Articles | Volume 16, issue 11
https://doi.org/10.5194/essd-16-5243-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-5243-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SARAH-3 – satellite-based climate data records of surface solar radiation
Deutscher Wetterdienst, satellite-based climate monitoring, Offenbach, Germany
Jaqueline Drücke
Deutscher Wetterdienst, satellite-based climate monitoring, Offenbach, Germany
Steffen Kothe
Deutscher Wetterdienst, satellite-based climate monitoring, Offenbach, Germany
Jörg Trentmann
Deutscher Wetterdienst, satellite-based climate monitoring, Offenbach, Germany
Marc Schröder
Deutscher Wetterdienst, satellite-based climate monitoring, Offenbach, Germany
Rainer Hollmann
Deutscher Wetterdienst, satellite-based climate monitoring, Offenbach, Germany
Related authors
Richard Müller and Uwe Pfeifroth
Atmos. Meas. Tech., 15, 1537–1561, https://doi.org/10.5194/amt-15-1537-2022, https://doi.org/10.5194/amt-15-1537-2022, 2022
Short summary
Short summary
The great works of physics teach us that a central paradigm of science should be to make methods and theories as easy as possible and as complex as needed. This paper provides a brief review of remote sensing of solar surface irradiance based on this paradigm.
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888, https://doi.org/10.5194/acp-20-12871-2020, https://doi.org/10.5194/acp-20-12871-2020, 2020
Short summary
Short summary
Photovoltaic power is one current option to meet the rising energy demand with low environmental impact. Global horizontal irradiance (GHI) is the fuel for photovoltaic power installations and needs to be evaluated to plan and dimension power plants. In this study, 35 years of satellite-based GHI data are analyzed over West Africa to determine their impact on photovoltaic power generation. The major challenges for the development of a solar-based power system in West Africa are then outlined.
Hannes Konrad, Rémy Roca, Anja Niedorf, Stephan Finkensieper, Marc Schröder, Sophie Cloché, Giulia Panegrossi, Paolo Sanò, Christopher Kidd, Rômulo Augusto Jucá Oliveira, Karsten Fennig, Thomas Sikorski, Madeleine Lemoine, and Rainer Hollmann
Earth Syst. Sci. Data, 17, 4097–4124, https://doi.org/10.5194/essd-17-4097-2025, https://doi.org/10.5194/essd-17-4097-2025, 2025
Short summary
Short summary
GIRAFE v1 is a global satellite-based precipitation dataset covering 2002 to 2022. It combines high-accuracy microwave and high-resolution infrared observations for retrieving daily precipitation, a respective sampling uncertainty for a more robust analysis, and monthly means. It is intended and suitable for climate monitoring and research and allows studies on water management, agriculture, and disaster risk reduction. A continuous extension from 2023 onwards will be implemented in 2025.
Abhay Devasthale, Sandra Andersson, Erik Engström, Frank Kaspar, Jörg Trentmann, Anke Duguay-Tetzlaff, Jan Fokke Meirink, Erik Kjellström, Tomas Landelius, Manu Anna Thomas, and Karl-Göran Karlsson
Earth Syst. Dynam., 16, 1169–1182, https://doi.org/10.5194/esd-16-1169-2025, https://doi.org/10.5194/esd-16-1169-2025, 2025
Short summary
Short summary
By compositing trends in multiple climate variables, this study presents emerging regimes that are relevant for solar energy applications. It is shown that the favourable conditions for exploiting solar energy are emerging during spring and early summer. The study also underscores the increasingly important role of clouds in regulating surface solar radiation as the aerosol concentrations are decreasing over Europe and the societal value of satellite-based climate monitoring.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Richard Müller and Uwe Pfeifroth
Atmos. Meas. Tech., 15, 1537–1561, https://doi.org/10.5194/amt-15-1537-2022, https://doi.org/10.5194/amt-15-1537-2022, 2022
Short summary
Short summary
The great works of physics teach us that a central paradigm of science should be to make methods and theories as easy as possible and as complex as needed. This paper provides a brief review of remote sensing of solar surface irradiance based on this paradigm.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888, https://doi.org/10.5194/acp-20-12871-2020, https://doi.org/10.5194/acp-20-12871-2020, 2020
Short summary
Short summary
Photovoltaic power is one current option to meet the rising energy demand with low environmental impact. Global horizontal irradiance (GHI) is the fuel for photovoltaic power installations and needs to be evaluated to plan and dimension power plants. In this study, 35 years of satellite-based GHI data are analyzed over West Africa to determine their impact on photovoltaic power generation. The major challenges for the development of a solar-based power system in West Africa are then outlined.
Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger
Earth Syst. Sci. Data, 12, 2121–2135, https://doi.org/10.5194/essd-12-2121-2020, https://doi.org/10.5194/essd-12-2121-2020, 2020
Short summary
Short summary
We have created a satellite cloud and radiation climatology from the ATSR-2 and AATSR on board ERS-2 and Envisat, respectively, which spans the period 1995–2012. The data set was created using a combination of optimal estimation and neural net techniques. The data set was created as part of the ESA Climate Change Initiative program. The data set has been compared with active CALIOP lidar measurements and compared with MAC-LWP AND CERES-EBAF measurements and is shown to have good performance.
Cited articles
Alados, I., Foyo-Moreno, I. and Alados-Arboledas, L.: Photosynthetically active radiation: measurements and modelling, Agr. Forest Meteorol., 78, 121–131, 1995.
Alexandri, G., Georgoulias, A. K., Zanis, P., Katragkou, E., Tsikerdekis, A., Kourtidis, K., and Meleti, C.: On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations, Atmos. Chem. Phys., 15, 13195–13216, https://doi.org/10.5194/acp-15-13195-2015, 2015.
Antonanzas-Torres, F., Urraca, R., Polo, J., Perpiñán-Lamigueiro, O., and Escobar, R.: Clear sky solar irradiance models: A review of seventy models, Renew. Sust. Energ. Rev., 107, 374–387, https://doi.org/10.1016/j.rser.2019.02.032, 2019.
Bento, V., DaCamara, C. C., Trigo, I. F., Martins, J. P. A., and Duguay-Tetzlaff, A.: Improving Land Surface Temperature Retrievals over Mountainous Regions, Remote Sens., 9, 38, https://doi.org/10.3390/rs9010038, 2017.
Blanc, P., Gschwind, B., Ménard, L., and Wald, L.: Monthly-averaged maps of surface BRDF parameters in ten spectral bands for land and water masses, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2017-141, 2018.
Cano, D., Monget, J., Albuisson, M., Guillard, H., Regas, N., and Wald, L.: A method for the determination of the global solar radiation from meteorological satellite data, Solar Energ., 37, 31–39, 1986.
Carpentieri, A., Folini, D., Wild, M., Vuilleumier, L., and Meyer, A.: Satellite-derived solar radiation for intra-hour and intra-day applications: Biases and uncertainties by season and altitude, Solar Energ., 255, 274–284, https://doi.org/10.1016/j.solener.2023.03.027, 2023.
Chen, S., Poll, S., Hendricks Franssen, H.-J., Heinrichs, H., Vereecken, H., and Goergen, K.: Convection-Permitting ICON-LAM Simulations for Renewable Energy Potential Estimates Over Southern Africa, J. Geophys. Res.-Atmos., 129, e2023JD039569, https://doi.org/10.1029/2023JD039569, 2024.
Cebulska, M., and Kholiavchuk, D.: Variability of meteorological droughts in the polish and the Ukrainian Carpathians, 1984–2015, Meteorol. Atmos. Phys., 134, 17, https://doi.org/10.1007/s00703-021-00853-7, 2022.
Copernicus Climate Change Service (C3S): European State of the Climate 2022, Full report, https://climate.copernicus.eu/ESOTC/2022 (lst access: 8 November 2024), 2023.
Diekmann, F. J., Happ, S., Rieland, M., Benesch, W., Czeplak, G., and Kasten, F.: An operational estimate of global solar irradiance at ground level from METEOSAT data: Results from 1985 to 1987, Meteorol. Runddsch., 41, 65–79, 1988.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018.
Drücke, J., Borsche, M., James, P., Kaspar, F., Pfeifroth, U., Ahrens, B., and Trentmann, J.: Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification, Renew. Energ., 164, 1254–1266, https://doi.org/10.1016/j.renene.2020.10.102, 2021.
