31–43, https://doi.org/10.1007/s10872-009-0003-2, 2009. a
Forget, P.: Noise properties of HF radar measurement of ocean surface currents, Radio Sci., 50, 764–777, https://doi.org/10.1002/2015RS005681, 2015. a
García-Reyes, M. and Largier, J. L.: Seasonality of coastal upwelling off central and northern California: New insights, including temporal and spatial variability, J. Geophys. Res.-Oceans, 117, 2011JC007629, https://doi.org/10.1029/2011jc007629, 2012. a
Godfrey, J. S., Cresswell, G. R., Golding, T. J., Pearce, A. F., and Boyd, R.: The Separation of the East Australian Current, J. Phys. Oceanogr., 10, 430–440, https://doi.org/10.1175/1520-0485(1980)010<0430:Tsotea>2.0.Co;2, 1980. a
Janssen, P. A. E. M. and Viterbo, P.: Ocean Waves and the Atmospheric Climate, J. Climate, 9, 1269–1287, https://doi.org/10.1175/1520-0442(1996)009<1269:OWATAC>2.0.CO;2, 1996. a
Kalampokis, A., Uttieri, M., Poulain, P.-M., and Zambianchi, E.: Validation of HF Radar-Derived Currents in the Gulf of Naples With Lagrangian Data, IEEE Geosci. Remote S., 13, 1452–1456, https://doi.org/10.1109/lgrs.2016.2591258, 2016. a
Kerry, C., Roughan, M., and Powell, B.: Observation Impact in a Regional Reanalysis of the East Australian Current System, J. Geophys. Res.-Oceans, 123, 7511–7528, https://doi.org/10.1029/2017jc013685, 2018. a
Kirincich, A., Emery, B., Washburn, L., and Flament, P.: Improving Surface Current Resolution Using Direction Finding Algorithms for Multiantenna High-Frequency Radars, J. Atmos. Ocean. Tech., 36, 1997–2014, https://doi.org/10.1175/JTECH-D-19-0029.1, 2019. a
Klinger, W. B., Bertaska, I. R., von Ellenrieder, K. D., and Dhanak, M. R.: Control of an Unmanned Surface Vehicle With Uncertain Displacement and Drag, IEEE J. Oceanic Eng., 42, 458–476, https://doi.org/10.1109/JOE.2016.2571158, 2017. a
Kundu, P. K.: Ekman Veering Observed near the Ocean Bottom, J. Phys. Oceanogr., 6, 238–242, https://doi.org/10.1175/1520-0485(1976)006<0238:Evonto>2.0.Co;2, 1976. a
Li, J., Roughan, M., and Kerry, C.: Drivers of ocean warming in the western boundary currents of the Southern Hemisphere, Nat. Clim. Change, 12, 901–909, https://doi.org/10.1038/s41558-022-01473-8, 2022. a, b
Li, J., Roughan, M., and Hemming, M.: Interactions between cold cyclonic eddies and a western boundary current modulate marine heatwaves, Commun. Earth Environ., 4, 380, https://doi.org/10.1038/s43247-023-01041-8, 2023. a
Lipa, B. and Barrick, D.: Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE, IEEE J. Oceanic Eng., 8, 226–253, https://doi.org/10.1109/joe.1983.1145578, 1983. a
Lodise, J., Özgökmen, T., Griffa, A., and Berta, M.: Vertical structure of ocean surface currents under high winds from massive arrays of drifters, Ocean Science, 15, 1627–1651, https://doi.org/10.5194/os-15-1627-2019, 2019. a
Lumpkin, R., Ozgokmen, T., and Centurioni, L.: Advances in the Application of Surface Drifters, Annu. Rev. Mar. Sci., 9, 59–81, https://doi.org/10.1146/annurev-marine-010816-060641, 2017 (data available at: https://data.pmel.noaa.gov/generic/erddap/tabledap/gdp_hourly_velocities.html, last access: 1 September 2024). a, b, c
Malan, N., Roughan, M., and Kerry, C.: The Rate of Coastal Temperature Rise Adjacent to a Warming Western Boundary Current is Nonuniform with Latitude, Geophys. Res. Lett., 48, e2020GL090751, https://doi.org/10.1029/2020GL090751, 2021. a
Malan, N., Roughan, M., Stanley, G. J., Holmes, R., and Li, J.: Quantifying Cross-Shelf Transport in the East Australian Current System: A Budget-Based Approach, J. Phys. Oceanogr., 52, 2555–2572, https://doi.org/10.1175/jpo-d-21-0193.1, 2022. a, b, c, d
Malan, N., Roughan, M., Hemming, M., and Schaeffer, A.: Mesoscale Circulation Controls Chlorophyll Concentrations in the East Australian Current Separation Zone, J. Geophys. Res.-Oceans, 128, e2022JC019361, https://doi.org/10.1029/2022jc019361, 2023. a, b, c
Mantovanelli, A., Keating, S., Wyatt, L. R., Roughan, M., and Schaeffer, A.: Lagrangian and Eulerian characterization of two counter-rotating submesoscale eddies in a western boundary current, J. Geophys. Res.-Oceans, 122, 4902–4921, https://doi.org/10.1002/2016jc011968, 2017. a, b, c, d
