Articles | Volume 16, issue 6
https://doi.org/10.5194/essd-16-2877-2024
https://doi.org/10.5194/essd-16-2877-2024
Data description paper
 | 
20 Jun 2024
Data description paper |  | 20 Jun 2024

Map of forest tree species for Poland based on Sentinel-2 data

Ewa Grabska-Szwagrzyk, Dirk Tiede, Martin Sudmanns, and Jacek Kozak

Related authors

Remote Sensing Data Quality in the Era of AI
Hussein Abdulmuttalib, Mulhim Al Doori, Árpád Barsi, Thomas Blaschke, Yunya Gao, Zsofia Kugler, Stefan Lang, Gyorgy Szabo, and Dirk Tiede
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 1–11, https://doi.org/10.5194/isprs-annals-X-3-2024-1-2024,https://doi.org/10.5194/isprs-annals-X-3-2024-1-2024, 2024
Vector data cubes for features evolving in space and time
Lorena Abad, Martin Sudmanns, and Daniel Hölbling
AGILE GIScience Ser., 5, 16, https://doi.org/10.5194/agile-giss-5-16-2024,https://doi.org/10.5194/agile-giss-5-16-2024, 2024
Water Body Detection Using Sen2Cube.at and Comparison to Open Government Data - Assessing for Floating Photovoltaics
Franziska Hübl, Hannah Augustin, Martin Sudmanns, Dirk Tiede, and Johannes Scholz
AGILE GIScience Ser., 5, 30, https://doi.org/10.5194/agile-giss-5-30-2024,https://doi.org/10.5194/agile-giss-5-30-2024, 2024
SEMANTIC QUERYING IN EARTH OBSERVATION DATA CUBES
L. van der Meer, M. Sudmanns, H. Augustin, A. Baraldi, and D. Tiede
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W1-2022, 503–510, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-503-2022,https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-503-2022, 2022
CROCO: CROSS-MODAL CONTRASTIVE LEARNING FOR LOCALIZATION OF EARTH OBSERVATION DATA
W.-H. Tseng, H.-A. Lê, A. Boulch, S. Lefèvre, and D. Tiede
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 415–421, https://doi.org/10.5194/isprs-annals-V-2-2022-415-2022,https://doi.org/10.5194/isprs-annals-V-2-2022-415-2022, 2022

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
EARice10: a 10 m resolution annual rice distribution map of East Asia for 2023
Mingyang Song, Lu Xu, Ji Ge, Hong Zhang, Lijun Zuo, Jingling Jiang, Yinhaibin Ding, Yazhe Xie, and Fan Wu
Earth Syst. Sci. Data, 17, 661–683, https://doi.org/10.5194/essd-17-661-2025,https://doi.org/10.5194/essd-17-661-2025, 2025
Short summary
A Sentinel-2 machine learning dataset for tree species classification in Germany
Maximilian Freudenberg, Sebastian Schnell, and Paul Magdon
Earth Syst. Sci. Data, 17, 351–367, https://doi.org/10.5194/essd-17-351-2025,https://doi.org/10.5194/essd-17-351-2025, 2025
Short summary
High-resolution mapping of global winter-triticeae crops using a sample-free identification method
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025,https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
A flux tower site attribute dataset intended for land surface modeling
Jiahao Shi, Hua Yuan, Wanyi Lin, Wenzong Dong, Hongbin Liang, Zhuo Liu, Jianxin Zeng, Haolin Zhang, Nan Wei, Zhongwang Wei, Shupeng Zhang, Shaofeng Liu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 17, 117–134, https://doi.org/10.5194/essd-17-117-2025,https://doi.org/10.5194/essd-17-117-2025, 2025
Short summary
Advances in LUCAS Copernicus 2022: enhancing Earth observations with comprehensive in situ data on EU land cover and use
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024,https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary

Cited articles

Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018. 
Achanta, R. and Süsstrunk, S.: Superpixels and polygons using simple non-iterative clustering, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, 4895-4904, https://doi.org/10.1109/CVPR.2017.520, 2017. 
Ahlswede, S., Schulz, C., Gava, C., Helber, P., Bischke, B., Förster, M., Arias, F., Hees, J., Demir, B., and Kleinschmit, B.: TreeSatAI Benchmark Archive: a multi-sensor, multi-label dataset for tree species classification in remote sensing, Earth Syst. Sci. Data, 15, 681–695,https://doi.org/10.5194/essd-15-681-2023, 2023. 
Axelsson, A., Lindberg, E., Reese, H., and Olsson, H.: Tree species classification using Sentinel-2 imagery and Bayesian inference, Int. J. Appl. Earth Obs., 100, 102318, https://doi.org/10.1016/j.jag.2021.102318, 2021. 
Bałazy, R.: Forest dieback process in the Polish mountains in the past and nowadays – literature review on selected topics, Folia For. Pol. Ser. A, 62, 184–198, https://doi.org/10.2478/ffp-2020-0018, 2020. 
Download
Short summary
We accurately mapped 16 dominant tree species and genera in Poland using Sentinel-2 observations from short periods in spring, summer, and autumn (2018–2021). The classification achieved more than 80% accuracy in country-wide forest species mapping, with variation based on species, region, and observation frequency. Freely accessible resources, including the forest tree species map and training and test data, can be found at https://doi.org/10.5281/zenodo.10180469.
Share
Altmetrics
Final-revised paper
Preprint