Farnebäck, G.: Two-Frame Motion Estimation Based on Polynomial Expansion, in: Image Analysis, edited by: Bigun, J. and Gustavsson, T., SCIA 2003, Lecture Notes in Computer Science, vol. 2749, Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-45103-X_50, 2003.
Forstinger, A., Wilbert, S., Jensen, A. R., Kraas, B., Fernandez Peruchena, C., Gueymard, C. A., Ronzio, D., Yang, D., Collino, E., Polo Martinez, J., Ruiz-Arias, J. A., Hanrieder, N., Blanc, P., and Saint-Drenant, Y.-M.: Worldwide Benchmark of Modelled Solar Irradiance Data, IEA PVPS, Task 16, Solar Resource for High Penetration and Large-Scale Applications, 2023.
Gautier, C., Diak, G., and Masse, S.: A Simple Physical Model to Estimate Incident Solar Radiation at the Surface from GOES Satellite Data, J. Appl. Meteorol. Clim., 19, 1005–1012, https://doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0.CO;2, 1980.
Gava, M. L. L. M., Costa, S. M. S., and Porfírio, A. C. S.: Daily satellite-based sunshine duration estimates over Brazil: validation and intercomparison, Atmos. Meas. Tech., 16, 5429–5441, https://doi.org/10.5194/amt-16-5429-2023, 2023.
Hammer, A., Heinemann, D., Hoyer, C., Kuhlemann, R., Lorenz, E., Mueller, R., and Beyer, H.: Solar energy assessment using remote sensing technologies, Remote Sens. Environ., 86, 423–432, 2003.
Hartmann, D. L., Ramanathan, V., Berroir, A., and Hunt, G. E.: Earth Radiation Budget data and climate research, Rev. Geophys., 24, 1944–9208, https://doi.org/10.1029/RG024i002p00439, 1986.
Hörsch, J., Hofmann, F., Schlachtberger, D., and Brown, T.: PyPSA-Eur: An open optimisation model of the European transmission system, Energy Strateg. Rev., 22, 207–215, https://doi.org/10.1016/j.esr.2018.08.012, 2018.
Huang, G., Li, Z., Li, X., Liang, S., Yang, K., Wang, D., and Zhang, Y.: Estimating surface solar irradiance from satellites: Past, present, and future perspectives, Remote Sens. Environ., 233, 111371, https://doi.org/10.1016/j.rse.2019.111371, 2019.
Huld, T.: PVMAPS: Software tools and data for the estimation of solar radiation and photovoltaic module performance over large geographical areas, Solar Energ., 142, 171–181, https://doi.org/10.1016/j.solener.2016.12.014, 2017.
Husein, M., Moner-Girona, M., Falchetta, G., Stevanato, N., Fahl, F., and Szabó, S.: The impacts of incentive policies on improving private investment for rural electrification in Nigeria – A geospatial study, Heliyon, 10, e27440, https://doi.org/10.1016/j.heliyon.2024.e27440, 2024.
Ineichen, P.: A broadband simplified version of the Solis clear sky model, Solar Energ., 82, 758–762, https://doi.org/10.1016/j.solener.2008.02.009, 2008.
Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC team: The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013, 2013.
Jensen, A. R., Anderson, K. S., Holmgren, W. F., Mikofski, M. A., Hansen, C. W., Boeman, L. J., and Loonen, R.: pvlib iotools – Open-source Python functions for seamless access to solar irradiance data, Solar Energ., 266, 112092, https://doi.org/10.1016/j.solener.2023.112092, 2023.
Kakoulaki, G., Taylor, N., Szabo, S., Kenny, R., Chatzipanagi, A., and Jäger-Waldau, A.: Communication on the potential of applied PV in the European Union: Rooftops, reservoirs, roads (R3), EPJ Photovolt., 15, 8 pp., https://doi.org/10.1051/epjpv/2023035, 2024.