Molcard, A., Poulain, P. M., Forget, P., Griffa, A., Barbin, Y., Gaggelli, J., De Maistre, J. C., and Rixen, M.: Comparison between VHF radar observations and data from drifter clusters in the Gulf of La Spezia (Mediterranean Sea), J. Marine Syst., 78, S79–S89, https://doi.org/10.1016/j.jmarsys.2009.01.012, 2009. a, b
Muglia, M., Seim, H., and Taylor, P.: Gulf Stream Position, Width, and Orientation Estimated from HF Radar Radial Velocity Maps off Cape Hatteras, North Carolina, J. Atmos. Ocean. Techn., 39, 689–705, https://doi.org/10.1175/jtech-d-21-0098.1, 2022. a
Novelli, G., Guigand, C. M., Cousin, C., Ryan, E. H., Laxague, N. J. M., Dai, H., Haus, B. K., and Özgökmen, T. M.: A Biodegradable Surface Drifter for Ocean Sampling on a Massive Scale, J. Atmos. Ocean. Tech., 34, 2509–2532, https://doi.org/10.1175/jtech-d-17-0055.1, 2017. a, b, c
Oke, P. R. and Middleton, J. H.: Topographically Induced Upwelling off Eastern Australia, J. Phys. Oceanogr., 30, 512–531, https://doi.org/10.1175/1520-0485(2000)030<0512:Tiuoea>2.0.Co;2, 2000. a, b
Oke, P. R., Roughan, M., Cetina-Heredia, P., Pilo, G. S., Ridgway, K. R., Rykova, T., Archer, M. R., Coleman, R. C., Kerry, C. G., Rocha, C., Schaeffer, A., and Vitarelli, E.: Revisiting the circulation of the East Australian Current: Its path, separation, and eddy field, Prog. Oceanogr., 176, 102139, https://doi.org/10.1016/j.pocean.2019.102139, 2019. a, b, c
Paduan, J. D. and Washburn, L.: High-frequency radar observations of ocean surface currents, Annu. Rev. Mar. Sci., 5, 115–36, https://doi.org/10.1146/annurev-marine-121211-172315, 2013. a
Ribbat, N., Roughan, M., Powell, B., Rao, S., and Kerry, C. G.: Transport variability over the Hawkesbury Shelf (31.5–34.5° S) driven by the East Australian Current, PLoS ONE, 15, e0241622, https://doi.org/10.1371/journal.pone.0241622, 2020. a
Ridgway, K. R. and Godfrey, J. S.: Seasonal cycle of the East Australian Current, J. Geophys. Res.-Oceans, 102, 22921–22936, https://doi.org/10.1029/97jc00227, 1997. a
Roarty, H., Cook, T., Hazard, L., George, D., Harlan, J., Cosoli, S., Wyatt, L., Alvarez Fanjul, E., Terrill, E., Otero, M., Largier, J., Glenn, S., Ebuchi, N., Whitehouse, B., Bartlett, K., Mader, J., Rubio, A., Corgnati, L., Mantovani, C., Griffa, A., Reyes, E., Lorente, P., Flores-Vidal, X., Saavedra-Matta, K. J., Rogowski, P., Prukpitikul, S., Lee, S.-H., Lai, J.-W., Guerin, C.-A., Sanchez, J., Hansen, B., and Grilli, S.: The Global High Frequency Radar Network, Front. Mar. Sci., 6, 164, https://doi.org/10.3389/fmars.2019.00164, 2019. a
Roughan, M. and Middleton, J. H.: On the East Australian Current: Variability, encroachment, and upwelling, J. Geophys. Res.-Oceans, 109, 2003JC001833, https://doi.org/10.1029/2003jc001833, 2004. a
Roughan, M., Schaeffer, A., and Suthers, I. M.: Sustained Ocean Observing along the Coast of Southeastern Australia, in: Coastal Ocean Observing Systems, 76–98, Elsevier, ISBN 978-0-12-802022-7, 2015 (data available at: https://thredds.aodn.org.au/thredds/catalog/IMOS/ANMN/NSW/catalog.html, last access: 1 September 2024). a, b, c, d
Roughan, M., Keating, S. R., Schaeffer, A., Cetina Heredia, P., Rocha, C., Griffin, D., Robertson, R., and Suthers, I. M.: A tale of two eddies: The biophysical characteristics of two contrasting cyclonic eddies in the E ast A ustralian C urrent S ystem, J. Geophys. Res.-Oceans, 122, 2494–2518, https://doi.org/10.1002/2016JC012241, 2017. a
Rypina, I. I., Kirincich, A. R., Limeburner, R., and Udovydchenkov, I. A.: Eulerian and Lagrangian Correspondence of High-Frequency Radar and Surface Drifter Data: Effects of Radar Resolution and Flow Components, J. Atmos. Ocean. Tech., 31, 945–966, https://doi.org/10.1175/jtech-d-13-00146.1, 2014. a, b
Schaeffer, A., Roughan, M., and Wood, J. E.: Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current, J. Geophys. Res.-Oceans, 119, 4922–4939, https://doi.org/10.1002/2013jc009735, 2014. a, b
Schaeffer, A., Archer, M. R., Baumard, Q., Roughan, M., and Kerry, C.: An assessment of the East Australian Current as a renewable energy resource, J. Marine Syst., 204, 103285, https://doi.org/10.1016/j.jmarsys.2019.103285, 2020. a
