Articles | Volume 16, issue 6
https://doi.org/10.5194/essd-16-2877-2024
https://doi.org/10.5194/essd-16-2877-2024
Data description paper
 | 
20 Jun 2024
Data description paper |  | 20 Jun 2024

Map of forest tree species for Poland based on Sentinel-2 data

Ewa Grabska-Szwagrzyk, Dirk Tiede, Martin Sudmanns, and Jacek Kozak

Related authors

Remote Sensing Data Quality in the Era of AI
Hussein Abdulmuttalib, Mulhim Al Doori, Árpád Barsi, Thomas Blaschke, Yunya Gao, Zsofia Kugler, Stefan Lang, Gyorgy Szabo, and Dirk Tiede
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 1–11, https://doi.org/10.5194/isprs-annals-X-3-2024-1-2024,https://doi.org/10.5194/isprs-annals-X-3-2024-1-2024, 2024
Vector data cubes for features evolving in space and time
Lorena Abad, Martin Sudmanns, and Daniel Hölbling
AGILE GIScience Ser., 5, 16, https://doi.org/10.5194/agile-giss-5-16-2024,https://doi.org/10.5194/agile-giss-5-16-2024, 2024
Water Body Detection Using Sen2Cube.at and Comparison to Open Government Data - Assessing for Floating Photovoltaics
Franziska Hübl, Hannah Augustin, Martin Sudmanns, Dirk Tiede, and Johannes Scholz
AGILE GIScience Ser., 5, 30, https://doi.org/10.5194/agile-giss-5-30-2024,https://doi.org/10.5194/agile-giss-5-30-2024, 2024
SEMANTIC QUERYING IN EARTH OBSERVATION DATA CUBES
L. van der Meer, M. Sudmanns, H. Augustin, A. Baraldi, and D. Tiede
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 503–510, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-503-2022,https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-503-2022, 2022
CROCO: CROSS-MODAL CONTRASTIVE LEARNING FOR LOCALIZATION OF EARTH OBSERVATION DATA
W.-H. Tseng, H.-A. Lê, A. Boulch, S. Lefèvre, and D. Tiede
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 415–421, https://doi.org/10.5194/isprs-annals-V-2-2022-415-2022,https://doi.org/10.5194/isprs-annals-V-2-2022-415-2022, 2022

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
A 28-time-point cropland area change dataset in Northeast China from 1000 to 2020
Ran Jia, Xiuqi Fang, Yundi Yang, Masayuki Yokozawa, and Yu Ye
Earth Syst. Sci. Data, 16, 4971–4994, https://doi.org/10.5194/essd-16-4971-2024,https://doi.org/10.5194/essd-16-4971-2024, 2024
Short summary
Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2
Stefania Di Tommaso, Sherrie Wang, Rob Strey, and David B. Lobell
Earth Syst. Sci. Data, 16, 4931–4947, https://doi.org/10.5194/essd-16-4931-2024,https://doi.org/10.5194/essd-16-4931-2024, 2024
Short summary
Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images
Jie Wang, Xiangming Xiao, Yuanwei Qin, Jinwei Dong, Geli Zhang, Xuebin Yang, Xiaocui Wu, Chandrashekhar Biradar, and Yang Hu
Earth Syst. Sci. Data, 16, 4619–4639, https://doi.org/10.5194/essd-16-4619-2024,https://doi.org/10.5194/essd-16-4619-2024, 2024
Short summary
Monsoon Asia Rice Calendar (MARC): a gridded rice calendar in monsoon Asia based on Sentinel-1 and Sentinel-2 images
Xin Zhao, Kazuya Nishina, Haruka Izumisawa, Yuji Masutomi, Seima Osako, and Shuhei Yamamoto
Earth Syst. Sci. Data, 16, 3893–3911, https://doi.org/10.5194/essd-16-3893-2024,https://doi.org/10.5194/essd-16-3893-2024, 2024
Short summary
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018. 
Achanta, R. and Süsstrunk, S.: Superpixels and polygons using simple non-iterative clustering, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, 4895-4904, https://doi.org/10.1109/CVPR.2017.520, 2017. 
Ahlswede, S., Schulz, C., Gava, C., Helber, P., Bischke, B., Förster, M., Arias, F., Hees, J., Demir, B., and Kleinschmit, B.: TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing, Earth Syst. Sci. Data, 15, 681–695,https://doi.org/10.5194/essd-15-681-2023, 2023. 
Axelsson, A., Lindberg, E., Reese, H., and Olsson, H.: Tree species classification using Sentinel-2 imagery and Bayesian inference, Int. J. Appl. Earth Obs., 100, 102318, https://doi.org/10.1016/j.jag.2021.102318, 2021. 
Bałazy, R.: Forest dieback process in the Polish mountains in the past and nowadays – literature review on selected topics, Folia For. Pol. Ser. A, 62, 184–198, https://doi.org/10.2478/ffp-2020-0018, 2020. 
Download
Short summary
We accurately mapped 16 dominant tree species and genera in Poland using Sentinel-2 observations from short periods in spring, summer, and autumn (2018–2021). The classification achieved more than 80% accuracy in country-wide forest species mapping, with variation based on species, region, and observation frequency. Freely accessible resources, including the forest tree species map and training and test data, can be found at https://doi.org/10.5281/zenodo.10180469.
Altmetrics
Final-revised paper
Preprint