Karlsson, K.-G., Stengel, M., Meirink, J. F., Riihelä, A., Trentmann, J., Akkermans, T., Stein, D., Devasthale, A., Eliasson, S., Johansson, E., Håkansson, N., Solodovnik, I., Benas, N., Clerbaux, N., Selbach, N., Schröder, M., and Hollmann, R.: CLARA-A3: The third edition of the AVHRR-based CM SAF climate data record on clouds, radiation and surface albedo covering the period 1979 to 2023, Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, 2023.
Kaspar, F., Borsche, M., Pfeifroth, U., Trentmann, J., Drücke, J., and Becker, P.: A climatological assessment of balancing effects and shortfall risks of photovoltaics and wind energy in Germany and Europe, Adv. Sci. Res., 16, 119–128, https://doi.org/10.5194/asr-16-119-2019, 2019.
Kato, S., Ackerman, T., Mather, J., and Clothiaux, E.: The k-distribution method and correlated-k-approximation for short-wave radiative transfer model, J. Quant. Spectrosc. Ra., 62, 109–121, 1999.
Kenny, D. and Fiedler, S.: Which gridded irradiance data is best for modelling photovoltaic power production in Germany?, Sol. Energy, 232, 444–458, https://doi.org/10.1016/j.solener.2021.12.044, 2022.
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demaree, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Palsdottir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., Van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Gegnar, T., Antonio Lopez, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 1441–1453, 2002.
Kothe, S., Pfeifroth, U., Cremer, R., Trentmann, J., and Hollmann, R.: A Satellite-Based Sunshine Duration Climate Data Record for Europe and Africa, Remote Sens., 9, 429, https://doi.org/10.3390/rs9050429, 2017.
Kothe, S., Hollmann, R., Pfeifroth, U., Träger-Chatterjee, C., and Trentmann J.: The CM SAF R Toolbox – A Tool for the Easy Usage of Satellite-Based Climate Data in NetCDF Format, ISPRS Int. J. Geo-Inf., 8, 109, https://doi.org/10.3390/ijgi8030109, 2019.
Mabasa, B., Lysko, M. D., and Moloi, S. J.: Validating Hourly Satellite Based and Reanalysis Based Global Horizontal Irradiance Datasets over South Africa, Geomatics, 1, 429–449, https://doi.org/10.3390/geomatics1040025, 2021.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
Montero-Martín, J., Antón, M., Vaquero-Martínez, J., and Sanchez-Lorenzo, A.: Comparison of long-term solar radiation trends from CM SAF satellite products with ground-based data at the Iberian Peninsula for the period 1985–2015, Atmos. Res., 236, 104839, https://doi.org/10.1016/j.atmosres.2019.104839, 2020.
Möser, W. and Raschke, E.: Incident solar radiation over Europe estimated from METEOSAT data, J. Clim. Appl. Meteorol., 23, 166–170, 1984.
Müller, R. and Pfeifroth, U.: Remote sensing of solar surface radiation – a reflection of concepts, applications and input data based on experience with the effective cloud albedo, Atmos. Meas. Tech., 15, 1537–1561, https://doi.org/10.5194/amt-15-1537-2022, 2022.
Mueller, R. W., Dagestad, K. F., Ineichen, P., Schroedter-Homscheidt, M., Cros, S., Dumortier, D., Kuhlemann, R., Olseth, J. A., Piernavieja, G., Reise, C., Wald, L., and Heinemann, D.: Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module, Remote Sens. Environ., 91, 160–174, https://doi.org/10.1016/j.rse.2004.02.009, 2004.
Mueller, R., Matsoukas, C., Gratzki, A., Hollmann, R., and Behr, H.: The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance – A LUT based eigenvector hybrid approach, Remote Sens. Environ., 113, 1012–1022, 2009.
Mueller, R., Behrendt, T., Hammer, A., and Kemper, A.: A new algorithm for the satellite-based retrieval of solar surface irradiance in spectral bands, Remote Sens., 4, 622–647, https://doi.org/10.3390/rs4030622, 2012.
Mueller, R., Pfeifroth, U., and Traeger-Chatterjee, C.: Towards Optimal Aerosol Information for the Retrieval of Solar Surface Radiation Using Heliosat, Atmosphere, 6, 863–878, https://doi.org/10.3390/atmos6070863, 2015a.