Sentchev, A., Forget, P., and Fraunié, P.: Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements, Ocean Dynam., 67, 499–512, https://doi.org/10.1007/s10236-017-1035-6, 2017. a
Shimura, T., Mori, N., Takemi, T., and Mizuta, R.: Long-term impacts of ocean wave-dependent roughness on global climate systems, J. Geophys. Res.-Oceans, 122, 1995–2011, https://doi.org/10.1002/2016JC012621, 2017. a
Shimura, T., Hemer, M., Lenton, A., Chamberlain, M. A., and Monselesan, D.: Impacts of Ocean Wave-Dependent Momentum Flux on Global Ocean Climate, Geophys. Res. Lett., 47, e2020GL089296, https://doi.org/10.1029/2020GL089296, 2020. a
Simpson, J. H. and Sharples, J.: Introduction to the Physical and Biological Oceanography of Shelf Seas, Cambridge University Press, Cambridge, ISBN 978-0-521-87762-6, 2012. a
Sloyan, B. M., Ridgway, K. R., and Cowley, R.: The East Australian Current and Property Transport at 27° S from 2012 to 2013, J. Phys. Oceanogr., 46, 993–1008, https://doi.org/10.1175/jpo-d-15-0052.1, 2016. a
Stewart, R. H. and Joy, J. W.: HF radio measurements of surface currents, Deep-Sea Research and Oceanographic Abstracts, 21, 1039–1049, https://doi.org/10.1016/0011-7471(74)90066-7, 1974. a, b
Su, C.-H.: Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia – Version 2 (BARRA2), Bureau of Meteorology, Australia [data set], https://doi.org/10.25914/1x6g-2v48, 2024. a, b, c
Thiébaut, M. and Sentchev, A.: Tidal stream resource assessment in the Dover Strait (eastern English Channel), International Journal of Marine Energy, 16, 262–278, https://doi.org/10.1016/j.ijome.2016.08.004, 2016. a, b
Tran, M. C.: HF Radar surface current velocity dataset in the Eastern Australia (2012–2023): version 1.0, Tech. rep., Zenodo [data set], https://doi.org/10.5281/zenodo.13984639, 2024a. a, b
Tran, M. C.: EAC HF radar data processing code, version 1.0, Zenodo [code], https://doi.org/10.5281/zenodo.13985076, 2024b. a
Tran, M. C., Sentchev, A., and Nguyen, K. C.: Multi-scale variability of circulation in the Gulf of Tonkin from remote sensing of surface currents by high-frequency radars, Ocean Dynam., 71, 175–194, https://doi.org/10.1007/s10236-020-01440-x, 2021. a
van der Mheen, M., Pattiaratchi, C., Cosoli, S., and Wandres, M.: Depth-Dependent Correction for Wind-Driven Drift Current in Particle Tracking Applications, Frontiers in Marine Science, 7, 305, https://doi.org/10.3389/fmars.2020.00305, 2020. a
Wood, J. E., Schaeffer, A., Roughan, M., and Tate, P. M.: Seasonal variability in the continental shelf waters off southeastern Australia: Fact or fiction?, Cont. Shelf Res., 112, 92–103, https://doi.org/10.1016/j.csr.2015.11.006, 2016. a
Wyatt, L. R., Mantovanelli, A., Heron, M. L., Roughan, M., and Steinberg, C. R.: Assessment of Surface Currents Measured With High-Frequency Phased-Array Radars in Two Regions of Complex Circulation, IEEE J. Oceanic Eng., 43, 484–505, https://doi.org/10.1109/joe.2017.2704165, 2018. a, b, c, d, e, f, g, h
Yaremchuk, M. and Sentchev, A.: A combined EOF/variational approach for mapping radar-derived sea surface currents, Cont. Shelf Res., 31, 758–768, https://doi.org/10.1016/j.csr.2011.01.009, 2011. a, b
Yaremchuk, M., Spence, P., Wei, M., and Jacobs, G.: Lagrangian predictability in the DWH region from HF radar observations and model output, Deep-Sea Res. Pt. II, 129, 394–400, https://doi.org/10.1016/j.dsr2.2013.05.035, 2016. a, b
Short summary
The East Australian Current (EAC) plays an important role in the marine ecosystem and climate of the region. To understand the EAC regime and the inner shelf dynamics, we implement a variational approach to produce the first multiyear coastal radar dataset (2012–2023) in this region. The validated data allow for a comprehensive investigation of the EAC dynamics. This dataset will be useful for understanding the complex EAC regime and its far-reaching impacts on the shelf environment.
The East Australian Current (EAC) plays an important role in the marine ecosystem and climate of...
Altmetrics
Final-revised paper
Preprint