Mueller, R., Pfeifroth, U., Traeger-Chatterjee, C., Trentmann, J., and Cremer, R.: Digging the METEOSAT Treasure – 3 Decades of Solar Surface Radiation, Remote Sens., 7, 8067–8101, https://doi.org/10.3390/rs70608067, 2015b.
Niermann, D., Borsche, M., Kaiser-Weiss, A., and Kaspar, F.: Evaluating renewable-energy-relevant parameters of COSMO-REA6 by comparison with satellite data, station observations and other reanalyses, Meteorol. Z., 28, 347–360, https://doi.org/10.1127/metz/2019/0945, 2019.
Obregón, A., Nitsche, H., Körber, M., Kreis, A., Bissolli, P., Friedrich, K., and Rösner, S.: Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring, Adv. Sci. Res., 11, 25–33, https://doi.org/10.5194/asr-11-25-2014, 2014.
Ouhechou, A., Philippon, N., Morel, B., Trentmann, J., Graillet, A., Mariscal, A., and Nouvellon, Y.: Inter-comparison and validation against in-situ measurements of satellite estimates of incoming solar radiation for Central Africa: From the annual means to the diurnal cycles, Atmos. Res., 287, 106711, https://doi.org/10.1016/j.atmosres.2023.106711, 2023.
Pelosi, A., Belfiore, O. R., D'Urso, G., and Chirico, G. B.: Assessing Crop Water Requirement and Yield by Combining ERA5-Land Reanalysis Data with CM-SAF Satellite-Based Radiation Data and Sentinel-2 Satellite Imagery, Remote Sens., 14, 6233, https://doi.org/10.3390/rs14246233, 2022.
Pfeifroth, U., Sanchez-Lorenzo, A., Manara, V., Trentmann, J., and Hollmann, R.: Trends and variability of surface solar radiation in Europe based on surface- and satellite-based data records, J. Geophys. Res.-Atmos., 123, 1735–1754, https://doi.org/10.1002/2017JD027418, 2018a.
Pfeifroth, U., Bojanowski, J. S., Clerbaux, N., Manara, V., Sanchez-Lorenzo, A., Trentmann, J., Walawender, J. P., and Hollmann, R.: Satellite-based trends of solar radiation and cloud parameters in Europe, Adv. Sci. Res., 15, 31–37, https://doi.org/10.5194/asr-15-31-2018, 2018b.
Pfeifroth, U., Kothe, S., Drücke, J., Trentmann, J., Schröder, M., Selbach, N., and Hollmann, R.: Surface Radiation Data Set – Heliosat (SARAH) – Edition 3, Satellite Application Facility on Climate Monitoring [data set], https://doi.org/10.5676/EUM_SAF_CM/SARAH/V003, 2023.
Pinker, R. T. and Laszlo, I.: Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale, J. Appl. Meteorol. Clim., 31, 194–211, https://doi.org/10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2, 1992.
Posselt, R., Mueller, R., Stöckli, R., and Trentmann, J.: CM SAF Surface Radiation MVIRI Data Set 1.0 – Monthly Means/Daily Means/Hourly Means, Satellite Application Facility on Climate Monitoring [data set], https://doi.org/10.5676/EUM_SAF_CM/RAD_MVIRI/V001, 2011.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034, 2001.
Rigollier, M., Levefre, M., and Wald, L.: The method Heliosat-2 for deriving shortwave solar radiation from satellite images, Solar Energ., 77, 159–169, 2004.
Roesch, A., Wild, M., Ohmura, A., Dutton, E. G., Long, C. N., and Zhang, T.: Assessment of BSRN radiation records for the computation of monthly means, Atmos. Meas. Tech., 4, 339–354, https://doi.org/10.5194/amt-4-339-2011, 2011.
Sander, L., Jung, C., and Schindler, D.: New concept of renewable energy priority zones for efficient onshore wind and solar expansion, Energ. Convers. Manage., 294, 117575, https://doi.org/10.1016/j.enconman.2023.117575, 2023.
Sawadogo, W., Bliefernicht, J., Fersch, B., Salack, S., Guug, S., Diallo, B., Ogunjobi, K. O., Nakoulma, G., Tanu, M., Meilinger, S., and Kunstmann, H.: Hourly global horizontal irradiance over West Africa: A case study of one-year satellite- and reanalysis-derived estimates vs. in situ measurements, Renew. Energ., 216, 119066, https://doi.org/10.1016/j.renene.2023.119066, 2023.
Schulz, J., Albert, P., Behr, H.-D., Caprion, D., Deneke, H., Dewitte, S., Dürr, B., Fuchs, P., Gratzki, A., Hechler, P., Hollmann, R., Johnston, S., Karlsson, K.-G., Manninen, T., Müller, R., Reuter, M., Riihelä, A., Roebeling, R., Selbach, N., Tetzlaff, A., Thomas, W., Werscheck, M., Wolters, E., and Zelenka, A.: Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF), Atmos. Chem. Phys., 9, 1687–1709, https://doi.org/10.5194/acp-9-1687-2009, 2009.
Schwarz, M., Folini, D., Hakuba, M. Z., and Wild, M.: From Point to Area: Worldwide Assessment of the Representativeness of Monthly Surface Solar Radiation Records, J. Geophys. Res.-Atmos., 123, 13857–13874, https://doi.org/10.1029/2018JD029169, 2018.
Skartveit, A., Olseth, J. A., and Tuft, M. A.: An Hourly Diffuse Fraction Model with Correction for Variability and Surface Albedo, Solar Energ., 63, 173–183, 1998.
Urraca, R., Gracia-Amillo, A. M., Huld, T., Martinez-de-Pison, F. J., Trentmann, J., Lindfors, A. V., Riihelä, A., and Sanz-Garcia, A.: Quality control of global solar radiation data with satellite-based products, Solar Energ., 158, 49–62, https://doi.org/10.1016/j.solener.2017.09.032, 2017.
Urraca, R., Sanz-Garcia, A., and Sanz-Garcia, I.: BQC: A free web service to quality control solar irradiance measurements across Europe, Solar Energ., 211, 1–10, https://doi.org/10.1016/j.solener.2020.09.055, 2020.
Urraca, R., Trentmann, J., Pfeifroth, U., and Gobron, N.: Can satellite products monitor solar brightening in Europe?, Remote Sens. Environ., 315, 114472, https://doi.org/10.1016/j.rse.2024.114472, 2024.
van den Besselaar, E. J. M., Sanchez-Lorenzo, A., Wild, M., Klein Tank, A. M. G., and de Laat, A. T. J.: Relationship between sunshine duration and temperature trends across Europe since the second half of the twentieth century, J. Geophys. Res.-Atmos., 120, 10823–10836, https://doi.org/10.1002/2015JD023640, 2015.
Vernay, C., Pitaval, S. and Blanc, P.: Review of satellite based surface solar irradiation databases for the engineering, the financing and the operating of photovoltaic systems, Enrgy Proced., 57, 1383–1391, 2014.
Vernier, J.-P., Thomason, L. W., Pommereau, J.-P., Bourassa, A., Pelon, J., Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and Vargas, F.: Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade, Geophys. Res. Lett., 38, L12807, https://doi.org/10.1029/2011GL047563, 2011.
Wild, M.: Enlightening Global Dimming and Brightening, B. Am. Meteorol. Soc., 93, 27–37, https://doi.org/10.1175/BAMS-D-11-00074.1, 2012.
Wild, M.: Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming, WIREs Clim. Change, 7, 91–107, https://doi.org/10.1002/wcc.372, 2016.
Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., and König-Langlo, G.: The global energy balance from a surface perspective, Clim. Dynam., 40, 3107–3134, https://doi.org/10.1007/s00382-012-1569-8, 2013.
Wild, M., Ohmura, A., Schär, C., Müller, G., Folini, D., Schwarz, M., Hakuba, M. Z., and Sanchez-Lorenzo, A.: The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes, Earth Syst. Sci. Data, 9, 601–613, https://doi.org/10.5194/essd-9-601-2017, 2017.
Yang, D. and Bright, J. M.: Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years, Solar Energ., 210, 3–19, https://doi.org/10.1016/j.solener.2020.04.016, 2020.
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
The energy reaching Earth's surface from the Sun is a quantity of great importance for the...
Altmetrics
Final-revised paper
Preprint